Name
LESSON
6-4
Date
Class
Reteach
Factoring Polynomials
Sometimes you can use grouping to factor a third degree polynomial. To factor by grouping
means to group terms with common factors. Then factor the common factors. Continue to
factor until the expression can no longer be factored.
Factor: x 3 4x 2 9x 36.
Start by grouping terms to factor out the greatest possible power of x.
x 2 is a factor of
x 3 and 4x 2.
9 is a factor of 9 and 36.
3
2
x 4x 9x 36
x 3 4x 2 9x 36 x
2
x
4
9 x
x
4
x
4 x 9 x
4 x 3 x 3 2
4 is a common factor.
x 2 9 is the difference of squares.
Recall that a 2 b 2 a b a b . So x 2 9 x 3 x 3 .
Factor each expression.
1. x 3 3x 2 4x 12
2. x 3 6x 2 x 6
x 3 3x 2 4x 12 x 3 6x 2 x 6 x 2 x 6 1 x 6 x 2 x 3 4 x 3 x 3 x 2 4 x 3 x 2 x 2 x 6 x 2 1 x 6 x 1 x 1 3. x3 x2 9x 9
4. x3 2x2 16x 32
x 3 x 2 9x 9 x 3 2x 2 16x 32 x 1 x 2 9 x 1 x 3 x 3 x 2 x 2 16 x 2 x 4 x 4 x 2 x 2 16 x 2 x 2 x 1 9 x 1 Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c06-4_rt.indd 30
30
Holt Algebra 2
12/29/05 8:30:22 PM
Process Black
Name
LESSON
6-4
Date
Class
Reteach
Factoring Polynomials (continued)
Use special rules to factor the sum or difference of two cubes.
Recognizing these common cubes can help you factor the sum or difference of cubes.
3
3
3
3
3
3
1 1, 2 8, 3 27, 4 64, 5 125, and 6 216
3
3
2
2
Rule for the Sum of Two Cubes: a b a b a ab b .
3
Factor: y 64.
y 3 64
Identify the cubes: y 3 and 64 4 3.
y3 43
Write the expression as the sum of two cubes.
(y 4)(y 2 4y 16)
Use the rule to factor.
Using the rule: a y and b 4.
So a 2 y 2, ab 4y, and b 2 16.
Rule for the Difference of Two Cubes: a 3 b 3 (a b)(a 2 ab b 2).
3
Factor: 8x 125.
8x 3 125
2x 3
Identify the cubes: 2x 3 and 125 5 3.
53
Write the expression as the difference of two cubes.
(2x 5)(4x 2 10x 25) Use the rule to factor.
Using the rule: a 2x and b 5.
2
2
2
2
So a 2x 4x , ab 2x 5 10x, and b 25.
Factor each expression.
3
5. 27x 8
6. y 3 216
3x 3 2 3
y3 63
y 6 y 2 6y 36 3x 2 9x 2 6x 4 7. y 27
8. x 1
3
3
y3 33
x3 13
y 3 y 2 3y 9 Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c06-4_rt.indd 31
x 1 x 2 x 1 31
Holt Algebra 2
12/29/05 8:30:23 PM
Process Black
*À>VÌViÊ
&ACTORING0OLYNOMIALS
,%33/.
