RANK BOOSTER TEST SERIES 12th and 13th STUDENTS FULL TEST - 4 [PAPER - 1] TARGET IIT - JEE - 2016 Date : 17-05-2016 Duration :3 Hours Max. Marks : 264 _________________________________________________________________________________________ INSTRUCTIONS In each part of the paper, Section-A contains 8 questions, Section - B contains 10 questions & Section-C contains 2 questions. Total number of pages are 24. Please ensure that the Questions paper you have received contains ALL THE QUESTIONS in each section and PAGES. SECTION - A Q.1 to Q.8 are Integer answer type questions (whose answer is 1 digits [0 to 9]) & carry 4 marks each. No Negative Marking. SECTION - B Q.1 to Q.10 are Multiple choice Questions has four choices (A), (B), (C), (D) out of which one or more than one is/are correct & carry 4 marks each. 2 mark will be deducted for each wrong answer. SECTION - C Q.1 & Q. 2 are "Match the Column" Type questions and you will have to match entries in column - I with the entries in Column - II. One or More entries in Column - I may match with one or more entries of Column - II. For each entry in Column - I, + 2 for correct answer, 0 if not attempted and – 1 in all other cases. NOTE : GENERAL INSTRUCTION FOR FILLING THE OMR ARE GIVEN BELOW. 1. Use only blue/black pen (avoid gel pen) for darkening the bubble. 2. Indicate the correct answer for each question by filling appropriate bubble in your OMR answer sheet. 3. The Answer sheet will be checked through computer hence, the answer of the question must be marked by shading the circles against the question by blue/black pen. 4. While filling the bubbles please be careful about SECTIONS [i.e. Section-A (include Integer type), Section - B [Multiple type] & Section-C (Comprehension type)]. 394,50 - Rajeev Gandhi Nagar Kota, Ph. No. : 93141-87482, 0744-2209671 IVRS No : 0744-2439051, 52, 53, www. motioniitjee.com , [email protected] RANK BOOSTER PROGRAM [FULL TEST - 4] Page # 2 PART - I [MATHEMATICS] SECTION - A [ fo' y s "k. kkRed i z'u i zd kj ] SECTION - A [INTEGER ANSWER TYPE] Q.1 to Q.8 are INTEGER ANSWER TYPE Questions. (The answer of each of the questions is 1 digits) x 1. 2 Let f(x) t t 1 dt 3, 4, then the 0 i z-1 l si z-8 r d fo' y s"k.kkRed i z'u gS A¼ i zR; sd i z'u dkmÙkj dsoy 1 va d ksesnhft ; sA x 1. ekuk f(x) t2 t 1 dt 3, 4, gSr c Qy u 0 difference between the greatest and the least m n dsvf/kdr e r FkkU; w ur e ekuksadschp vUr j gS gSr c m values of the function is then m - 9n n 2. Let f(x) be a differentiabl e function m - 9n Kkr 2. f ( x ) f ( y) xy x, y = 2 2 satisfying f dhft , A ekuk f(x) vody uh; Qy u gSt ks f ( x ) f ( y) xy x, y R dksl a rq "V f = 2 2 2 2 R and f(0) = 0. If f (x) sin x 2 dx is 0 If f(x) = (2x – 3)5 + 2 dx 0 42). 4 x + cos x and g is 3. 3 the inverse function of f, then g (2) is equal to P, then find 7P f (x) sin x U; w ur e gS ] r c f(– 42) dk eku Kkr dj ksA minimised, then find the value of f(– 3. dj r kgSr Fkkf(0) = 0 gS A; fn ; fn f(x) = (2x – 3)5 + 4 x + cos x r Fkkg , f 3 dk i zfr y kse Qy u gS ] r c g(2) dk eku P dscj kcj gS r c 7P Kkr dhft , A (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) Just when the caterpillar thought the world was ending, he turned into a butterfly. RANK BOOSTER PROGRAM [FULL TEST - 4] Page # 3 1 4. n 5. 