University of Montana ScholarWorks at University of Montana Numerical Terradynamic Simulation Group Publications Numerical Terradynamic Simulation Group 1-2015 Dynamics of MODIS evapotranspiration in South Africa Nebo Jovanovic Qiaozhen Mu Richard D. H. Bugan Maosheng Zhao Follow this and additional works at: http://scholarworks.umt.edu/ntsg_pubs Recommended Citation Jovanovic, N., Mu Q., Bugan R. D. H., and Zhao M. (2015). Dynamics of MODIS evapotranspiration in South Africa. Water SA: 41(1): 79-90, doi: 10.4314/wsa.v41i1.11 This Article is brought to you for free and open access by the Numerical Terradynamic Simulation Group at ScholarWorks at University of Montana. It has been accepted for inclusion in Numerical Terradynamic Simulation Group Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Dynamics of MODIS evapotransplratlon In South Africa N e b o J o v a n o v i c ' * Q i a o z h e n M u ^ R ic h a r d DH B u g a n ' a n d M a o s h e n g Z h ao ^ 'CSIR, N atu ral Resources a n d Environment, PO B o x3 2 0 ,7599 Stellenbosch, South Africa ^Numerical Terradynamic S im ulation Group, College o f Forestry and Conservation, University o f M ontana, 32 Campus Drive, Missoula, M T 59812, USA ^D epartm ent o f G eographical Sciences, University o f M aryland, 2181 SamuelJ. LeFrak Hall, College Park, M D 20742, USA ABSTRACT This paper describes the dynam ics o f ev ap o tran sp iratio n (ET) in South A frica using MOD16 ET satellite-derived data, an d analyses the inter-dependency o f variables used in the E T alg o rith m o f M u et al. (2011). A nnual evapotranspiration is strongly dependent on rain fall an d potential ev ap o tran sp iratio n (PET) in 4 clim atically different regions o f South Africa. Average E T in South A frica (2000-2012) was estim ated to be 303 m m -a ' or 481.4 x 10’ m ’-a' (14% o f P ET an d 67% o f rainfall), m ainly in the form o f p lan t tra n sp ira tio n (T, 53%) an d soil evaporation (Soil E, 39%). E vapotranspiration (ET) show ed a slight tendency to decrease over the period 2000-2012 in all clim atic regions, except in the south o f the co u n try (w inter rainfall areas), although an n u al variations in E T resulted in the 13-year trends n o t being statistically significant. E v ap o transpiration (ET) was spatially dependent on PET, T an d vap o u r pressure deficit (VPD), in p a rticu lar in w inter rain fall an d arid to sem i-arid clim atic regions. A ssum ing a n average rainfall o f 450 m m -a ', an d considering cu rre n t best estim ates o f ru n o ff (9% o f rainfall), groundw ater recharge (5%) an d w ater w ithdraw al (2%), MOD16 ET estim ates were ab o u t 15% short o f the w ater balance closure in South Africa. The E T alg o rith m can be refined an d tested for applications in restricted areas th a t are spatially heterogeneous an d by accounting for soil w ater supply lim iting conditions. Keywords: M O D16, p o te n tia l e v a p o tra n s p ira tio n , soil ev ap o ra tio n , tra n s p ira tio n , w a ter balance IN T R O D U C T IO N S ustainable m a n a g e m e n t o f w a ter re so u rce s re q u ire s carefu l p la n n in g , m o n ito rin g a n d m a n a g em e n t, as w a te r is a finite re so u rce in q u a lity a n d q u an tity . E n v iro n m e n ta l ch an g e d riven by a n th ro p o g e n ic global w a rm in g im p o ses a d d itio n a l c o n stra in ts, for exam ple, in crease in ex tre m e w e ath e r o c cu rre n ce s (d ro u g h ts a n d floods), in cre ase in te m p e ra tu re a n d p o te n tia l ev ap o ra tio n , ch an g es in ra in fa ll a m o u n ts a n d d istrib u tio n , etc. The q u a n tifica tio n o f th e w a te r cycle c o m p o n e n ts is a fu n d a m e n ta l re q u ire m e n t in th e assessm ent a n d m an a g em e n t o f w a te r re so u rces, in p a rtic u la r, u n d e r th e im p a c ts o f h u m a n in d u c e d lan d -u se a n d c lim ate change. E v a p o tra n sp ira tio n (ET) is a k ey p ro c ess w ith in th e h y d ro lo g ical cycle a n d a rg u ab ly th e m o st difficult c o m p o n e n t to d e te rm in e , especially in a rid a n d se m i-a rid areas w here a large p ro p o rtio n o f low a n d sp o rad ic p re cip ita tio n is re tu rn e d to th e a tm o sp h e re v ia ET. In th ese areas, vegetation is often subject to w a ter stress a n d p la n t species a d ap t in differen t w ays to p ro lo n g ed d ro u g h t c o n d itio n s (Jovanovic a n d Israel, 2012). E v a p o tra n sp ira tio n (ET) is e stim a te d to be >60% o f ra in fa ll on a global scale (K o rz o u n et al., 1978; L vovich a n d W h ite , 1990) a n d c an re ac h n e arly 100% o f ra in fa ll in a rid reg io n s (B ugan et al., 2012). In a d d itio n , E T v aries d e p e n d in g on th e h e te ro g e n e ity o f th e lan d sca p e a n d to p o g ra p h y clim ate, ty p e o f vegetation a n d soil p ro p e rtie s (M u et al., 2007a). T his m ak e s th e p ro c ess o f E T very d y n a m ic over tim e a n d variab le in space. By u n d e r sta n d in g ho w th is p a ra m e te r v aries in space a n d tim e , w e w ill im p ro v e o u r u n d e rs ta n d in g o f a c ritica l c o m p o n e n t o f th e w a ter cycle. * S To w hom all correspondence should be addressed. 27 21 888 2506; Fax: +27 21 888 2682; e-m ail: niovanovic(a)csir.co.za R e c e iv e d 13 M a y 2014; a cc ep ted in revise d fo r m 10 D e c e m b e r 2014. http://dx.doi.org/10.4314/w sa.v41il.ll Available o n website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. 1 January 2015 ISSN 1816-7950 (On-line) = W ater SA Vol. 41 No. 1 January 2015 Besides th e FL U X N E T n e tw o rk (B aldocchi et al., 2001), m ea su re m e n ts o i E T are scarce a n d localised. H ow ever, o u r a b ility to use in fo rm a tio n fro m satellite sen so rs to e stim a te ET is developing ra p id ly a n d offers th e o p p o rtu n ity to u n d e rs ta n d h o w E T v a rie s across space a n d tim e , red u ce u n c e rta in ty levels, in cre ase sp atial d e ta ils a n d scale-up to large areas. The accuracy a n d u n c e rta in ty o f sa tellite-b ased e stim a te s o f E T w ere ev alu a te d in specific stu d ies for different a lg o rith m s a n d p ro d u c ts, e.g., SEBAL (B astiaan ssen et al., 1998a a n d b), M E T R IC (A llen e t al., 2007a a n d b), SEBS (Su, 2002), a n d M O D IS ET (M u et al., 2007a), as w ell as for c o m p o n e n ts o f E T calcu la tio n such as M O D IS fra c tio n o f ab so rb ed p h o to sy n th e tic a lly active ra d ia tio n (FPAR) a n d le a f area in d e x (LAI) (M y n e n i et al., 2002). T his w as g en erally d o n e by c o m p a riso n b etw een re m o te sensin g -b a s e d e stim a te s o f E T a n d g ro u n d -b a s e d m e a su re m e n ts o f E T o r o th e r v ariables. M u eller et al. (2011) a n d Jim enez et al. (2011) also c o m p a re d g lobal E T d a ta se ts a n d su rface fluxes o b ta in e d w ith satellite-b ased p ro d u c ts a n d la n d surface m odels for large riv er b asin s o f th e w orld. The C o u n c il for S cientific a n d In d u s tria l R esearch (CSIR) h a s re ce n tly in itia te d resea rc h a im e d at e v alu atin g , v a lid a tin g a n d im p ro v in g th e M O D 16 ET p ro d u c t, one o f th e free satelliteba se d E T p ro d u c ts w ith re ad ily available E T d a ta for th e p a st 13 years. These tim e series w ere seldom a pplied to e stim a te E T in A frica, especially in a rid a n d se m i-a rid regions. The M O D 16 ET p ro d u c t e stim a te s global E T fro m g ro u n d -b a s e d m ete o ro lo g i cal o b se rv atio n s a n d re m o te -se n sin g d a ta fro m th e M o d erate R esolution Im a g in g S p e c tro ra d io m e te r (M O D IS) lo ca ted on NASA’s T erra a n d A qua satellites (Justice e t al., 