Future Atmospheric Missions

DLR.de • Chart 1
> Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015
Future Atmospheric Missions
Thomas Trautmann – DLR-IMF
with contributions by O. Reitebuch & G. Ehret (DLR-IPA)
WMO Polar Space Task Group, 5th Meeting, DLR Oberpfaffenhofen, 5-7 Oct 2015
DLR.de • Chart 2
> Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015
Overview
1. Atmospheric missions and cryosphere‒atmosphere interaction
2. Past and current European atmospheric missions
3. Future European atmospheric missions
a) Passive remote sensing
b) Active remote sensing
DLR.de • Chart 3
> Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015
Cryosphere ‒ Atmosphere Interaction
Some strategic priorities (WMO) for polar regions
− Establishing satellite Doppler wind lidar profiling capability
− Monitoring of atmospheric composition
− ozone, methane and carbon dioxide
− aerosols
⇒ For a better understanding of
− the polar atmosphere
− cryosphere - atmosphere coupling
DLR.de • Chart 4
> Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015
Past and current European sensors/platforms
with DLR involvement
Time frame
Wavelength (nm)
Parameters
ENVISAT/
SCIAMACHY
2002-2012
UV-VIS-NIR: 215-1063
SWIR: 1934-2044 &
2259-2386
nadir: O3, NO2, BrO, H2O, SO2, HCHO,
OClO, CHOCHO, CO, CH4, AAIA, clouds
limb: O3, NO2, BrO, clouds
limb/nadir matching: tropospheric NO2
ERS-2/
GOME
1995-2011
UV-VIS-NIR: 237-794
O3, NO2, H2O, BrO, SO2, HCHO, OClO,
tropospheric O3, clouds
MetOp/
GOME-2
MetOp-A: > 2006
MetOp-B: > 2012
MetOp-C: > 2017
UV-VIS-NIR: 240-790
O3, NO2, H2O, BrO, SO2, HCHO,
tropospheric O3, tropospheric NO2, OClO,
CHOCHO, clouds
DLR.de • Chart 5
> Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015
Information Retrieval Concept – Absorption Spectroscopy
Application – Air pollution
Tropospheric
NO2 2007-2012 (GOME-2)
Artist‘s simulation: Simulated NO2 over Bavaria from
S-5P
− Exploitation of GOME-2
instruments on MetOp
A&B
− Reactive trace gases
(cf. NO2, SO2, HCHO)
− Urban and regional hot
spots
− Further improvement with
Sentinel-5P and Sentinel-5
(7x7 km2)
− Launch: S-5P 2016, S-5
2021
DLR.de • Chart 7
> Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015
Kasatochi / Aleutian Islands – August 2008
DLR.de • Chart 8
> Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015
Future European sensors and platforms
active
Time frame
Wavelength (nm)
Parameters
Sentinel 5
Precursor
≥ 2016
UV-VIS-NIR: 270-775
SWIR: 2305-2385
O3, SO2, HCHO, tropospheric O3,
H2O, CO, CH4, NO2, tropospheric
NO2, BrO, clouds
Sentinel 5
≥ 2021
UV-VIS-NIR: 270-775
SWIR: 1590-1675 &
2305-2385
O3, NO2, H2O, BrO, SO2, HCHO, CO,
CH4, tropospheric NO2, tropospheric
O3, OClO, CHOCHO, clouds
Sentinel 4
≥ 2021
UV-VIS-NIR: 305-775
O3, NO2, H2O, BrO, SO2, HCHO,
tropospheric NO2, tropospheric O3,
OClO, CHOCHO, clouds
ADM-Aeolus
≥ 2016/17
UV: 355
Lidar
Line-of-sight wind profiles
MERLIN
≥ 2019
SWIR: 1645
Lidar
CH4
Big challenge = ”Big Data“
Sentinel 5 Precursor Mission
L2 Algorithm Development
- NRT processing of spectrometer data
- 7x7 km2 nadir pixel size
- 860.000 obs. per orbit (100 minutes); GOME-2
20.000 obs./orbit
− Built and procured by ESA, together with industry and research institutions
over Europe; its operation will be paid by the European Commission (EC)
− Launch in 2016
− DLR: Scientific L2 algorithm
development and operational
data processor
− Focus: tropospheric trace gases,
O3, SO2, HCHO, clouds
Artist‘s view. Credit: DLR
Copernicus Sentinel 4 UVN
• First European GOME-type spectrometer in
geostationary orbit
• Launch on Meteosat Third Generation sounder platform:
MTG-S1 ~2021, MTG-S2 ~2029
• Level 2 Products: O3, NO2, SO2, HCHO and AOD over
Europe/North Africa (nadir pixel size 8x8 km2)
• DLR is leading the ESA S4 level 2 development project
 Air quality measurements with fast repeat cycle
every 60 minutes during daytime
DLR.de • Chart 11
> Future Atmospheric Missions > Trautmann • WMO PSGT, DLR> 5-7 October 2015
GMES/Copernicus Sentinel 5
Some S5 facts
− S5 will fly on EUMETSAT Polar System 2nd Generation
platform (EPS-SG)
− Nadir pixel resolution 7x7 km2,
swath 2700 km
UV
270-370 nm @ < 0.5 nm (< 1.0 nm
below 300 nm)
VIS
370-500 nm @ < 0.5 nm
NIR
(685-)710-775 nm @ (<0.06) 0.4
nm
SWIR 1 xCH4
1590-1675 nm @ < 0.25 nm
SWIR 3 CO (CH4, H2O,
HDO)
2305-2385 nm @ < 0.25 nm
− High spatial resolution => quantitative determination of air pollution on city-scale;
identifying of emission sources and sinks
− Daily coverage in the tropics
− Mission data volume ~ 8 PByte
Global Observing System for Weather Prediction
Observations at ECMWF within 24 h in 2010
WMO Expert Team on
Observational Data
Requirements and
Redesign of the Global
Observing System
Fig. ECMWF
R. Hagedorn,
Statement of Guidance for
Global NWP (April 2014) and
High-Resolution NWP (July
2014):
The critical atmospheric variables
that are not adequately measured
by current or planned systems are
(in order of priority):
1. wind profiles at all levels
“Development of satellite-based wind profiling systems remains a priority for the future global
observing system.” (5th WMO NWP Impact Workshop Final Report, Sedona May 2012)
=> Doppler wind lidar technology can fill this gap
12
 Aeolus is the first European lidar
mission from ESA and first wind
lidar mission worldwide
 Objective is to improve weather
forecasting by providing global
wind-profile observations
 Polar orbiting satellite at
400 km with single payload
instrument - the Doppler lidar
ALADIN
Aeolus
The first wind
lidar in space with
launch in 2016/17
The Atmospheric Dynamics Mission ADM-Aeolus
ADM-Aeolus with single payload
Atmospheric LAser Doppler INstrument
ALADIN
Aeolus Orbits for 1 week