È{
È{
$ETERMINEWHETHERTHEGIVENBINOMIALISAFACTOROFTHEPOLYNOMIAL
0TXE
4ELLWHETHEREACHSTATEMENTISTRUEORFALSE
0SD
&ALSE
4RUE
&ALSE
3YNTHETICSUBSTITUTIONCANBEUSEDTODETERMINEIFXIS
AFACTOROF0SXD
4RUE
XISAFACTOROF0SXD
XISAFACTOROF0SXD
TX ETXE
T
X X
XTX ETX E
XTXETXXE
X X
TXETX XE
TXETXE
XTXET X XE
3OLVE
E
TGE GG 3INCETHEWATERLEVELINACERTAINPOND
HASBEENMODELEDBYTHEPOLYNOMIAL
DSXDXXXWHERETHEDEPTH
DISMEASUREDINFEETOVERXYEARS)DENTIFYTHE
YEARTHATTHEPONDWILLDRYUP5SETHEGRAPHTO
FACTORDSXD
MTMETMME
3OLVE
S
DS
D
D
*UNEFACTOREDTHEPOLYNOMIALC D INTO C D C C D D )SSHECORRECT(OWDOYOUKNOW
.OPOSSIBLEANSWERTHEPOLYNOMIALISTHEDIFFERENCEOFTWOCUBESSHE
USEDTHEFORMULAFORTHESUMOFTWOCUBES
X MM
G XXX
TXETXETXE
.O
X X X
TXETXETXE
X X X
X X X
TXETXE
XTX
ET XE
X XX
SXD0SXDX X
X X X X
&ACTOREACHEXPRESSION
9ES
.O
X X X X
.O
&ACTOREACHEXPRESSION
9ES
9ES
SXD0SXDX X
SXD0SXDX X X X
SXD0SXDX X
$ETERMINEWHETHERTHEGIVENBINOMIALISAFACTOROFTHEPOLYNOMIAL
0TXE
SXD0SXDX X
SXD0SXDX X
'IVEN0TXEX X
*À>VÌViÊ
&ACTORING0OLYNOMIALS
,%33/.
TXETX XE
X
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
(OLT!LGEBRA
*À>VÌViÊ
&ACTORING0OLYNOMIALS
,%33/.
È{
È{
SXD0SXDX X
TXETXE
TXETXXE
SXD0SXDX X X X
SXD0SXDX X X
TXETXXXE
&ACTORX X X
3TARTBYGROUPINGTERMSTOFACTOROUTTHEGREATESTPOSSIBLEPOWEROFX
X ISAFACTOROF X XX
XANDX
SXXDSXD
TXETXXE
(OLT!LGEBRA
3OMETIMESYOUCANUSEGROUPINGTOFACTORATHIRDDEGREEPOLYNOMIAL4OFACTORBYGROUPING
MEANSTOGROUPTERMSWITHCOMMONFACTORS4HENFACTORTHECOMMONFACTORS#ONTINUETO
FACTORUNTILTHEEXPRESSIONCANNOLONGERBEFACTORED
SXD0SXDX X X ,iÌi>V
&ACTORING0OLYNOMIALS
,%33/.
5SETHE&ACTOR4HEOREMTOVERIFYTHATEACHLINEARBINOMIALISAFACTOR
OFTHEGIVENPOLYNOMIAL4HENUSESYNTHETICDIVISIONTOWRITETHE
POLYNOMIALASAPRODUCT
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
ISAFACTOROFAND
SXDISACOMMONFACTOR
XSXDSXD
SXDSX D
&ACTOREACHEXPRESSION
XXX
X X X
TXETX
E
2ECALLTHATSA B DSABD
S A B D3OS X D
SXDSXD
X TX ETX E
X X X TXE
X
TX
ETXE
XXX
X X X
SX X DSXD
X X
SX X DSXD
X X XTXETX XE
X SXDSXD
X TXETX XE
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 81
XXX
TX X ETXE
X TXETXE
X TXETXE
(OLT!LGEBRA
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
T XET XE
T XET XET XE
81
XTXETXE
TX X ETXE
TTETTETTETHEVOLTAGEISEQUALTOZEROATSANDS
T XET XE
T XET XET XE
XXX
4HEVOLTAGEGENERATEDBYANELECTRICALCIRCUITCHANGESOVERTIMEACCORDING
TOTHEPOLYNOMIAL6STDT T TWHERE6ISINVOLTSANDTISIN
SECONDS&ACTORTHEPOLYNOMIALTOFINDTHETIMESWHENTHEVOLTAGEISEQUAL
TOZERO
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
T XET XE
T XET XET XE
3OLVE
&ACTOREACHEXPRESSION
X X X
SXDISTHEDIFFERENCEOFSQUARES
SXDSXDSXD
T XET XE
T XET XET XE
(OLT!LGEBRA
Holt Algebra 2
5/15/06 1:52:49 PM
,iÌi>V
&ACTORING0OLYNOMIALSCONTINUED
,%33/.