2002). The M O D IS se n so r w orks on a sp atial re so lu tio n o f a p p ro x im ate ly 1 k m , m a k in g it p o te n tia lly suitable for a p p lic atio n s in w ater re so u rce m an a g em e n t. The im ages c o n ta in 36 sp e c tra l b a n d s in th e w avelen g th ra n g e o f 0.4 to 14.4 pm . The M O D 16 ET a lg o rith m w as developed by M u et al. (2007a) fro m th e o rig in a l m o d el o f C leugh et al. (2007), a n d la te r im p ro v e d by M u et al. 79 (2011). T his p a p e r p re sen ts th e first ev alu atio n o f th e M O D 16 ET d o n e in S o u th A frica at c o u n try w ide scale. The aim s w ere: (i) to d escrib e th e a n n u a l a n d sp atial tre n d s o f E T a n d its c o m p o n e n ts e stim a te d w ith th e m o d ifie d E T a lg o rith m o f M u et al. (2011) for S o u th A frica, a n d (ii) to assess th e lim itin g ran g es o f a lg o rith m key v ariab les in rela tio n to E T a n d its c o m p o n en ts. MATERIA L A N D M E T H O D S MOD16ET algorithm B rief description o f the M O D IS ET algorithm The d e ta ile d a lg o rith m d e sc rip tio n c an be fo u n d in M u et al. (2007a) a n d M u et al. (2011). In th is study, o n ly th e v ariab les u se d in th e analysis are described. The M O D 16 ET a lg o rith m is based on th e p hysically s o u n d th e o ry o f th e P e n m an M o n te ith en erg y b alan ce (M o n te ith , 1965; A llen et a l , 1998): A +YX (l+rs/ra) w here: E T is in m m X is th e la te n t h e a t o f v a p o risa tio n o f w ater (!•% ') A is th e g ra d ie n t o f th e sa tu ra tio n v a p o u r p re ssu re -te m p e ra tu re fu n c tio n ( P a ° C ') is th e n e t ra d ia tio n (J-m ^-s ') G is th e soil h e a t flux (J-m ^-s') is th e a ir d e n sity (kg-m ^) is th e specific h e a t o f th e a ir (J-kg^'-K i) is th e sa tu ra te d v a p o u r p re ssu re o f th e a ir (Pa), a fu n c tio n o f a ir te m p e ra tu re m e a su re d at h e ig h t z is th e m e a n a ctu al v a p o u r p re ssu re o f th e air m e a su re d at h e ig h t z (Pa) ( e - e ) is v a p o u r p re ssu re deficit {VPD; Pa) is th e a ero d y n a m ic re sistan c e to w a ter v a p o u r diffusion in to th e a tm o sp h e ric b o u n d a ry layer (s-m ') Y is th e p sy c h ro m e tric c o n sta n t (0.066 k P a -K ') r is th e surface re sistan c e to w a te r v a p o u r tra n s fe r (s-m ') The M O D 16 ET a lg o rith m (M u e t al., 2011) c al c u lates E T u sin g g lobal d a ily te m p e ra tu re , actu al v a p o u r p re ssu re a n d in c o m in g solar ra d ia tio n , a n d rem o tely -sen sed E A R FPAR, albedo, a n d la n d cover ty p e. The available en erg y at th e la n d surface {R^ is p a rtitio n e d in to v eg etatio n surface a n d soil surface u sin g FPAR (M O D IS 15A p ro d u c t, a ssu m e d to be e q u al to c a n o p y cover F^. The te rm r fro m Eq. (1) is d efin ed as an effective su rface resistan ce to e v ap o ra tio n fro m th e soil surface a n d tr a n s p ira tio n fro m th e p la n t canopy. C a n o p y r d ecreases as VPD decreases, a n d it is also lim ite d by low te m p e ra tu re (M u e t a l , 2007a; M u e t a l , 2011). E v ap o ratio n fro m th e w et c an o p y o c cu rs after c e rta in c o n d itio n s (e.g. after ra in fa ll, w h en air relative h u m id ity >70%) a n d c a n be a su b sta n tia l c o m p o n e n t w h en le a f area is large. In o rd e r to 80 calculate d a y tim e a n d n ig h t-tim e FT, d aily average a ir te m p e ra tu re (Tavg) is a ssu m e d to be th e average o f d a y tim e a ir te m p e ra tu re (Tday) a n d n ig h t tim e te m p e ra tu re (M u et al., 2011). D ay-tim e a n d n ig h t-tim e E T are th e n a d d ed u p to get d a ily E T values. A soil e v ap o ra tio n {Soil E) c o m p o n e n t is also c alcu la te d in th e M O D16 ET a lg o rith m (M u e t al., 2011), w h ich m ay be im p o rta n t in areas w ith a sparse canopy. The p o te n tia l e v ap o ra tio n fro m th e soil is first c alcu la te d w ith a n e q u atio n th a t fu lly resem bles th e P e n m a n -M o n te ith en erg y b a l ance e q u atio n (Eq. (1)). A c tu a l Soil E is th e n c alcu la te d as a fu n c tio n o f a ir relative h u m id ity {RET). The a lg o rith m also co n sid ers th e w et surface fra c tio n (E ,) c alcu la te d as a fu n c tio n o f R H . The w et su rface fra c tio n (E ,) ' w e t' ' w e t' re p re se n ts th e fra c tio n o f c a n o p y o r soil covered by w ater. In th e case o f th e canopy, E^^^ is u se d to sep arate e v ap o ra tio n o f w a ter in te rc e p te d by th e c a n o p y a n d tra n s p ira tio n (T). In th e case o f th e soil, E^^^ is u se d to sep arate e v ap o ra tio n fro m sa tu ra te d a n d m o ist soil surface. The late n t h e a t fluxes fro m vegetation c a n o p y a n d soil (p a rtitio n e d th ro u g h P^ a n d F^J are finally su m m e d u p to calculate E T for th e p a rtic u la r v egetation. M O D 16 ET is th e sum o f 3 co m ponents: E T — Tr + Ec + Ei (2) w here: T , E^, a n d E . are c a n o p y tra n s p ira tio n (T), soil e v ap o ra tio n {Soil E), a n d in te rc e p tio n e v ap o ra tio n {C anopy E), respectively. ({ARnFc + pCpVPD ATr = s -h y X F c /E ic ) ( 1 ~ F w e t ) (3) (1 -h r .J V a c ) {^RnEc + p C p V P D F c /r a w c ) F w e t XEi = A -h (1 -h ^ (4) ) ' *awc' The te rm E^ c o n sists o f Soil E fro m d ry soil su rface a n d w et soil surface: (5) ^ w e t _ s o i l 4" ^ S o i L p o t fs m (A(i?„(l - FJ - G) + pCp(1.0 - Fc) VPD/rgs)Fwet AE.S O IL p o t (i(B „ (l - FJ - C) +()C,(1,0 - Fc) I'f P /r „ )(l - Fwet) (6) (y, ' »+ w here: Ej, is th e fra c tio n a l v eg etatio n cover Ew e ,t is relative surface w etness (EEP) ' ' r ^ are th e a ero d y n a m ic a n d c a n o p y resistan c es o f th e d ry c a n o p y is m o d ifie d RET™ to th e one in F isher et al. (2008) r a w e a n d rs w c are th e a ero d y' n a m ic a n d w et c a n o -Tp y/ resistan ces o f th e w et canopy ET^^j soi7 are th e w et a n d p o te n tia l Soil E ra s a n d r ss are th e soil a ero d y' n a m ic c o n d u c ta n c e a n d soil to ta l resistan ces The p o te n tia l p la n t tra n s p ira tio n {T^J is c alcu la te d follow ing th e P riestleyT aylor (P riestley a n d Taylor, 1972) e q uation: a A P n F c il - Fwet) s -h y ^ 1.26 (8) The to ta l d a ily p o te n tia l E T (PET) is c alcu la te d w ith Eq. (9): P E T — AEi + ATpQi + AEy^^ + XE<S O I L p o t (9) http://dx.doi.org/10.4314/w sa.v41il.ll Available on website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. 1 lanuary 2015 ISSN 1816-7950 (On-line) = W ater SA Vol. 41 No. 1 lanuary 2015 L egend I TVopicarW et I S u m m e r R ainfall I W inter R ainfall ' A rid to Sem i-A rid 720Kllom«»(S Figure 1 Legend T av g ( d e g C) v a lu e B H ig h : 2 6 .6 Low : 13.4 720 KilematAis GMAO MERRA m eteorological inp u t d ata N A SA /G M A O M o d e rn E ra R etrospective A nalysis (M ERRA ) at sp atial re so lu tio n o f 0.5°x 0.66° p ro v id e d every h o u r w as u se d as m eteo ro lo g ical in p u t to th e M O D 16 ET a lg o rith m . M u et al. (2011) p ro c e sse d th e h o u rly d a ta to d a ily level. The tec h n iq u e p ro p o se d by Z h ao e t al. (2005) w as u se d to in te rp o la te d ata fro m co arse sp atial re so lu tio n to 1 k m , to fit M O D IS pixels, to rem ove a b ru p t ch an g es fro m one side o f a G M A O p ixel to a n o th e r, a n d to im p ro v e th e a cc u rac y o f th e se pixels. M eth o d o lo g y and stu d y area S o u th A frica covers a w ide ra n g e o f c lim atic a n d h ydro lo g ical co n d itio n s. The S o u th A frica n D e p a rtm e n t o f W ater A ffairs classified th e c o u n try ’s w a te r reso u rce s in to 19 w a te r m a n a g e m e n t areas (W M A s) in 2004 (DW AF, 2004, since re g