First wind lidar and first High Spectral Resolution
Lidar HSRL in space to obtain aerosol/cloud
optical properties

Measures profiles of wind in line-of-sight
direction from ground up to 20-30 km with a
vertical resolution of 250-2000 m averaged over
90 km

High requirement on random error:
<1 m/s (z=0-2 km, for Δz=0.5 km. HLOS)
<2 m/s (z=2-16 km, for Δz=1.0 km, HLOS)

Very demanding requirements for the systematic
error:
unknown bias <0.4 m/s
linearity error <0.7 % of actual wind speed
14
DLR Falcon Flight Tracks May 2015
Greenland
Summit
Satellite
underpass
sea ice
calibration
Jet Stream
Greenland
calibration
Greenland Tip Jet
Aeolus Track
ASCAT underpass
Aeolus Track
Jet Stream
The French-German Climate Mission MERLIN
Mission Objective
 Column-integrated dry-air volume mixing
ratio of CH4 using the IPDA Lidar technique
with following features:
−
−
−
−
−
−
random error:
18 ppb
systematic error:
3 ppb
along track averaging
50 km
individual measurement: 100 m
all season, high latitudes in winter time
no bias from aerosol and cloud
scattering
 Estimates on regional scale (200x200 km2)
CH4 surface emission on a monthly basis
using inverse modelling
 Secondary data products on canopy height,
surface retro-reflectance, cloud-boundaries
and strong aerosol layers
© CNES/Illustration D. Ducros
 Mission Details: Launch: 2019; mission




duration: 3 years; orbit type: low polar sunsynchronous Earth orbit; orbit height ~
500km; LTAN: 6h/18h
Mission status: Phase B (PDR Oct. 15)
PI's: Gerhard Ehret, DLR, Germany and
Philippe Bousquet, LSCE,France
Project manager: Bruno Millet, CNES,
Toulouse and Matthias Alpers, DLR, Bonn
Scientific Advise: Joint Mission Advisory
Group (MERLIN-SAG)
17
Inverse Modeling
Results using Synthetic MERLIN
Observations
M. Heimann, J. Marshall, MPI-BGC, Jena
Use of TM3 model resolution
of 3hr x 8° x 10° x 9
aggregation of 50 km lidar
observations along track:
calculation of posterior flux
covariance matrix
C −x1,post = J T C −1d ,pri J + C −x1,pri
1-σpost/σpri
Substantial error reduction in key
regions with respect to the present
knowledge of CH4-fluxes on regional
scale for July
Assumption
• Standard scenario using a priori flux and
flux uncertainty based on Mikaloff-Fletcher
et al., 2004 with updated, process based,
global totals from IPCC AR4
• Neglecting of
- Transport model error
- "Representation” error