DLR.de • Chart 1 > Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015 Future Atmospheric Missions Thomas Trautmann – DLR-IMF with contributions by O. Reitebuch & G. Ehret (DLR-IPA) WMO Polar Space Task Group, 5th Meeting, DLR Oberpfaffenhofen, 5-7 Oct 2015 DLR.de • Chart 2 > Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015 Overview 1. Atmospheric missions and cryosphere‒atmosphere interaction 2. Past and current European atmospheric missions 3. Future European atmospheric missions a) Passive remote sensing b) Active remote sensing DLR.de • Chart 3 > Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015 Cryosphere ‒ Atmosphere Interaction Some strategic priorities (WMO) for polar regions − Establishing satellite Doppler wind lidar profiling capability − Monitoring of atmospheric composition − ozone, methane and carbon dioxide − aerosols ⇒ For a better understanding of − the polar atmosphere − cryosphere - atmosphere coupling DLR.de • Chart 4 > Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015 Past and current European sensors/platforms with DLR involvement Time frame Wavelength (nm) Parameters ENVISAT/ SCIAMACHY 2002-2012 UV-VIS-NIR: 215-1063 SWIR: 1934-2044 & 2259-2386 nadir: O3, NO2, BrO, H2O, SO2, HCHO, OClO, CHOCHO, CO, CH4, AAIA, clouds limb: O3, NO2, BrO, clouds limb/nadir matching: tropospheric NO2 ERS-2/ GOME 1995-2011 UV-VIS-NIR: 237-794 O3, NO2, H2O, BrO, SO2, HCHO, OClO, tropospheric O3, clouds MetOp/ GOME-2 MetOp-A: > 2006 MetOp-B: > 2012 MetOp-C: > 2017 UV-VIS-NIR: 240-790 O3, NO2, H2O, BrO, SO2, HCHO, tropospheric O3, tropospheric NO2, OClO, CHOCHO, clouds DLR.de • Chart 5 > Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015 Information Retrieval Concept – Absorption Spectroscopy Application – Air pollution Tropospheric NO2 2007-2012 (GOME-2) Artist‘s simulation: Simulated NO2 over Bavaria from S-5P − Exploitation of GOME-2 instruments on MetOp A&B − Reactive trace gases (cf. NO2, SO2, HCHO) − Urban and regional hot spots − Further improvement with Sentinel-5P and Sentinel-5 (7x7 km2) − Launch: S-5P 2016, S-5 2021 DLR.de • Chart 7 > Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015 Kasatochi / Aleutian Islands – August 2008 DLR.de • Chart 8 > Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015 Future European sensors and platforms active Time frame Wavelength (nm) Parameters Sentinel 5 Precursor ≥ 2016 UV-VIS-NIR: 270-775 SWIR: 2305-2385 O3, SO2, HCHO, tropospheric O3, H2O, CO, CH4, NO2, tropospheric NO2, BrO, clouds Sentinel 5 ≥ 2021 UV-VIS-NIR: 270-775 SWIR: 1590-1675 & 2305-2385 O3, NO2, H2O, BrO, SO2, HCHO, CO, CH4, tropospheric NO2, tropospheric O3, OClO, CHOCHO, clouds Sentinel 4 ≥ 2021 UV-VIS-NIR: 305-775 O3, NO2, H2O, BrO, SO2, HCHO, tropospheric NO2, tropospheric O3, OClO, CHOCHO, clouds ADM-Aeolus ≥ 2016/17 UV: 355 Lidar Line-of-sight wind profiles MERLIN ≥ 2019 SWIR: 1645 Lidar CH4 Big challenge = ”Big Data“ Sentinel 5 Precursor Mission L2 Algorithm Development - NRT processing of spectrometer data - 7x7 km2 nadir pixel size - 860.000 obs. per orbit (100 minutes); GOME-2 20.000 obs./orbit − Built and procured by ESA, together with industry and research institutions over Europe; its operation will be paid by the European Commission (EC) − Launch in 2016 − DLR: Scientific L2 algorithm development and operational data processor − Focus: tropospheric trace gases, O3, SO2, HCHO, clouds Artist‘s view. Credit: DLR Copernicus Sentinel 4 UVN • First European GOME-type spectrometer in geostationary orbit • Launch on Meteosat Third Generation sounder platform: MTG-S1 ~2021, MTG-S2 ~2029 • Level 2 Products: O3, NO2, SO2, HCHO and AOD over Europe/North Africa (nadir pixel size 8x8 km2) • DLR is leading the ESA S4 level 2 development project Air quality measurements with fast repeat cycle every 60 minutes during daytime DLR.de • Chart 11 > Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015 GMES/Copernicus Sentinel 5 Some S5 facts − S5 will fly on EUMETSAT Polar System 2nd Generation