ro u p e d in to 9 W M A s). The W M A b o rd e rs w ere u se d to delineate 4 clim atic reg io n s (Fig. la). The w estern a n d c e n tra l W M A s fall in a rid a n d se m i-a rid regions. The so u th e rn W M A s are in an area w ith a M e d ite rra n e a n (w in ter ra in fa ll) clim ate. The e ast e rn co asta l area h a s a tro p ic a l w et clim ate, w h ilst th e n o rth e rn reg io n s are in th e su b -tro p ica l (su m m er ra in fa ll) belt. Such clim atic div ersity is ideal for th e analysis o f a w ide ra n g e o f E T values. The d ivision in to 4 c lim atic re g io n s is c o rro b o ra te d by th e c h a ra c te ristic g ra d ie n t in a n n u a l ra in fa ll fro m w est (a rid a n d se m i-a rid clim ate) to east (tro p ic al w et clim ate) (Fig. lb; L ynch a n d S chulze, 2006). It is e v id e n t th a t average a ir te m p e ra tu re s are ty p ic a lly m o d e ra te in th e so u th a n d e ast o f th e c o u n try , a n d h ig h in th e n o rth -w e s t (Fig. Ic). T h irte en y ears (2000-2012) o f a n n u a l M O D 16 ET a n d G M A O M E R R A m ete o ro lo g ica l d a ta w ere c o llected a n d p r o cessed for th e w hole c o u n try , as w ell as for in d iv id u a l clim atic http://dx.doi.org/10.4314/w sa.v41il.ll Available o n website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. 1 lanuary 2015 ISSN 1816-7950 (On-line) = W ater SA Vol. 41 No. 1 lanuary 2015 a) C lim atic regions o f South A frica delineated based on Water M a nagem ent Areas (South A frican D epa rtm e nt o f Water A ffairs and Forestry; DWAF, 2004); b) mean a nnual ra in fa ll fo r the period 1960-2014 (Lynch a n d Schulze, 2006); c) average a ir tem perature (Tavg, MODIS) fo r a typica l year (2009) re g io n s as classified in Fig. la , on a 0.912 k m x 0.912 k m pixel basis. For each yearly d a ta set, th e follow ing v ariab les w ere extracted : E v a p o tra n sp ira tio n (ET) P o te n tia l e v a p o tra n s p ira tio n (PET) E v ap o ra tio n fro m w et c a n o p y surface {Canopy E) Soil e v ap o ra tio n (Soil E) D ry soil e v ap o ra tio n (D ry soil E) W et soil e v ap o ra tio n ( W et soil E) T ra n s p ira tio n (T) A verage a ir te m p e ra tu re (Tavg) D a y tim e average a ir te m p e ra tu re (Tday) D a y tim e average v a p o u r p re ssu re deficit (VPD) T he v ariab les w ere selected b a se d on th e im p ro v e m en ts in tr o d u c ed by M u et al. (2011) to th e o rig in a l a lg o rith m . Yearly a n d sp atial c h an g es in E T w ere a n aly se d a n d c o rre la te d to th e yearly values fo r each v ariab le in o rd e r to assess th e sen sitiv ity a n d d ep en d e n ce o f F T to th e selected variables. The d a ta w ere a n a lysed for th e w hole c o u n try as w ell as p e r clim atic region. Statistical an alysis T he te m p o ra l (an n u al) ch an g es in E T a n d a sso ciated v ariables w ere assessed u sin g lin e a r reg ressio n fu n c tio n s a n d teste d for sta tistica l significance. F or th e assessm en t o f d ep en d en ce betw een E T a n d a sso ciated v ariables over tim e , th e S p e a rm a n ra n k c o rre latio n coefficient (r^) w as u se d b ecause it is suitable for sm all d a ta series th a t m ay n o t n e ce ssa rily have a n o rm a l d istrib u tio n . The In fo S tat softw are (D i R ienzo et al., 2012) w as u se d for th e c alcu la tio n o f a n d sta tistica l significance. F or th e sp atial analysis it w as n o t p ossible to gen erate a d a ta se t by av eraging th e a n n u a l d a ta for 13 y ears because th e 81 TABLE 1 P oten tial ev a p o tra n sp ira tio n (PET), a ctual eva p o tra n sp ira tio n (ET), c a n o p y and soli ev a p o ra tio n (Canopy E a n d Soil E) a n d transp iration (T) e stim a te d w ith MODIS p rod u cts for Sou th Africa. S lo p es o f th e linear r eg r essio n are sh ow n (p > 0.05 in ail ca ses). Total area is 1 2 2 8 297 km^. Y ear PET (mnti’a ') ET (b liilo n m = a ') ET (mnti’a ') C anopyE (mnti’a ') 2000 2 173 428.1 349 41 139 169 2001 2 174 411.9 335 30 138 167 2002 2 292 340.3 277 18 103 156 2003 2 321 299.2 244 14 93 137 2004 2 285 342.2 279 21 95 2005 2 266 340.4 277 24 2006 2 156 434.3 354 42 2007 2 268 347.1 283 2008 2 211 377A 307 2009 2 236 377.6 307 2010 2 262 369.8 301 2011 2 209 393.5 320 2012 2 250 368.8 Average 2 239 371.6 Slope 0.649 -0 .0 9 7 S o iiE (mnti’a ') T (mnti’a ') Canopy EIET SoiiE/ET 0.16 0.12 0.40 0.48 0.15 0.09 0.41 0.50 0.12 0.07 0.37 0.56 0.10 0.06 0.38 0.56 163 0.12 0.07 0.34 0.58 107 146 0.12 0.09 0.39 0.53 142 169 0.16 0.12 0.40 0.48 22 110 151 0.12 0.08 0.39 0.53 27 129 151 0.14 0.09 0.42 0.49 30 122 156 0.14 0.10 0.40 0.51 27 116 159 0.13 0.09 0.38 0.53 26 119 175 0.15 0.08 0.37 0.55 300 24 115 162 0.13 0.08 0.38 0.54 303 27 117 158 0.14 0.087 0.387 0.526 -0 .0 7 9 -0.153 -0 .2 0 3 0.277 -lE -0 4 -2 E -0 4 -3 E -0 4 5E -04 n u m b e r o f m issin g d a ta (out o f range) v a rie d b etw een years, a n d th is m ay have in tro d u c e d in co n sisten cies a n d bias. The spa tia l analysis w as th e n p e rfo rm e d for a y e ar w h en a n n u a l E T a n d asso ciated c o m p o n e n ts e x h ib ite d th e least d ev ia tio n fro m th e 13-year average. T his ty p ic a l y e ar w as 2009 a n d it w as a ssu m e d th a t it w o u ld give a realistic a n d rep re se n tativ e d e sc rip tio n o f sp atial differences. Average, m e d ia n , sta n d a rd d eviation, coefficient o f v a ria tio n , skew ness a n d k u rto sis o f all relev an t v ariab les w ere d e te rm in e d u sin g all d a ta pixels. The spatial d ep en d en ce b etw een v ariab les w as assessed for all y ears u sin g th e coefficient o f d e te rm in a tio n (R^) o f reg ressio n fu n c tio n s a n d P earso n c o rre latio n coefficient (r). In th is in stan c e, r w as u se d in ste a d o f to red u ce c o m p u ta tio n tim e because o f th e v ery large d a ta se t («>100 000) a n d to b e tte r a cc o u n t for o u tliers (the effects o f o u tlie rs m ay be m a sk e d by th e ra n k in g in r^). B oth th e coefficient o f d e te rm in a tio n (R^) a n d th e c o rre latio n coefficients w ere re p o rte d to be suitable to in d ic a te w h e th e r tw o d a tasets have sim ila r te m p o ra l o r sp atial p a tte rn s (Ji a n d G allo, 2006). ET/ PET T/ET 400 300 as I 200 LU" 1LU — 100 o o O m o O O O (N m Year ■ET -C a n o p y E -S oil E Figure 2 Thirteen-year trends in a n n u a l evapotranspiration (ET), canopy evaporation (canopy E), soil evaporation (soil E) and transpiration (T) estim ated w ith M ODIS fo r South Africa R ESULTS A N D D IS C U S S IO N Tem poral c h a n g es o f MOD16 ET an d ET c o m p o n e n ts T h irte e n y e ars o f a n n u a l PET, E T a n d its c o m p o n e n ts w ere e s tim a te d w ith M O D IS p ro d u c ts a n d are sh o w n in T able 1. ft w as e s tim a te d th a t th e average E T in S o u th A frica is 303 m m - a r a n g i n g fro m 2 4 4 m m - a ' in 2003 to 354 m m - a ' in 2006. O n ly 14% o f th e p o te n tia l a tm o sp h e ric d e m a n d for w a te r e v ap o ra te s (E T/P E T). T he la rg e st c o m p o n e n t o f E T w as tr a n s p ir a tio n o f p la n ts (53% on average), follow ed b y Soil E (39% on average). D ire c t e v a p o ra tio n fro m th e v e g etatio n c a n o p y w as a m in o r c o m p o n e n t o f E T (9% on average). A n n u a l v alues in d ic a te d th a t E T w as ra th e r stable in th e p e rio d 2 00 0 -2 0 1 2 (Fig. 2), d e p e n d in g on ra in fa ll a m o u n ts a n d d istrib u tio n . E v a p o tra n sp ira tio n (ET), C anopy E a n d Soil E show ed a slight te n d e n c y to decrease b a se d on th e negative slope o f th e lin e a r reg ressio n (Table 1), w h ilst P E T a n d T w ere slightly in cre asin g (positive slope in Table 1). H