1 Lim x n sin (nx ) dx is equal to 4. n 0 All the three vertices of an equilateral triangle lie on the parabola y = x2, and one of its sides has a slope of 2. The x-coordinates of the three vertices have a sum equal to 5. p q Let y = f(x ) be t he c onti nuous and differentiable function which satisfies the Given that | a | = 1, | b | = 1 and a vector p is defined by p = a a a ........ ab 2 2100 299 , d l eckgqf=kHkq t dsl Hkhr hu ' kh"kZi j oy ; y = x2 i j x-funs Z ' kka d ksdk; ksx 6. ekuk y = f(x) l r r ~ r Fkk vody uh; Qy u gSt ks l EcU/kf(x + f(x)) = x + f(x) x R dksl Urq "V dj r kgSr c oØ r Fkkj s[kkx = 1 } kj ki fj c) {ks=kQy Kkr dhft , A 7. fn; k x; k gSfd | a | = 1, | b | = 1 r Fkk , d l fn' k d kj i fj Hkkf"kr gSfd p bl i z p = 100 times a a a ........ ab 2 2100 299 100 times If maximum value of | p | is in the form of 1 p dscj kcj gSt gk¡p r Fkkq i j Li j q vHkkT; /kukRed i w . kkZ a d gSr c (q – p) dk eku gS& relation f(x + f(x)) = x + f(x) x R then find the area bounded by the curves and the line x = 1 7. 0 fLFkr gS ] r Fkkfdl h, d Hkq t kdh<ky 2 gS Ar huks' kh"kksZds where p and q are relatively prime positive integers. Then the value of (q – p) is 6. Lim x n sin (nx ) dx cj kcj gS% where , I (ranging from 0 to 9) 2 then the value of + is equal to 1 ; fn | p | d k egÙke eku , I (i fj l 2 : i esa gSt gk¡ j 0 l s9 r d ) r c + dkeku cj kcj gksxk% (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, ,dkxzrk ls gh fot; feyrh gSA :[email protected] RANK BOOSTER PROGRAM [FULL TEST - 4] 8. The locus of a point that divide a chord of slope of 2 of the parabola y2 = 4x internally in the ratio 1 : 2 is a parabola if the vertex of parabola is (, ) then the value of Page # 4 8. , d fcUnqt ksi j oy; y2 = 4x dh2 <ky oky h , d t hok dks 1 : 2 esavUr %foHkkft r dj r k gS ; dk fcU nq i Fk , d i j oy ; gS A ; fn i j oy ; d k ' kh"kZ(, ) gSr c 729 2 100 729 2 must be. 100 dk eku gksxk % SECTION - B SECTION - B [ cgqoS d fYi d [MULTIPLE OBJECTIVE TYPE] Q.1 to Q.10 has four choices (A), (B), (C), (D) i z-1 l si z-10 esapkj fodYi out of which ONE OR MORE THAN ONE is correct ; k, d l svf/kd^^ l ghgS A 1. 1. If an angle be divided into two parts such that the tangent of one part is m times the tangent of the other, then their difference is not given by i z'u i zd kj ] (A), (B), (C), (D) gS ] ft uessal s^^, d ; fn dks.k dksnksHkkxksesabl i zd kj foHkkft r fd; kx; kgS fd , d Hkkx dhLi ' kZj s[kknw l j sHkkx dhLi ' kZj s[kkdhm xq uhgSr c mudkvUr j fdl ds} kj kughafn; kt kr kgS% (A) cos m 1 cos m 1 (A) cos m 1 cos m 1 (B) sin m 1 sin m 1 (B) sin m 1 sin m 1 (C) sin m 1 cos m 1 (C) sin m 1 cos m 1 (D) cos m 1 sin m 1 (D) cos m 1 sin m 1 (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) Just when the caterpillar thought the world was ending, he turned into a butterfly. RANK BOOSTER PROGRAM [FULL TEST - 4] Page # 5 2. If two vertices of an equilateral triangle are A (– a, 0) and B (a, 0), a > 0 and the third vertex C lies above x-axis then the equation of the circumcircle of triangle ABC is (A) x2 + y2 – 2ay = a2 (B) x2 + y2 – 2. (A) x2 + y2 – 2ay = a2 (B) x2 + y2 – 3 ay = a2 log equal to (A) (C) (3, 5) 1 x x x 1 log 2 > 0, is x 2 3. (B) (–5, –2) (D) (5, ) Which of the following statement is(are) correct? (A) The lines y6 x4 z6 = = and 1 3 1 y2 z3 x 1 = = are orthogonal. 