È{
È{
0OLYNOMIALSINONEVARIABLEAREUSUALLYWRITTENINDESCENDINGORDEROFTHE
EXPONENTSOFTHEVARIABLE!NOTHERUSEFULWAYTOWRITEAPOLYNOMIALIS
CALLEDNESTEDFORMINWHICHTHEVARIABLEISFACTOREDOUTUNTILTHEINNERMOST
NESTCONTAINSONLYTHELEADINGCOEFFICIENT
5SESPECIALRULESTOFACTORTHESUMORDIFFERENCEOFTWOCUBES
2ECOGNIZINGTHESECOMMONCUBESCANHELPYOUFACTORTHESUMORDIFFERENCEOFCUBES
>i}i
4HE.ESTED&ORMOFA0OLYNOMIAL
--"
AND 2ULEFORTHE3UMOF4WO#UBESA B SABDSA ABB D
s %XAMPLE
&ACTORY Y )DENTIFYTHECUBESYAND
Y
7RITETHEEXPRESSIONASTHESUMOFTWOCUBES
YYY
5SETHERULETOFACTOR
XXX
2ULEFORTHE$IFFERENCEOF4WO#UBESABABAABB
SXD OÊ ÊÊTÈÊEÊXÊÊnÊÊXÊÊxÊPÊXÊÊ£
ÊTÊOÊÊTÓÊEÊXÊÊxÊÊXÊÊ£ÊPÊXÊÊÎÊEÊXÊÊ{
)N%XERCISESnUSE.TXEOÊTEXXPX
)DENTIFYTHECUBESSXD AND XXXX
.ESTEDFORMISCONVENIENTFOREVALUATINGAPOLYNOMIAL
&ACTORX X 7RITETHEPOLYNOMIALINNESTEDFORM
5SINGTHERULEAYANDB
3OAYABYANDB
4OWRITEX X XINNESTEDFORM
&ACTOROUTANX
SX XDX
&ACTOROUTXAGAIN
QÊSXDXRX
S
Q
O
&ACTOROUTXAGAIN
Ê Ê DXRXPX
4HUSXXXOÊQ ÊSDXRXPX
7RITETHEEXPRESSIONASTHEDIFFERENCEOFTWOCUBES
XXX 5SETHERULETOFACTOR
5SINGTHERULEAXANDB
3OA SXD X ABSXDSDXANDB &INDTHEVALUEOF.SDMENTALLY
2EMEMBERTOFOLLOWTHEORDEROFOPERATIONS
.ÊTÎÊEÊÊ£Ón
&IND.SDUSINGACALCULATOR
.ÊTÎÊEÊÊ£Ón
7RITETHEEXPANDEDFORMOF.SXD
.ÊTXEÊÊxÊXÎÊÊÎÊXÓÊÊÇXÊÊ£
5SETHEEXPANDEDFORMTOFINDTHEVALUEOF.SD
-ATCHTHISRESULTWITHTHOSEFROM%XERCISESAND
&ACTOREACHEXPRESSION
Y SXD
Y
TXETX XE
3HOWHOWTHENESTEDFORMCOULDBEUSEDTODIVIDEXXXBY
X7RITETHEQUOTIENTANDTHEREMAINDER
X T
Y
E
X
Y TYE YY T
X E
TYE YY TXETXXE
(OLT!LGEBRA
È{
4HEVOLUMEFORTHELARGESTBASKET#CANBE
MODELEDBYTHEFUNCTION6#S XDXXX
5SETHEGRAPHTOFACTOR6#
A 7HATARETHEVALUESOFXWHERE6#
{]Ê£]Êä
Y
S X X DSXD
X
A 7HATARETHEVALUESOFXWHERE6!