ow ever, a n n u a l v a ria b ility w as m u c h la rg e r th a n th e o b serv ed c h an g es a n d 82 th e se tre n d s w ere n o t sta tistica lly significant (p>0.05). T ables 2 to 5 show 13 years o f a n n u a l PET, E T a n d its c o m p o n e n ts for each c lim atic region. E v a p o tra n sp ira tio n (E T) d isplayed a slight te n d e n c y to decrease in all c lim atic regions, except in w in te r ra in fa ll areas w here th e C anopy E a n d Soil E w ere in creasin g . H ow ever, n o n e o f th e tre n d s w as sta tistica lly signifi c a n t (p>0.05). N atio n -w id e average values (Table 1) are b iased to w a rd s th e values e stim a te d in th e a rid a n d se m i-a rid clim ate, w h ich re p re se n ts th e larg est c lim atic reg io n in e x te n t (Fig. la). The re la tio n s b etw een v ariab les w ere d e te rm in e d u sin g a n d th e re su lts are s u m m a rise d in Table 6. The values below th e m a in d iag o n al in Table 6 re p re se n t r^. A p ositive n u m b e r r e p re sen ts p ositive c o rre latio n a n d vice versa. G o o d co rre latio n s te n d to +1 (positive co rrelatio n ) a n d -1 (negative correlation). The values above th e m a in d iag o n a l re p re se n t th e p ro b a b ility a sso ciated w ith th e n u ll h y p o th esis. V alues <0.05 re p re se n t sta tistica lly significant re la tio n s at p ro b a b ility o f 95% o r m ore, a n d th e se are h ig h lig h te d in b o ld in T able 6. ft is e v id en t th a t th e re is gen erally a negative c o rre latio n betw een P E T a n d all http://dx.doi.org/10.4314/w sa.v41il.ll Available on website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. 1 fanuary 2015 ISSN 1816-7950 (On-line) = W ater SA Vol. 41 No. 1 fanuary 2015 TABLE 2 P oten tial ev a p o tra n sp ira tio n (PET), actual eva p o tra n sp ira tio n (ET), ca n o p y and soil e v a p o ra tio n (Canopy E an d SotVE) an d transp iration (T) e stim a te d w ith MODIS p rod u cts for t h e su m m er rainfall area o f S ou th Africa. S lo p es o f th e linear reg ressio n are sh ow n (p > 0.05 in ail ca ses). Total area is 2 9 9 693 km^. Y ear PET (m m -a ') ET (b illio n m =-a') ET (m m -a ') C anopyE (m m -a ') 2000 2157 105.9 460 2001 2200 93.1 405 2002 2370 66.7 290 2003 2396 59.5 2004 2263 80.6 2005 2312 72.5 315 2006 2147 103.1 448 2007 2329 73.5 320 2008 2244 86.7 2009 2231 2010 2260 2011 2303 2012 2329 76.3 332 13 95 224 Average 2272 83.5 363 24 115 224 Slope 3.278 -0 .0 6 8 -0 .2 9 6 -0 .2 5 6 -0 .7 4 6 0.705 -5 E -0 4 S oilE (m m -a ') T (m m -a ') ET/ PET Canopy E/ET S o il E/ET T/ET 46 161 254 27 139 239 0.21 0.1 0.35 0.55 0.18 0.07 0.34 8 83 198 0.59 0.12 0.03 0.29 0.68 259 6 72 181 0.11 0.02 0.28 0.7 350 17 93 241 0.15 0.05 0.26 0.69 15 97 203 0.14 0.05 0.31 0.64 53 162 233 0.21 0.12 0.36 0.52 12 95 213 0.14 0.04 0.3 0.67 377 28 135 213 0.17 0.08 0.36 0.57 94.1 409 40 141 229 0.18 0.1 0.34 0.56 89.5 389 26 117 246 0.17 0.07 0.3 0.63 84.6 368 20 105 243 0.16 0.05 0.29 0.66 0.14 0.04 0.29 0.68 0.16 0.06 0.31 0.63 -5 E -0 5 - lE - 0 3 -2 F -0 3 TABLES P oten tial ev a p o tra n sp ira tio n (PET), actual eva p o tra n sp ira tio n (ET), ca n o p y and soil e v a p o ra tio n (Canopy E and SoilE) and transp iration (T) e stim a te d w ith MODIS p ro d u cts for th e tropical w e t area o f S ou th Africa. S lo p es o f th e linear reg ressio n are sh ow n (p > 0.05 in ail ca ses). Total area is 132 913 km^. Y ear PET (m m -a ') ET (b illio n m = .a ') 2000 1 834 2001 1 869 2002 1 935 ET (m m -a ') C anopyE (m m -a ') S oilE (m m -a ') T (m m -a ') ET/ PET Canopy EIET 108.4 816 192 101.5 764 148 90.6 682 98 180 S o il E/ET T/ET 249 375 0.44 220 395 0.41 0.24 0.31 0.46 0.19 0.29 404 0.35 0.52 0.14 0.26 0.59 2003 1 970 80.9 609 77 181 351 0.31 0.13 0.3 0.58 2004 1 906 92.5 696 107 179 410 0.37 0.15 0.26 0.59 2005 1 905 92.2 694 130 212 352 0.36 0.19 0.31 0.51 2006 1 823 104.5 787 178 234 375 0.43 0.23 0.3 0.48 2007 1 935 92.2 694 108 200 385 0.36 0.16 0.29 0.56 0.48 2008 1 853 91.9 691 126 234 331 0.37 0.18 0.34 2009 1 880 96.2 724 140 211 373 0.39 0.19 0.29 0.52 2010 1 922 94.8 713 136 216 362 0.37 0.19 0.3 0.51 2011 1 857 94.2 709 119 201 389 0.38 0.17 0.28 0.55 2012 1 910 94.8 713 118 199 396 0.37 0.17 0.28 0.56 Average 1 892 95.0 715 129 209 377 0.38 0.18 0.29 0.53 Slope 0.002 -0 .3 1 3 -2 .3 5 6 -1.292 -0 .3 6 8 -0 .6 9 6 - l F - 0 .3 -6 F -0 4 2 F -0 4 4 F -0 4 v ariab les except T/ET. The re m a in in g v ariab les w ere g enerally p ositively correlated. A nalysis by clim atic region in d ic a te d th a t th e c o rre latio n s o f ra tio s (C anopy E/ET, Soil E /T a n d T/E T) to o th e r v ariab les w ere g enerally n o t significant in th e w in te r ra in fa ll a n d especially a rid a n d se m i-a rid clim ates. In absolute te rm s, M O D 16 ET e stim a te d an average w a ter loss to th e atm o sp h e re o f 371.6 x 10® m m -a ' for th e c o u n try (Table 1). A ssu m in g an average ra in fa ll o f 450 m m - a c o r r e sp o n d in g to 553 X 10® m m - a i t w as c alcu la te d th a t 67% o f ra in fa ll w a ter evaporates. It w as e stim a te d th a t ru n o ff is a bout 50 X 10® m m -a ' o r 9% o f ra in fa ll (DW AF, 2004) a n d th a t g ro u n d w a te r re ch a rg e is ab o u t 30 x 10® m m -a ' o r 5% o f ra in fa ll (Vegter, 1995; DW AF, 2005). F re n k e n (2005) e stim a te d w ater w ith d ra w a l in S o u th A frica to be 12.5 x 10® m m - a ' in 2000. C o n sid e rin g m issin g d a ta (about 3% o f th e to ta l n u m b e r o f http://dx.doi.org/10.4314/w sa.v41il.ll Available o n website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. 1 fanuary 2015 ISSN 1816-7950 (On-line) = W ater SA Vol. 41 No. 1 fanuary 2015 pixels), M O D 16 ET e stim a te s w ere ab o u t 15% sh o rt o f th e w ater b a la n ce c losure fo r S o u th A frica, possibly due to in ac cu ra c ie s in th e a lg o rith m a n d in p u t d a ta (e.g. la n d cover). Spatial ch an ges o f MOD16 ET and ET c o m p o n e n ts F igure 3 (a to g) displays e n v iro n m e n ta l v ariab les o b ta in e d fro m M O D IS for a ty p ic a l y e ar (2009) w h e n a n n u a l E T a n d a sso ciated c o m p o n e n ts e x h ib ited th e least d ev iatio n s from th e 13-year average (Table 1). C lim atic c o n d itio n s drive P F T e x h ib itin g a g ra d ie n t fro m th e so u th e a st to th e n o rth w e st (Fig. 3a). The g ra d ie n t is inverse for E T (Fig. 3b), w h ich is d riven by a tm o sp h e ric e vaporative d e m a n d , b u t d ep en d s on ra in fa ll (Fig. lb) a n d v egetation cover (Fig. 3c). H ig h ra in fa ll areas (Fig. lb) are g en erally asso ciated w ith a m o re h u m id 83 TABLE 4 P oten tial eva p o tra n sp ira tio n {PET), actu al ev a p o tra n sp ira tio n {ET), c a n o p y a nd soli ev a p o ra tio n {C anopy E a n d Soil E) a n d transp iration (T) e stim a te d w ith MODIS p r o d u c tsfo r th e w in ter rainfall area o f S ou th Africa. S lo p es o f th e linear reg ressio n are sh ow n (p > 0.05 in ail ca ses). Total area is 2 4 9 637 km^. Y ear PET (m m -a ') ET (b liilo n m = .a ') ET (m m -a ') C anopyE (mnti’a ') 2000 1 886 103.4 414 43 191 180 2001 1 899 102.7 411 36 189 186 2002 1 965 94.2 377 27 162 189 2003 1 963 87.5 351 21 156 2004 2 001 90.1 361 25 156 2005 1 940 95.0 380 33 170 2006 1 856 109.0 436 49 203 2007 1 933 97.2 389 34 181 2008 1 898 99.2 397 34 2009 1 957 89.6 359 2010 1 960 91.6 367 2011 1 836 106.5 2012 1 869 Average Slope S oilE (m m -a ') T (m m -a ') ET/ PET Canopy EIET SoiiE/E T T/ET 0.22 0.1 0.46 0.43 0.22 0.09 0.46 0.45 0.19 0.07 0.43 0.5 173 0.18 0.06 0.45 0.49 180 0.18 0.07 0.43 0.5 111 0.20 0.09 0.45 0.46 184 0.24 0.11 0.47 0.42 175 0.20 0.09 0.46 0.45 187 176 0.21 0.09 0.47 0.44 27 172 160 0.18 0.07 0.48 0.45 29 185 154 0.19 