platform (EPS-SG) − Nadir pixel resolution 7x7 km2, swath 2700 km UV 270-370 nm @ < 0.5 nm (< 1.0 nm below 300 nm) VIS 370-500 nm @ < 0.5 nm NIR (685-)710-775 nm @ (<0.06) 0.4 nm SWIR 1 xCH4 1590-1675 nm @ < 0.25 nm SWIR 3 CO (CH4, H2O, HDO) 2305-2385 nm @ < 0.25 nm − High spatial resolution => quantitative determination of air pollution on city-scale; identifying of emission sources and sinks − Daily coverage in the tropics − Mission data volume ~ 8 PByte Global Observing System for Weather Prediction Observations at ECMWF within 24 h in 2010 WMO Expert Team on Observational Data Requirements and Redesign of the Global Observing System Fig. ECMWF R. Hagedorn, Statement of Guidance for Global NWP (April 2014) and High-Resolution NWP (July 2014): The critical atmospheric variables that are not adequately measured by current or planned systems are (in order of priority): 1. wind profiles at all levels “Development of satellite-based wind profiling systems remains a priority for the future global observing system.” (5th WMO NWP Impact Workshop Final Report, Sedona May 2012) => Doppler wind lidar technology can fill this gap 12 Aeolus is the first European lidar mission from ESA and first wind lidar mission worldwide Objective is to improve weather forecasting by providing global wind-profile observations Polar orbiting satellite at 400 km with single payload instrument - the Doppler lidar ALADIN Aeolus The first wind lidar in space with launch in 2016/17 The Atmospheric Dynamics Mission ADM-Aeolus ADM-Aeolus with single payload Atmospheric LAser Doppler INstrument ALADIN Aeolus Orbits for 1 week First wind lidar and first High Spectral Resolution Lidar HSRL in space to obtain aerosol/cloud optical properties Measures profiles of wind in line-of-sight direction from ground up to 20-30 km with a vertical resolution of 250-2000 m averaged over 90 km High requirement on random error: <1 m/s (z=0-2 km, for Δz=0.5 km. HLOS) <2 m/s (z=2-16 km, for Δz=1.0 km, HLOS) Very demanding requirements for the systematic error: unknown bias <0.4 m/s linearity error <0.7 % of actual wind speed 14 DLR Falcon Flight Tracks May 2015 Greenland Summit Satellite underpass sea ice calibration Jet Stream Greenland calibration Greenland Tip Jet Aeolus Track ASCAT underpass Aeolus Track Jet Stream The French-German Climate Mission MERLIN Mission Objective Column-integrated dry-air volume mixing ratio of CH4 using the IPDA Lidar technique with following features: − − − − − − random error: 18 ppb systematic error: 3 ppb along track averaging 50 km individual measurement: 100 m all season, high latitudes in winter time no bias from aerosol and cloud scattering Estimates on regional scale (200x200 km2) CH4 surface emission on a monthly basis using inverse modelling Secondary data products on canopy height, surface retro-reflectance, cloud-boundaries and strong aerosol layers © CNES/Illustration D. Ducros Mission Details: Launch: 2019; mission duration: 3 years; orbit type: low polar sunsynchronous Earth orbit; orbit height ~ 500km; LTAN: 6h/18h Mission status: Phase B (PDR Oct. 15) PI's: Gerhard Ehret, DLR, Germany and Philippe Bousquet, LSCE,France Project manager: Bruno Millet, CNES, Toulouse and Matthias Alpers, DLR, Bonn Scientific Advise: Joint Mission Advisory Group (MERLIN-SAG) 17 Inverse Modeling Results using Synthetic MERLIN Observations M. Heimann, J. Marshall, MPI-BGC, Jena Use of TM3 model resolution of 3hr x 8° x 10° x 9 aggregation of 50 km lidar observations along track: calculation of posterior flux covariance matrix C −x1,post = J T C −1d ,pri J + C −x1,pri 1-σpost/σpri Substantial error reduction in key regions with respect to the present knowledge of CH4-fluxes on regional scale for July Assumption • Standard scenario using a priori flux and flux uncertainty based on Mikaloff-Fletcher et al., 2004 with updated, process based, global totals from IPCC AR4 • Neglecting of - Transport model error - "Representation” error
© Copyright 2026 Paperzz