UnsteadyAerodynamicsOfFOWT: Firma convenzione TowardExperimentalValidationOfEquivalent Politecnico di Milano e Veneranda Fabbrica Lumped‐elementModels del Duomo di Milano IlmasBayati,LucaBernini,AlbertoZasso Aula Magna – Rettorato Mercoledì 27 maggio 2015 Department ofMechanical Engineering 2DoFSetup • Polimi WT 2011 Test of Vestas V52 (may 2011) • Surge imposed motion • 1/25 geometric blade scale D=2.1m Ω=2.5Hz I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering 2DoFSetup experimental Session • • Steady configuration Unsteady configuration: Surge andPitchSinewaves • Wind/NoWind measuremenents • Inertial Forces subtraction I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering 2DoFSetup Previous Experimental Session • Aerodynamic Histeresis registered • Dimension andshape ofcycle depends ondynamic conditions • Does FAST/Aerodyn predict this behaviour? Example ofhisteretic cycles: aerodynamic pitch moment I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering Modelling ImposedMotionInFAST UserInputFile • PlatformDof:Surge andPitch HydroDyn.dat • AdditionalDampingandStiffnessmatrices FAST8customversion Definitionofacontrolforceatthetower’sbase togetanimposedmotion FORCE =K_add ∙( − )+C_add∙( − ) K_add andC_add : parameters oftheoscillator f>10*fimposed motion h=1 I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering HydroDyn_input.f90 HydroDyn_Types.f90 HydroDyn.f90 K_add andC_add (seeFAST7/Seismicmodule) FAST8Simulations DYNIN Generalized Dynamic Wake(GDW)=acceleration potential method • Does not require iterativeprocess o Moregeneralpressuredistribution accross rotor o Fully nonlinear implementation: turbulence andspatial variation ofinflow o Inherent modelling of: Dynamic wake effect Tip losses Skewed wake I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering Accountingfor timelag inthe induced velocity created byvorticity shed fromblades and convected downstream Nomeclature Experimental/Numerical test scheme D Thrust (T) Wind (V) Variable definition surge motion displacement surge motion velocity Apparent wind 0,5 Ω /2 Surge Amp (SGamp) Surge Freq (SGfreq) tsr / I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering Thrust coefficient 4 Nominal tip speed ratio Effective tip speed ratio Experimental vs Numerical results Static thrust Experimental blade are geometrically scaled. Polar data for model scale are difficult to be determined with high accuracy. Different slope at high TSR I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering Experimental vs Numerical results • Agreement Experimental & Numerical Dissipative Hysteresis cycles • Disagreement in the time delay value i.e. amplitude of hysteresis cycles Dynamic results • Surge motion frequency 0.4Hz • Various amplitude Exp SGfreq=0.4Hz 0.1 Num SGfreq=0.4Hz 0.1 0.095 0.09 0.09 0.085 0.08 Ct Ct 0.08 0.07 0.075 0.07 0.06 0.065 0.06 0.05 0.055 0.04 2.5 3 3.5 4 0.05 2.5 TSR I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering 3 3.5 TSR 4 Experimental vs Numerical results Dynamic results • Surge motion frequency 0.6Hz • Various amplitude • Agreement Experimental & Numerical Larger Hysteresis cycles • GDW underestimates the hysteresis effects Num SGfreq=0.6Hz 0.1 0.095 0.09 0.085 Ct 0.08 0.075 0.07 0.065 0.06 0.055 0.05 2.5 3 3.5 TSR I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering 4 Lumped-element model: advantages • SS model aero (control, integrated with hydro) • Different parameters (wt verification) relationship with wind/sea states (nominal condition for simulations) • Large wind farms control Ct Rheological model tsr I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering tsr(t) Proposed lumped model Objective: Model the unsteady turbine response to platform motion Maxwell + Voigt r2 Ct k1 Ct_unsteady k2 tsr Ct=Ct_static(TSR)+Ct_unsteady(tsr) I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering r1 tsr(t) tsr oscillation due to surge motion Proposed lumped model Good results for turbine thrust unsteady modelling both for numerical and experimental data. Parameters identification is required Example of experimental data prediction 0.05 0.005 Example of numerical data prediction 0 0 -0.005 Exp Ct lumped model Ct Num Ct lumep model Ct -0.01 -0.05 Ct Ct -0.015 -0.02 -0.1 -0.025 -0.03 -0.15 -0.035 -0.2 0 10 20 30 40 50 60 -0.04 10 15 time (sec) I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering 20 25 30 time (sec) 35 40 45 50 Lumped model identification Lumped model parameter Are identified via quadratic error minimization for each nominal TSR working condition. Model parameters function of reduced frequency and amplitude of the surge motion f rid SGfreq D / 2 V (tsr ) Amptsr 2 I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering LIFES 50+ Project 2011 PoliMi tests 2016‐17 PoliMi LIFES50+ tests 1st LIFES50+ deliverable for Polimi is the validation of steady/unsteady AeroDyn for FOWT The 2011 Polimi wind tunnel tests were used as preliminary set of data for the numerical and experimental comparison I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering LIFES50+Anovelhybridrealtimeapproach (Hardware‐In‐The‐Loop) Aerodynamics (real)+Hydrodinamics (computed) Force Input through controlled cables • Lessconstrictivescalingissues • Exploitingtheadvantagesofeachtestfacility I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering Aerodynamics (Computed)+ Hydrodinamics (Real) LIFES50+ Aeroelastic Model Blade Design: DTU 10 MW PoliMi &DTU Airfoil Characterization LowRe Wind Tunnel Selig SD7032 Airfoil I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering LIFES50+ Aeroelastic Model Blade Design: DTU 10 MW Aerodynamic Scaling chord geom scaled LIFES50+ DEV1 MODEL 0,15 0,10 0,05 0,00 0 000 0 000 0 000 0 000 0 000 0 001 0 001 0 001 0 001 0 001 0 001 Different airfoil used in WT Model chord is different from the geometrically scaled. Account for polar Reynolds dependency I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering LIFES50+ I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering Design and verification Tools Since LIFES50+ will be a multidisciplinary project (Aero, Hydro, Structural, Control,…). Advanced simulation tools both for design and verification are actually under implementation at Polimi. • Fast (aero‐servo‐hydro) • Adams (Multibody) • AdWimo (AeroDyn+Adams) A design support multibody tool for assessing the dynamic capabilities of a wind tunnel 6DoF/HIL setup. Belloli‐Giberti‐Fiore DeepWind Poster I.Bayati,L.Bernini,A.Zasso – Department ofMechanical Engineering
© Copyright 2026 Paperzz