0.08 0.5 0.42 426 40 194 193 0.23 0.09 0.45 0.45 106.6 427 40 193 194 0.23 0.09 0.45 0.46 1 920 97.9 392 34 180 179 0.20 0.08 0.46 0.46 -3.719 0.297 1.188 0.235 1.323 -0 .3 6 9 lE -0 3 3E -04 2E-03 -2 E -0 3 TABLE 5 P oten tial eva p o tra n sp ira tio n {PET), actu al ev a p o tra n sp ira tio n {ET), c a n o p y a nd soli ev a p o ra tio n {Canopy E a n d Soil E) and transp iration (T) e stim a te d w ith MODIS p rod u cts for th e arid and sem i-arid area o f S ou th Africa. S lo p es o f th e linear reg ressio n are sh ow n (p > 0.05 in ail ca ses). Total area is 5 4 6 0 5 4 km^. Y ear PET (m m -a ') ET (b liilo n m = .a ') T (m m -a ') ET/ PET Canopy EIET SoiiE/E T T/ET 2000 2 400 2001 2 365 77 70 0.06 0.01 0.52 0.47 93 66 0.07 0 0.58 2002 0.41 0 67 58 0.05 0 0.53 0.47 97 0 52 45 0.04 0 0.54 0.46 55.7 102 0 47 55 0.04 0 0.47 0.54 2 485 59.2 108 0 56 52 0.04 0 0.52 0.48 2 384 87.9 161 2 80 79 0.07 0.01 0.5 0.49 2007 2 477 62.2 114 0 62 52 0.05 0 0.54 0.46 2008 2 430 74.2 136 0 72 64 0.06 0 0.53 0.47 2009 2 458 71.0 130 0 66 63 0.05 0 0.51 0.49 2010 2 490 68.3 125 0 58 67 0.05 0 0.46 0.54 2011 2 424 83.0 152 1 70 81 0.06 0 0.46 0.53 2012 2 473 68.0 125 0 67 57 0.05 0 0.54 0.46 Average 2 457 70.7 129 0 67 62 0.05 0.00 0.52 0.48 Slope 1.528 -0.018 -0 .0 3 2 -0 .0 1 4 -0 .6 1 4 0.596 -8 E -0 5 -3 E -0 4 -4 E -0 3 4E-03 ET (m m -a ') C anopyE (mnti’a ') S oiiE (m m -a ') 80.3 147 1 87.6 160 1 2 494 68.4 125 2003 2 537 53.0 2004 2 524 2005 2006 e n v iro n m e n t, low er P E T a n d d e n se r v eg etatio n cover c o m p a re d to d ry areas. A s a resu lt, E T is h ig h e r in th e tro p ic a l w et easte rn region c o m p a re d to th e a rid a n d se m i-a rid n o rth w e st region (Fig. 3b). B oth c o m p o n e n ts o f ET, n a m e ly T (Fig. 3d) a n d Soil E (Fig. 3e), ex h ib it th e sam e g ra d ie n ts, i.e., th e y are h ig h in th e h ig h ra in fa ll area o f th e east co ast a n d low in th e a rid n o rth w e st o f th e co u n try . The M O D IS la n d cover m ap (Fig. 3c) classifies th e largest p o rtio n o f in la n d S outh A frica (cen tral a n d w e ste rn regions) as open sh ru b la n d a n d g ra ssla n d , w ith sav a n n a o c c u rrin g in th e n o rth e a s t p a r t o f th e c o u n try . L an d cover is classified as c ro p la n d m o stly alo n g th e w est a n d east co ast a n d in th e n o r th east. The m a in u rb a n areas are clearly visible in th e n o rth e a s t (Jo h a n n esb u rg ), so u th w est (C ape Town) a n d on th e east coast (D u rb an ). V alues o f M O D IS v ariab les w ere o u t o f ra n g e for 84 pixels c o in c id in g w ith u rb a n areas a n d th e se w ere d isc ard e d fro m th e analysis. A n o th e r area w ith freq u e n t m issin g d a ta (out o f range) is visible in th e n o rth w e st in la n d a n d classified as b a r re n o r sparsely vegetated. The ra tio T /E T te n d s to be h ig h in th e n o rth e rn , su m m e r ra in fa ll p a rts o f th e c o u n try w here g ra ss la n d s c o m m o n ly occur, a n d low in th e d ry sou th w est w here sparse vegetation o ccu rs (Fig. 3f). The opposite tr e n d is visible for th e Soil E /E T ra tio (Fig. 3g). In th e c e n tra l a n d n o rth w e st e rn p a rts o f th e c o u n try , lin e s follow ing m ajo r riv er system s (O ran g e a n d V aal) are clearly visible p ro v id in g excep tio n al values o f h ig h T /E T a n d low Soil E /E T (Figs 3f a n d g). Table 7 show s th e sta tistica l analysis o f M O D IS sp a tia l d ata for a ty p ic a l y e ar (2009). For E T a n d re la te d v ariables {Soil E a n d T), th e large sta n d a rd d ev iatio n s a n d coefficients o f v a ria tio n in d ic a te d th e w ide ra n g es o f values observed. The m e d ia n http://dx.doi.org/10.4314/w sa.v41il.ll Available on website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. 1 January 2015 ISSN 1816-7950 (On-line) = W ater SA Vol. 41 No. 1 January 2015 a) b) Legend ET Immia) Legend P E T 4m m /a) v a lu e V alu e — High ; 2007.7 H ig h : 3 0 3 8 .4 L o w : 13 6 6 .8 720 K iio rrete rs c) d) Legend T (mm/a) H igh : 1 4 1 3 .2 Low : 3 7ZD K ilo m eters e) f) Legend Sqm Legend E (mm/a) T/ET v alu e V a lu e — High :0.d — H ig h : 3 24.1 Low : 6 720 KlloinAMfs g) ’ Legend V alu e y 0 1B0 — High :0.£ 360 http://dx.doi.org/10.4314/w sa.v41il.ll Available o n website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. 1 January 2015 ISSN 1816-7950 (On-line) = W ater SA Vol. 41 No. 1 January 2015 720 K ilo m e te rs Figure 3 a) A nnu al p o te n tia l evapotranspiration (PET); b) a n nual evapotranspiration (ET); c) la n d cover; d) a n nual transpiration (T); e) a n n u a l soil evaporation (Soil E); f) T/ET ratio; a n d g) Soil E/ET ra tio o b tained w ith MODIS fo r a typica l year (2009). 85 TABLE 6 Spearm an correlation c o efficie n ts o f a nnuai p o te n tia i ev a p o tra n sp ira tio n {PET), actuai ev a p otran sp iration {ET), ca n o p y a nd soii e v a p o r a tio n (£) and transp iration (T) e stim a te d w ith MODiS p ro d u cts for th e p eriod 2 0 0 0 -2 0 1 2 for Sou th Africa V ariab le PET ET C anopy E Soil E T ET/PET C anopy E/ET Soil E/ET T/ET 4.8E-03 1 7.5E-04 l.lE -0 3 8.1E-04 0 .0 2 5.7E-04 1.9E-03 0 .0 2 ET -0 .9 7 1 1.2E-03 8.7E-04 0 .0 1 6.6E-04 2.2E-03 0.04 0 .0 1 C anopy E -0 .9 4 0.93 1 8.1E-04 0.06 1.3E-03 6.1E-04 0 .0 1 1.6E-03 Soil E -0 .9 7 0.96 0.97 1 0.04 7.5E-04 1.2E-03 0 .0 1 2.2E-03 T -0 .7 0.74 0.54 0.59 1 0 .0 1 0.12 0.98 0.46 PET -0 .9 9 0.98 0.93 0.97 0.7 1 2.3E-03 0 .0 2 0 .0 1 C a n o p y E /E T -0 .9 0.88 0.99 0.93 0.45 0.88 1 0 .0 1 1.3E-03 Soil E /E T -0 .6 5 0.6 0.76 0.77 -0 .0 1 0.65 0.77 1 1.4E-03 0.81 -0 .7 6 -0 .9 1 -0 .8 8 -0 .2 1 -0 .8 -0 .9 3 -0 .9 2 1 E T/PE T T /E T TABLE 7 A verage, m ed ian , stan dard d e v ia tio n , c o efficie n t o f variation , sk ew n e ss a nd ku rtosis o f sp atiai M O D iS v a ria b ie so b ta in e d for Sou th Africa fo r a typicai year (2009); n= 1 591 184 ET PET SoilE D ry soil E W et soil E T Tavg Tday Average S ta tistic a l p a r a m e te r 307 2 236 122 92 29 156 20.21 22.31 1.97 M ed ian 238 2 251 109 89 20 120 20.00 22.20 1.94 S ta n d a rd d eviation 238 303 77 49 31 151 2.97 2.94 0.82 C oetficient o f v a ria tio n 0.78 0.14 0.63 0.53 1.07 0.97 0.15 0.13 0.42 Sicewness 1.33 -0 .0 1 0.85 0.48 1.61 2.27 0.16 0.04 0.12 K urtosis 2.00 -1.05 0.57 -0 .1 5 2.64 8.46 -1.20 -1.16 -0 .9 5 values low er th a n averages a n d th e p ositive sicewness in d ic a te d th a t th e freq u e n c y o f o b se rv atio n s is b iased to w a rd s th e low value range. For clim atic v ariab les {PET, Tavg, Tday a n d VPD), th e freq u e n c y d istrib u tio n te n d e d to be sy m m etrica l. K u rto sis is an in d ic a tio n o f th e shape (peaic) o f th e d istrib u tio n a n d v a rie d fro m a negative n u m b e r fo r th e c lim atic v ariab les (fre quen cy d istrib u tio n fu n c tio n w ith a shape o f a n in v e rte d bell w ith no ex tre m e ta il values) to 8.64 for T (freq u en cy d is trib u tio n fu n c tio n w ith a sh a rp peaic). A n n u a l v alues o f PET, E T a n d its c o m p o n e n ts are stro n g ly d e p e n d e n t on clim ate (Tables 2 to 5). The h ig h e st P E T values o c c u rre d in th e se m i-a rid a n d a rid areas (2 457 m m -a ' on aver age) a n d th e low est u n d e r tro p ic a l w et c o n d itio n s (1 892 m m - a ') (Fig. 3a, Tables 3 a n d 5). T his is c o n sisten t w ith isoreference e v ap o ra tio n m ap s p ro d u c e d by Savva a n d Frenicen (2002) u sin g g ro u n d -b a s e d m eteo ro lo g ical m ea su re m e n ts, a n d th e h isto ric p a n e v ap o ra tio n d a ta p ro c essed by W aticins (1993). C o n c e rn in g E T a n d its c o m p o n e n ts, an inverse sp atial tre n d w as observed. The h ig h e