X
3UPPOSEYOUMULTIPLYAPOLYNOMIALOFDEGREEBYAPOLYNOMIALOF
DEGREE7HATISTHEDEGREEOFTHEPRODUCTOFTHETWOPOLYNOMIALS
5SEX X XTOANSWERTHEFOLLOWINGQUESTIONS
6OLUME
A (OWWOULDYOUGROUPTHISPOLYNOMIALTOFACTORIT
ÇÊLÞÊ{ÊLÞÊÎ
n{ÊVÕLVÊÕÌÃ
B 7HATISTHECOMMONFACTOROFTHEFIRSTGROUP
TXÊÊÓÊEÊ]ÊÊTXÊÊ{ÊEÊ]ÊÊTXÊÊÈÊEÊ
£{ÊLÞÊnÊLÞÊÈ
ÈÇÓÊVÕLVÊÕÌÃ
TÊ ÓXÊÊÓÊEÊ]ÊÊTXÊÊ{ÊEÊ]ÊÊTXE
ÓÈÊLÞÊ£ÈÊLÞÊ£Ó
{ÓÊVÕLVÊÕÌÃ
"ASKET
$IMENSIONSINTERMSOFX
!
TXÊÊxÊEÊ]ÊÊTXÊÊnÊEÊ]ÊÊTXÊÊÊEÊ
"
#
!CTUAL$IMENSIONS
C 7HATISTHECOMMONFACTOROFTHESECONDGROUP
TÊ ÊXÎÊÊÊnXÓÊEÊÊÊTXÊÊnÊEÊ
ÊÓÊ
X
£
D &INDTHECOMMONBINOMIALFACTORINBOTHGROUPSANDWRITETHEFACTORS
ÆÊÌ
iÊ`iÃÃÊvÊi>V
ÊL>ÃiÌÊ>ÀiÊ`ÕLi`ÊvÀÊiÊÃâiÊÌÊÌ
iÊiÝÌÊ
iÝVi«ÌÊvÀÊ£{ÊÌÊÓȰ
x
XÓTÊ XÊnÊEÊÊ£ÊTXÊÊnÊEÊÊÊTXÊÊnÊETÊ ÊXÓÊÊ£ÊEÊ
E 7HICHOFTHETWOFACTORSCANALSOBEFACTORED
7RITEITSFACTORS
!RETHEVOLUMESOFTHETHREEBASKETSPROPORTIONAL%XPLAIN
ÆÊÌ
iÀiÊ>ÀiÊÊÌÜÊv>VÌÀÃÊÌ
>ÌÊ
>ÛiÊÊXÓÊÊÓÊ>ÃÊÌ
iÀÊ«À`ÕV̰
!RETHEACTUALDIMENSIONSOFTHETHREEBASKETSPROPORTIONAL%XPLAIN
X ISAPOLYNOMIAL#ANYOUFACTORX INTOTWOLINEARFACTORS
)FYESWRITETHEFACTORS)FNOEXPLAIN
#OMPLETETHETABLE5SEXUNITSTOFINDTHEACTUALDIMENSIONSANDVOLUME
ÕÌ«ÞÊÊTXÊEÊ>`ÊÊTÊXÓÊÊÓÊEʰ
TXÊÊxÊEÊTXÊÊnÊEÊTXÊÊÊEÊ
4HEFACTORSOFX X XARE
SXDANDSXD
(OWCANYOUCHECKTHATXANDXAREFACTORSOFXXX
B 5SETHESEZEROSTOWRITETHEFACTORS
D
!NSWEREACHQUESTION
Y
x]Ên]Ê
S
#OMMONFACTOROF XX ISX
#OMMONFACTOROFSXDIS
.OTICETHATXISTHECOMMONFACTOR
XSXDSXD
34%0&INDTHECOMMONFACTORSOF
EACHGROUP
34%0&ACTOROUTX
XSXDSXDSXDSXD
34%0&ACTOROUTTHECOMMONFACTORS
INEACHGROUP
4HEVOLUMEFORTHESMALLESTBASKET!CANBE
MODELEDBYTHEFUNCTION6!S XDXXX
5SETHEGRAPHTOFACTOR6!