2 2 1 (B) The planes 3x – 2y – 4z = 3 and x – y – z = 3 are orthogonal. (C) The funct ion f (x) = ln(e–2 + ex ) is monotonic increasing x R. (D) If g is the inverse of the function, f (x) = ln(e–2 + ex) then g(x) = ln(ex – e–2). vlfedk log 1 x x x 1 log 2 > 0 dks larq"V djus x 2 okys x ds okLrfod ekuksa dk leqPp; gS (A) (B) (–5, –2) (C) (3, 5) (D) (5, ) 4. 4. 3 ay = 3a2 (D) 3x2 + 3y2 – 2ay = 3a2 The set of real values of x satisfying the inequality 3 ay = a2 (C) 3x2 + 3y2 – 2 (C) 3x2 + 3y2 – 2 3 ay = 3a2 (D) 3x2 + 3y2 – 2ay = 3a2 3. ;fn ,d leckgq f=Hkqt ds nks 'kh"kZ A (– a, 0) rFkk B (a, 0), a > 0 rFkk rhljk 'kh"kZ C, x-v{k ds Åij fLFkr gS, rks f=Hkqt ABC ds ifjo`Ùk dh lehdj.k gksxh% fuEu esa ls dkSulk@dkSuls dFku lR; gS? (A) js[kk,sa x4 y6 z6 x 1 = = rFkk = 3 1 1 1 y2 z3 = yEcdks.kh; gSA 2 2 lery 3x – 2y – 4z = 3 rFkk x – y – z = 3 yEcdks.kh; gSA (C) Qyu f (x) = ln(e–2 + ex) lHkh x R ds fy;s ,dfn"V o/kZeku gSA (D) ;fn g, Qyu f (x) = ln(e–2 + ex) dk çfrykse gS, rks g(x) = ln(ex – e–2) gSA (B) (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, ,dkxzrk ls gh fot; feyrh gSA :[email protected] RANK BOOSTER PROGRAM [FULL TEST - 4] 5. 5x 1, x2 x Let f (x) = 5 | 1 t | dt , x 2 0 Page # 6 5. then which of the following statement(s) is 5x 1, x2 x ekuk f (x) = 5 | 1 t | dt , x 2 0 gks] rks fuEu esa ls dkSulk@dkSuls dFku vlR; gSa ? (are) incorrect ? (A) f (x) is continuous but not differentiable (A) x = 2 ij f (x) lrr~ gS ijUrq vodyuh; ugha gSA at x = 2. (B) x = 2 ij f (x) lrr~ (B) f (x) is not continuous at x = 2. ugha gSA lHkh x R ds fy, f (x) vodyuh; gSA (C) f (x) is differentiable for all x R. (C) (D) The right hand derivative of f (x) at (D) x = 3 ij f (x) dk nk;k¡ vodyt fo|eku ugha gSA x = 3 does not exist. 6. Tangents to the parabola at the extremities 6. oÙ̀k x2 + y2 = 5 r Fkk i j oy ; y2 = 4x dh , d of a c om mon c hord AB of the ci rc l e mHk; fUk"V t hokAB dsfl j ksl si j oy; i j [ khphx; hLi ' kZ x2 + y2 = 5 and the parabola y2 = 4x intersect j s[kk, safcUnqT i j i zfr PNsn dj r hgS A , d oxZABCD bl at the point T. A square ABCD is constructed t hok i j cuk; k t kr kgSt ksfd i j oy ; dsHkhr j fLFkr gS on this chord lying inside the parabola then (A) [(TC)2 + (TD)2]2 = 6400 r c& (A) [(TC)2 + (TD)2]2 = 6400 (B) TC and TD are equal and irrational (C) TC > TD (D) [(TC) + (TD)]2 = 6400 (B) TC o TD l eku o vi fj es; gS A (C) TC > TD (D) [(TC) + (TD)]2 = 6400 (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) Just when the caterpillar thought the world was ending, he turned into a butterfly. RANK BOOSTER PROGRAM [FULL TEST - 4] Page # 7 7. If x 1, a 0 and the sum of the series sec 1 n 1 8. x cos ec 1 a 1 2 (B) a (C) a 1 2 (D) None of these Let P(x) = ; fn x 1, a 0 gSr Fkk Js.kh n x is finite then (A) a cot2x 7. sec 1 n 1 1 2 1 tan x tan 2 x 1 cot x cot 2 x 8. x cos ec 1 a n x dk; ksx i fj fer gS ]rc (A) a 1 2 (B) a (C) a 1 2 (D) bues al ekuk P(x) = cot2x Then which of the following is(are) incorrect? (A) Range of P(x) is [1, 2]. 