s t ET, C anopy E, Soil E a n d T w ere u n d e r tro p ic a l c o n d itio n s a n d th e low est in a rid a n d se m i-a rid clim ate. E T w as h ig h e r in su m m e r ra in fa ll areas c o m p a re d to w in te r ra in fa ll areas in som e y ears, a n d low er in oth ers, d e p e n d in g on ra in fa ll p a tte rn a n d d istrib u tio n . C anopy E a n d Soil E w ere g enerally h ig h e r a n d T w as low er in w in te r ra in fa ll areas c o m p a re d to su m m e r ra in fa ll. This w as due to th e lo w -in te n sity ra in fa ll ty p ic a lly o c c u rrin g in w in te r areas (fro n tal ra in b ro u g h t by cold fro n ts fro m th e ocean) c o m p a re d to tro p ic a l th u n d e rs to rm s o f h ig h in te n sity o c c u rrin g in su m m e r ra in fa ll areas. C anopy E in w in te r ra in fa ll areas (8% o i E T on average. Table 4) w as co n sist en t w ith th e m e a su re m e n t o f 6% m ad e by Jovanovic et al. (2013) on fy n b o s vegetation e n d em ic to th is area. C anopy E in a rid a n d se m i-a rid areas w as b asically negligible due to low ra in fa ll a n d sparse v e getation. The h ig h e s t E T /P E T a n d C anopy E /E T 86 VPD ra tio s w ere in tro p ic a l areas (0.38 a n d 0.18 on average) a n d th e low est in a rid areas (0.05 a n d 0). The h ig h e s t Soil E /E T ra tio w as in a rid areas due to sparse vegetation (0.52), follow ed by w in te r ra in fa ll areas (0.46) due to low in te n sity ra in fa ll. The h ig h est T /E T ra tio w as in su m m e r ra in fa ll areas (0.63) w ith h ig h in te n sity ra in fa ll c o in c id in g w ith p e rio d s o f h ig h atm o sp h e ric e vaporative d e m an d . in co m p a rativ e te rm s, A h m a d e t al. (2005) e stim a te d E T to be 3.51 m m - d ' on average for th e d o m in a n t la n d class (forest a n d w o o d la n d s) in th e O lifan ts c a tc h m e n t (su m m e r ra in fa ll area), u sin g a L andS at im age a n d SEBAL on 7 Ja n u a ry 2002. M eijn in g er a n d Ja rm a in (2014) e stim a te d E T o i d o m in a n t vege ta tio n u sin g M O D iS a n d SEBAL. A n n u a l E T w as e stim a te d to be 575 m m fo r native thicicet, 520 m m for e n d em ic fy n b o s a n d >800 m m fo r alien invasive a n d exotic forest p la n ta tio n species in th e W este rn C ape P ro v in ce (southw est co asta l zone o f th e w in te r ra in fa ll region), in th e K w aZ uIuN atal P ro v in ce (east co ast tro p ic a l w et region), a n n u a l E T w as e stim a te d to be 875 m m for alien invasive species, 755 for n ativ e thicicet, 685 m m for sav a n n a a n d 640 m m fo r g rasslan d s. The d o m in a n t fa rm in g talcing place alo n g th e east co ast is w ith sugarcane. O liv ier a n d Singels (2012), u sin g lysim eters, m e a su re d a sea so n al E T o f irrig a te d su g a rca n e o f b etw een 1 061 a n d 1 378 m m d e p e n d in g on cro p m an a g em e n t. These lite ra tu re d ata w ere c o llected for specific p u rp o se s, over differen t areas a n d ta rg e te d to specific ty p e s o f v e getation, so a d irec t c o m p a riso n w ith M O D 16 ET is difficult. H ow ever, th e v alues re p o rte d in th e lite ra tu re give a co arse in d ic a tio n th a t th e ran g es o i E T w ere co m p a rab le to th o se e stim a te d w ith M O D 16 ET. D ata for E T a n d re la te d c o m p o n e n ts w ere c o rre late d to te st th e in te rd e p e n d e n c y o f icey v ariab les in th e alg o rith m . Table 8 su m m a rise s r o b ta in e d for E T a n d re la te d v ariab les p e r year. F or co nvenience, |r| values >0.7 w ere m ariced in b o ld in http://dx.doi.org/10.4314/w sa.v41il.ll Available on website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. 1 January 2015 ISSN 1816-7950 (On-line) = W ater SA Vol. 41 No. 1 January 2015 TABLES Pearson correlation c o efficie n ts (r) b e tw e e n y eariy ev a p o tra n sp ira tio n (ET) (rows) and variab ies u sed in th e M 0D 16 ET aigorithm (coium ns) (p<0.01) Year E T vsP E T ET v s S o ilE ET vs D ry S o ilE E T vs W et SoilE 2000 -0 .7 3 0.67 0.56 2001 0.71 0.56 0.41 2002 -0 .7 2 -0 .7 4 0.56 2003 E T v sT ET vs Tavg ET vs Tday E T v s VPD 0.76 0.91 -0 .4 3 -0 .5 3 -0 .7 7 0.71 0.92 -0 .4 3 -0 .6 0 0.82 0.45 0.68 -0 .5 8 -0 .6 5 0.60 0.52 0.67 0.94 0.93 -0 .4 2 -0 .4 8 0.79 -0 .7 4 2004 0.76 0.61 0.53 0.69 0.94 -0 .4 8 -0 .5 6 0.76 2005 -0 .7 5 0.66 0.57 0.73 0.91 -0 .6 0 -0 .6 8 0.80 2006 -0 .7 3 0.63 0.50 0.74 0.91 -0 .3 8 -0 .4 7 -0 .7 7 2007 -0 .7 3 0.62 0.53 0.72 0.92 -0 .5 8 -0 .6 5 0.80 2008 -0 .7 3 0.65 0.56 0.73 0.89 -0 .5 6 -0 .6 5 0.80 2009 -0 .7 2 0.65 0.55 0.72 0.91 -0 .4 5 - 0 .5 4 -0 .7 7 2010 -0 .7 3 0.64 0.56 0.72 0.90 -0 .4 6 - 0 .5 4 -0 .7 4 2011 -0 .6 8 0.59 0.49 0.70 - 0 .4 4 -0 .5 3 2012 -0 .7 2 0.60 0.50 0.71 0.91 0.91 -0 .5 3 -0 .5 8 0.79 -0 .7 8 Table 8. T his v alue w as ch o sen a rb itra rily to re p re se n t m o d era te to h ig h c o rre latio n betw een variables. A tte m p ts to fit n o n lin e a r reg ressio n fu n c tio n s w ere m ade; how ever th is d id n o t re su lt in su b sta n tia l in creases o f R^. Significance te sts re su lte d in p ro b a b ility v alues te n d in g to 0 in ail cases due to th e large d a ta se ts a n d degrees o f free d o m (p o p u la tio n n u m b e r >100 000). The effects o f large sam ple sizes on th e p -v alu e w ere d isc u sse d by Lin e t al. (2003), w ho suggested p ro c e d u re s a n d g u id elin es to overcom e th is problem . it is e v id e n t fro m Table 8 th a t E T w as d riv en by a tm o s p h e ric ev aporative d e m a n d (PET) a n d stro n g ly c o rre la te d to T a n d VPD. A n alysis by clim atic reg io n s in d ic a te d th a t th is w as p a rtic u la rly tr u e for w in te r ra in fa ll a n d a rid areas. D a y tim e average te m p e ra tu re (Tday) h a d h ig h e r r c o m p a re d to Tavg (exception w as tro p ic a l w et clim ate). The c o rre latio n s betw een E T a n d Soil E w ere g en erally po o r, w ith th e ex cep tio n o f som e years in a rid areas. C o n c e rn in g th e d ire c tio n s o f th e relations, r w as positive in th e re la tio n s o f E T to Soil E a n d T; an ex cep tio n w as th e tro p ic a l w et c lim ate w h e re E T w as negatively a n d w eaid y c o rre la te d to Soil E, possibly due to th e effects o f dense vegetation a n d c a n o p y cover u n d e r h u m id c o n d itio n s. The c o r re la tio n s b etw een E T a n d clim atic v ariables (PET, Tavg, Tday a n d VPD) h a d v ariab le stre n g th a n d w ere negative, w ith th e excep tio n o f th e tro p ic a l w et clim ate, w here h ig h e r te m p e ra tu re s re su lte d in h ig h e r E T in m o st years. E xam ples o f c o rre latio n s b etw een icey a lg o rith m v a ri ables are show n in Fig. 4 for tw o d istin c t clim atic regions (tro p ical w et a n d a rid to sem i-arid ) for a ty p ic a l y e ar (2009). E v a p o tra n sp ira tio n (E T) is w eaid y d riv en by PET, p a rtic u la rly u n d e r tro p ic a l w et c o n d itio n s. The negative slope o f th e lin e a r reg ressio n in d ic a te s th a t E T is h ig h e r w h en th e atm o sp h e ric evap o rativ e d e m a n d is low er (Figs 4a a n d b). The c o rre latio n coefficient b etw een E T a n d VPD w as m o d era te in a rid reg io n s (Fig. 4c) a n d weaic in th e tro p ic a l c lim ate (Fig. 4d). ffow ever, th e d ire c tio n o f chan g e w as th e sam e: h ig h e r VPD c o rre sp o n d e d to low er E T (T a n n e r a n d S inclair, 1983). The VPD d eriv ed fro m th e global c o arse -re so lu tio n (0.5°x0.66°) M E R R A m eteo ro lo g ical d a ta c a n n o t alw ays reflect sm all-scale (1 icm) VPD v a ria tio n s. As a resu lt, sm all areas o f w e tla n d , sp rin g s or irrig a te d c ro p la n d m ay cause splices in E T at h ig h VPD v a l ues especially in th e a rid a n d se m i-a rid region. F or exam ple, th is is visible in Fig. 4c at VPD ~ 3.25 icPa. A lth o u g h outliers http://dx.doi.org/10.4314/w sa.v41il.ll Available o n website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. 