ÊTÓXÊÊÓÊEÊTXÊÊ{ÊEÊTXE
XXXSXXDSXD
X
B 5SETHESEZEROSTOWRITETHEFACTORS
34%0'ROUPTHETERMS
TXÊÊÓÊEÊTXÊÊ{ÊEÊTXÊÊÈÊEÊ
4HETABLESHOWSFOURSTEPSFORFACTORINGXXX
B 5SETHESEZEROSTOWRITETHEFACTORS
ÌÊ}iLÀ>ÊÓ
9OUALREADYKNOWHOWTOFACTORLINEARANDQUADRATICFUNCTIONSWHICHARE
POLYNOMIALS(IGHERDEGREEPOLYNOMIALSCANALSOBEFACTORED/NEMETHOD
ISTOGROUPTHETERMSINTHEPOLYNOMIALANDFINDCOMMONFACTORS
Y
A 7HATARETHEVALUESOFXWHERE6"
Ó]Ê{]ÊÈ
,i>`}Ê-ÌÀ>Ìi}Þ
)DENTIFY2ELATIONSHIPS
È{
4HEVOLUMEFORTHEMIDDLESIZEDBASKET"CANBE
MODELEDBYTHEFUNCTION6"S XDXXX
5SETHEGRAPHTOFACTOR6"
/
iʵÕÌiÌÊÃÊÓÊXÓÊÊÓXÊÊÈÊ>`ÊÌ
iÊÀi>`iÀÊÃÊȰ
--"
0AULOISDRAWINGPLANSFORASETOFTHREEPROPORTIONALNESTING
BASKETSINTHESHAPEOFOPENRECTANGULARPRISMS
/
iÊÕLiÀÃÊÊÌ
iÊiÀÃÌÊiÃÌÃÊ>ÀiÊÌ
iÊVivvViÌÃÊvÊÌ
iʵÕÌiÌ]
>`ÊÌ
iÊ>ÃÌÊÕLiÀÊÃÊÌ
iÊÀi>`iÀ°Ê-ÊÌ
iʵÕÌiÌÊÃÊÓÊXÊÓÊÊÊÓXÊÊÈÊ>`
Ì
iÊÀi>`iÀÊÃÊȰ
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
*ÀLiÊ-Û}
&ACTORING0OLYNOMIALS
--"
0TXEÊÊÊOÊÊTÓÊEÊXÊÊÈÊÊXÊÓÊPÊXÊÎä]Ê0ÊT{ÊEÊÊÊOÊÊTÓÊEÊ{ÊÊÈÊÊR{ÊÓÊPÊ{ÊÎäÊ
ÊÊÊTÓÊEÊ{ÊÊÓÊÊ{ÊÎäÊÊÊÊTÈÊEÊ{ÊÎäÊÊÊÈÆ
5SESYNTHETICDIVISIONTOVERIFYYOURRESULTOF%XERCISE
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
.ÊTÎÊEÊÊxÊÊÊÎÊÎÊÊÎÊÊÊÎÊÓÊ
ÊÇÊÊÎÊÊ£ÊÊ£Ón
F 7HATARETHEFACTORSOFX X X
XÓÊÊ£ÆÊÊTXÊÊ£ÊETÊ XÊÊ£ÊEÊ
TXÊÊnÊEÊTXÊÊ£ÊEÊTXÊÊ£ÊEÊ
ÆÊÊÊÚÚÚÚ
Ên{ÊÊÊqÊÊÚÚÚÚÚ
ÊÈÇÓÊÊÊ
ÈÇÓ {Ó
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
ÌÊ}iLÀ>ÊÓ
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
82
ÌÊ}iLÀ>ÊÓ
Holt Algebra 2
© Copyright 2026 Paperzz