1 lanuary 2015 ISSN 1816-7950 (On-line) = W ater SA Vol. 41 No. 1 lanuary 2015 are visible in Figs 4c a n d d, th e bulic o f th e d a ta p o in ts are in th e low er p a r t o f th e g raphs. S im ila r re la tio n s w ere g enerally o b serv ed for E T in re la tio n to d aily average a n d d a y tim e te m p e ra tu re (data n o t show n). Figures 4e to h show th e relatio n s betw een E T a n d its c o m p o n e n ts Soil E a n d T. The d a ta d is trib u tio n o i E T vs. Soil E h a s a fanshape: it is c o n tro lle d by T in th e low er ra n g e o f Soil E, w h ilst Soil E is u su a lly th e lim itin g fa cto r in th e h ig h ra n g e o f its values. The m o d e ra te R ^in th e a rid cli m ate (Fig. 4e) in d ic a te s th a t Soil E is an im p o rta n t c o m p o n e n t o f E T w here v eg etatio n is sparse a n d c a n o p y cover is low. T his is n o t th e case in th e tro p ic a l c lim ate (Fig. 4f), w here a low w as o b serv ed w ith a negative slope o f th e lin e a r regression, in d ic a t in g th a t, in p re d o m in a n tly d en se v e getation, T is th e m a in c o n tro llin g factor. S im ila r d ire c tio n s a n d re la tio n s w ere o bserved betw een E T a n d th e se p a ra te c o m p o n e n ts o f D ry Soil E a n d W et Soil E (data n o t show n). A m o n g st ail factors analysed, E T h a d th e stro n g e st d ep en d e n ce on T (Figs 4g a n d h). The fa n sh ap e o f th e d a ta p lo t is visible for a rid areas (Fig. 4g), w here th e E T is c o n tro lle d by Soil E in th e low er ra n g e o f T. in areas w ith dense v e getation, th e R^ o f th e lin e a r reg ressio n b etw een E T a n d T w as h ig h a n d th e fa n sh ap e o f th e d a ta p lo t a lm o st stra ig h te n e d com pletely (Fig. 4h). The T p o rtio n o f th e a lg o rith m a p p ea rs to be suitable for h u m id re g io n s w here E T is lim ite d by available en erg y a n d sto m a ta l resistan ce is re g u la te d by a ir te m p e ra tu re a n d VPD. H ow ever, in d ry regions, a d d itio n a l c o n tro llin g fac to rs liice soil w a ter supply play a role in th e e stim a tio n o i E T (M u et al., 2007b). C O N C L U S IO N S Satellite E a rth o b se rv atio n s w ill be o f huge im p o rta n c e in a v a rie ty o f a p p licatio n s in fu tu re. R em ote se n sin g -b a se d m e th o d s have scope in ro u tin e ap p licatio n s fo r w a ter a n d la n d re so u rce p la n n in g a n d m an a g em e n t, as w ell as in scientific re sea rc h on physical, biogeo ch em ical a n d ecological processes, in th is study, w e p re se n te d a first ev alu atio n o f M O D 16 ET a n d re la te d p ro d u c ts for S o u th A frica. A verage E T in S o u th A frica (2000-2012) w as e stim a te d to be 303 m m - a ' o r 371.6 x 10® m m -a ' (14% o f P E T a n d 67% o f ra in fa ll), m a in ly in th e fo rm o f p la n t tr a n s p ira tio n (53%) a n d Soil E (39%). D irect e v ap o ra tio n fro m th e v egeta tio n c a n o p y w as a m in o r c o m p o n e n t o f £ T (9% on average). 87 a) b) 900 V = -0 .2 2 3 8 x + 5 7 9 .9 1 800 V = -0.4869x + 1639.4 R^ = O.OS 700 - E, p=0 p=0 600 T 1500 - 500 E \n 300 200 100 0 0 500 lOOO 1500 2000 2500 3000 3500 4000 0 500 1000 t 1500 PET (m m ) 2000 2500 3000 3500 4000 PET (m m ) c) d) V = -7 6 .9 0 2 k + 331.4 y = -2 0 1.83x-i-908.73 R^ = 0.11 r= -0 .3 4 p=0 R^ = 0.41 r = -0.64 p=0 E 500 E, 1000 0 .0 0 .5 1.0 VPD (kPa) 1.5 2.0 2.5 VPD(kPa) e) f) V = -1 .3 2 1 x + 1 0 0 3 R^ = 0.19 r = -0.44 p=0 700 500 E 500 400 V = 1.1529 x + 53.571 R^ = 0.44 r = 0.66 p=0 200 100 - 200 300 400 500 400 600 600 Soil E (mm) Soil E (m m ) h) g) y = 0 .9 5 6 4 x + 367.28 R^ = 0.80 r = 0.89 p =0 800 - — 1500 E 500 y = 1.1134x + 59.422 R^ = 0.67 r = 0.82 p=0 0 100 200 300 400 500 500 700 800 900 600 T (mm) 900 T (mm) Figure 4 Linear regressions o f MODiS evapotranspiration (ET) vs. potentiai evapotranspiration (PET), vapour pressure deficit (VPD), soii evaporation (Soii E) a n d transpiration (T) for arid a n d sem i-arid region (a, c, e, g) a n d tropicai w e tc iim a te (b, d, f h) for a typicai year (2009). E v a p o tra n sp ira tio n show ed a slight te n d e n c y to decrease over th e p e rio d 2 0 00-2012 in all c lim atic re g io n s except in th e so u th o f th e c o u n try (w in ter ra in fa ll areas), a lth o u g h a n n u a l v a ria tio n s in E T re su lte d in th e 13-year tre n d s n o t b e in g statistically significant. R ain fall a n d atm o sp h e ric evap o rativ e d e m a n d are th e m a in c lim atic v ariab les d riv in g E T a n d p a rtic u la rly its tra n s p ira tio n c o m p o n e n t. The h ig h e st PET values o c c u rre d in th e se m i-a rid a n d a rid areas (2 457 m m -a ' on average) a n d th e low est u n d e r tro p ic a l w et c o n d itio n s (1 892 m m -a '). Inversely, th e h ig h e s t ET, C anopy E, Soil E a n d T w ere u n d e r tro p ic a l c o n d itio n s a n d th e low est in a rid a n d se m i-a rid clim ate. V ap o u r p re ssu re deficit (VPD) is a n im p o rta n t c lim atic v ariab le in a rid http://dx.doi.org/10.4314/w sa.v41il.ll Available on website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. 1 lanuary 2015 ISSN 1816-7950 (On-line) = W ater SA Vol. 41 No. 1 lanuary 2015 a n d w in te r ra in fa ll areas. The re la tio n o i E T to d a y tim e aver age te m p e ra tu re g enerally h a d a h ig h e r c o rre latio n coefficient c o m p a re d to Tavg in all c lim atic areas, except u n d e r tro p ic a l co n d itio n s. E v a p o tra n sp ira tio n (ET) is stro n g ly d e p e n d e n t on T in all c lim atic regions, a n d occasionally on Soil E in d ry areas w ith sparse v egetation. The M O D 16 ET a lg o rith m c an be suitable to id en tify te m p o ra l changes a n d for relative c o m p a riso n s o f d a ta b etw een clim atic regions. In absolute te rm s, M O D 16 ET u n d e re stim a te d E T b y 15% for w a te r b a lan ce c losure at n a tio n a l scale. These results, how ever, open u p th e o p p o rtu n ity to im p ro v e a n d test th e a lg o rith m for E T e stim a tio n , by a cc o u n tin g for b o th a tm o s p h e ric d e m a n d lim itin g a n d soil w a ter supply lim itin g c o n d i tio n s in th e n e x t re sea rc h p hase. The relatively c o arse re so lu tio n o f ~1 km ^ pixels m ay have im p lica tio n s for a p p lic atio n s in re stric te d areas, especially in h e te ro g en e o u s v e getation, la n d use/cover a n d land scap e. ACKNOW LEDGM ENTS The a u th o rs acknow ledge fu n d in g from th e CSIR P a rlia m en tary G ra n t a n d th e N a tio n a l R esearch F o u n d atio n o f S outh A frica. REFE R E NC E S A H M A D M , M AGAGULA TF, LOVE D, KONGO V, M UL ML and K IN O T I1 (2005) E stim ating actual ev apotranspiration th ro u g h rem ote sensing techniques to im prove ag ricu ltu ral w ater m anage m ent: A case study in the tra n sb o u n d a ry O lifants catch m ent in the L im popo Basin, South A frica. In: Proceedings o f the 6'* W aterN et/ W AR FSA /G W P A n n u a l Sym posium , 1-4 N ovem ber 2005, Ezulw ini, Swaziland. ALLEN RG, PEREIRA LS, RAES D an d SM ITH M (1998) Crop Evapo transpiration: Guidelines fo r C om puting Crop W ater Requirem ents. Irrig atio n an d D rainage P aper 56. U nited N ations Food an d A gri cu ltu re O rganization, Rome. 300 pp. ALLEN RG, TASUM I M an d TREZZA R (2007a) Satellite-based energy balance for m apping ev ap o tran sp iratio n w ith in tern al ized calib ratio n (METRIG) - M odel. /. Irrig. Drain. Eng. 133 (4) 380-394. ALLEN RG, TASUM I M , MORSE A, TREZZA R, W R IG H T IE, BAS TIAANSSEN W, KRAM BER W, LORITE I an d ROBINSON GW (2007b) Satellite-based energy balance for m apping evapotranspi ratio n w ith in tern alized calibration (METRIG) - A pplications. /. Irrig. Drain. Eng. 133 (4) 395-406. BALDOGGHI D, FALGE E, GU G, OLSON R, HOLLINGER D, RU N N IN G S, A N T H O N I P, BERNHOFER Gh, DAVIS K, EVANS R an d co -au th o rs (2001) FLUXNET: A new tool to study the tem p o ral an d spatial variability o f ecosystem -scale carb o n dioxide, w ater vapor, an d energy flux densities. Bull. Amer. Meteor. Soc. 82 2415-2434. BASTIAANSSEN W GM , M E N E N TI M, FEDDES RA an d HOLTSLAG AAM (1998a) A rem ote sensing Surface Energy Balance A lgorithm for L and (SEBAL) I. F orm ulation. /. Hydrol. 212-213 198-212. BASTIAANSSEN W GM , PELGRUM H, W ANG 1, M A Y, M ORENO IF, RO ERINK G1 an d VAN DER WAL T (1998b) A rem ote sensing Surface E nergy Balance A lgorithm for L and (SEBAL) 2. Validation. /. Hydrol. 212-213 213-229. BUGAN RD H , lOVANOVIG N an d DE GLERGQ W P (2012) The w ater balance o f a seasonal stream in the sem i-arid W estern Gape (South Africa). W ater SA 38 (2) 201-212. GLEUGH HA, L EU N IN G R, M U Q an d R U N N IN G SW (2007) Regional evaporation estim ates from flux tow er an d M ODIS satel lite d ata. R em ote Sens. Environ. 106 285-304. DI R IEN ZO lA, GASANOVES F, BALZARINI MG, GONZALEZ L, TABLADA M an d ROBLEDO GW (2012) G rupo InfoStat, EGA, U niversidad N acional de Gordoba, A rgentina. URL: http://w w w . infostat.com .ar (Accessed 23 O ctober 2014). h ttp ://d x .d o i.o rg /I0 .43I4/w sa.v4IiI.II Available o n website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. I lanuary 2015 ISSN I8I6-7950 (On-line) = W ater SA Vol. 41 No. I lanuary 2015 DWAF (DEPARTM ENT OF WATER AFFAIRS A N D FORESTRY, SOUTH AFRIGA) (2004) N ational W ater Resource Strategy. P' E dition. G hapter 2. D ep artm en t o f W ater Affairs an d Forestry, P retoria. 54 pp. DWAF (DEPARTM ENT OF WATER AFFAIRS A N D FORESTRY, SOUTH AFRIGA) (2005) G roundw ater Resource A ssessm ent II - Task 3aE Recharge. D ep artm en t o f W ater Affairs an d Forestry, P retoria. 129 pp. FISHER IB, TU K an d BALDOGGHI DD (2008) G lobal estim ates of th e land atm osphere w ater flux based on m o n th ly AVHRR and ISLSGPII data, validated at FLUXNET sites. R em ote Sens. Environ. 112 (3) 901-19. FRENKEN K (2005) Irrigation in A frica in Figures - A q u a sta t Survey 2005. U nited N ations Food an d A griculture O rganization, Rome. 53 pp. II L an d GALLO K (2006) A n agreem ent coefficient for im age co m p ari son. Photogram. Eng. Rem ote Sens. 72 (7) 823-833. IIM EN E Z G, PRIG EN T G, MUELLER B, SENEVIRATNE SI, McGABE MF, W O O D EF, ROSSOW W B, BALSAMO G, BETTS AK, DIRM EYER PA an d co-authors (20II) G lobal interco m p ariso n o f 12 land surface heat flux estim ates. /. Ceophys. Res. 116 (D02102) 1-27. lOVANOVIG N an d ISRAEL S (2012) G ritical review o f m etho d s for the estim ation o f actual ev ap o tran sp iratio n in hydrological m odels. In: Irm a k A (ed.) E vapotranspiration - Rem ote Sensing a nd M odelling. Intech, Rijeka, Groatia. lOVANOVIG N, BUGAN R an d ISRAEL S (2013) Q uantifying the e v ap o tran sp iratio n com ponent o f the w ater balance o f A tlantis Sand P lain Fynbos (South A frica). In: Stavros A an d Stricevic R (eds.) E vapotranspiration - A n Overview. Intech, Rijeka, Groatia. lUSTIGE GO, T O W N SH EN D )RG, VERM O TE EF, M ASUOKA E, WOLFE RE, SALEOUS N, ROY DP an d MORISETTE )T (2002) A n overview o f M ODIS land d ata processing an d pro d u ct status. R em ote Sens. Environ. 83 3-15. K O R ZO U N VI, SOKOLOV AA, BUDYKO M I, VOSKRESENSKY KP an d K A L IN IN GP (1978) World W ater Balance and Water Resources o f the E arth (English). Studies an d R eports in Hydrology (UNESGO), no. 25/U nited N ations E ducational, Scientific an d G uttural O rganization, 75 Paris (France); Intern atio n al H ydrological D ecade. USSR N ational G om m ittee, Moscow, USSR. 663 pp. L’VOVIGH M I an d W H IT E GF (1990) Use an d tran sfo rm atio n of terrestrial w ater systems. In: T urner BE, Glark W G, Kates RW, R ichards )F, M athew s )T an d M eyer W B (eds.) The Earth as Transformed by H u m a n Action. G am bridge U niversity Press, G am bridge, UK. LIN M, LUGAS HG )r an d SHM UELI G (2003) Too big to fail: Large sam ples an d the pvalue problem . Inf. Syst. Res. 24 (4) 906-917. LYNGH SD an d SGHULZE RE (2006) South A frican atlas o f clim a tology an d agrohydrology - R ainfall database. W RG R eport No. I489/I/06, Section 2.2. W ater R esearch G om m ission, P retoria. M E IIN IN G E R W M L an d lA R M A IN G (2014) Satellite based an n u al evaporation estim ates o f invasive alien plan t species in South A frica. W ater SA 40 (I) 95-107. M O N T E IT H IL (1965) E vaporation an d environm ent. Symp. Soc. Exp. Biol. 19 205-234. M U Q, H EINSGH FS, ZH A O M an d R U N N IN G SW (2007a) D evelop m ent o f a global ev ap o tran sp iratio n alg o rith m based on MODIS an d global m eteorology data. R em ote Sens. Environ. 111 519-536. M U Q, ZH A O M, H EINSGH FS, LIU M, T IA N H an d R U N N IN G SW (2007b) E valuating w ater stress controls on p rim a ry pro d u ctio n in biogeochem ical an d rem ote sensing based m odels. /. Ceophys. Res. 112 (G01012) 1-13. M U Q, ZH A O M an d R U N N IN G SW (20II) Im provem ents to a M ODIS global terrestrial ev ap o tran sp iratio n algorithm . Rem ote Sens. Environ. 115 1781-1800. M UELLER B, SENEVIRATNE SI, IIM EN E Z G, GORTI T, HIRSGHI M , BALSAMO G, GIAIS P, DIRM EYER P, FISHER )B, GUO Z an d co-authors (20II) E valuation o f global observations-based e v ap o tran sp iratio n datasets an d IPGG AR4 sim ulations. Ceophys. Res. Lett. 38 (L06402) 1-7. 89 M Y N EN I RB, H O FFM A N S, K N Y A ZIK H IN Y, PRIV ETTE JL, GLASSY J, T IA N T, W ANG Y, SONG X, ZH A N G Y, SM ITH GR an d co -au th o rs (2002). G lobal products o f vegetation leaf area an d fractio n absorbed PAR from year one o f M ODIS data. R em ote Sens. Environ. 83 (1-2) 214-231. OLIVIER EG an d SINGELS A (2012) The effect o f crop residue layers on ev ap o tran sp iration, grow th an d yield o f irrigated sugarcane. W ater SA 38 (I) 77-86. PRIESTLEY GHB an d TAYLOR RJ (1972) O n the assessm ent o f surface heat flux an d ev aporation using large scale param eters. M on. W eather Rev. 100 81-92. SAVVA AP an d FRENKEN K (2002) Grop W ater R equirem ents an d Irrig atio n Scheduling. Irrig atio n M anual. M odule 4 FAO SubRegional Office for East an d S outhern A frica. F ontline E lectronic Publishing, H arare, Zim babw e. 122 pp. SU Z (2002) Tlie Surface E nergy Balance System (SEBS) for estim atio n o f tu rb u le n t heat fluxes. Hydrol. E arth Syst. Sci. 6 85-99. TA N N ER GB an d SINGLAIR TR (1983) Efficient w ater use in crop production: research or re-search? In: Taylor H M , Jordan W R, Sinclair TR (eds.) L im itations to E fficient W ater Use in Crop Production. A m erican Society o f A gronom y M adison, W I, USA. VEGTER JR (1995) A n explanation o f a set o f national groundw ater m aps. W RG R eport No. TT 74/95. W ater R esearch Gom m ission, Pretoria. WATKINS DA (1993) The relationship betw een daily an d m onthly p an evaporation an d rain fall totals in S outhern A frica. MSc thesis, Rhodes University. ZHAO M, H EINSGH FA, N E M A N I R an d R U N N IN G SW (2005) Im provem ents o f th e M ODIS terrestrial gross an d net p rim a ry pro d u ctio n global d ata set. R em ote Sens. Environ. 95 164-176. http://dx.doi.org/I0.43I4/w sa.v4 IiI.II Available on website http://www.wrc.org.za ISSN 0378-4738 (Print) = W ater SA Vol. 41 No. I January 2015 ISSN I8I6-7950 (On-line) = W ater SA Vol. 41 No. I January 2015
© Copyright 2026 Paperzz