2 cos x cos 3x sin 3x sin x gSr c fuEu esa + 2 (sin 2x cos 2x ) l sdkS ul k@l sfodYi l ghughagS a\ (A) P(x) (B) The value of P(18°) + P(72°) is 3. sdksbZugha 1 tan x tan 2 x 1 cot x cot 2 x 2 cos x cos 3x sin 3x sin x . 2 (sin 2x cos 2x ) + 1 2 dk i fj l j [1, 2] gS a . (B) P(18°) + P(72°) dkeku 3 gS a . (C) Range of P(x) is [0, 1]. (C) P(x) (D) The value of P(18°) + P(72°) is 5. (D) P(18°) + P(72°) eku 5 gS a . dki fj l j [0, 1] gS a . (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, ,dkxzrk ls gh fot; feyrh gSA :[email protected] RANK BOOSTER PROGRAM [FULL TEST - 4] 9. Let f : R [1, ) be a quadratic surjective function such that f(2 + x) = f(2 – x) and f(1) = 2. If g : (– , ln 2] [1, 5) is given by g (ln x) = f(x) then which of the following is(are) correct ? (A) The value of (B) g–1(x) = ln (C) g–1 2 (x) = ln 2 Page # 8 9. f (3) is equal to 2. (C) g–1 x 1 x 1 dsekuksdk ; ksx t ksfd l ehdj .k f (x) = 5 dks la rq "V dj r sgS a ] 4 gksxkA (D) x equation f (x) = 5 is 4. From the point P (0, 1) tangent lines PA and PB are drawn to the hyperbola x2 y2 1. 1 8 Which of the following statement(s) is(are) correct? (A) The x-intercept of tangent with negative gradient is equal to 3. (B) The acute angle between tangents PA and PB is equal to tan 1 (x) = ln 2 (B) g–1(x) = ln 2 x 1 x 1 (D) The sum of values of x satisfying the 10. ekukf : R [1, ) f} ?kkr vkPNknd Qy u bl i zd kj gS afd f(2 + x) = f(2 – x) r Fkkf(1) = 2 gS A; fn g : (– , ln 2] [1, 5) gSt ksg (ln x) = f(x) ds} kj k fn; kt kr kgS a A r c fuEu esal sdkS ul k@l sl ghgS a\ (A) f (3) dk eku 2 dscj kcj gS a A. 4 . 3 (C) The area of triangle formed by the tangents PA and PB and their chord of contact is equal to 27. (D) Least distance of mid-point of AB from x-axis is equal to 8. 10. vfr i j oy ; x2 y2 1 i j fcUnqP (0, 1) l sLi ' kZ 1 8 j s[kk, saPA r FkkPB [ khpht kr hgS a A r c fuEu dFkuksaesal sdkS ul k@dkS ul sl ghgS a\ (A) Li ' kZj s [ kkdkx 3 dscj kcj vUr%[ k.Mft l dh<ky _ .kkRed gS a gS a A (B) Li ' kZj s [ kkvksaPA r FkkPB dschp U;w u dks.k tan 1 (C) Li ' kZj s [ kkPA r FkkPB r FkkmudhLi ' kZt 4 gS A 3 hokl scus f=kHkq t dk{ks=kQy 27 dscj kcj gS a A (D) AB dse/; fcUnqdhx-v{kl sU; w ur e nw j h8 gS a A (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) Just when the caterpillar thought the world was ending, he turned into a butterfly. RANK BOOSTER PROGRAM [FULL TEST - 4] Page # 9 SECTION - C [MATCH THE COLUMN TYPE] Match the entries in Column - I with the entries in Column- II. One or more entries in Column - I may match with one or more entries in Column - II. 1. (A) Column – I Column – II Let f be continuous and (P) 0 the function F is defined as x SECTION - C [l q esy u l q phi zd kj ] Lr EHk- I dhi zfo"Vh; ksdkLr EHk - II dhi zfo"Vh; ksadsl kFkl q esy u dhft ; sALr EHk- I es, d ; k, d l svf/kd i zfo"Vh; kaLr EHk- II ds , d ; kvf/kd i zfo"Vh; ksadsl kFkl q esfy r gksl dr hgS A 1. (A) Lr EHk &I Lr EHk&II ekuk f l r r ~gSr Fkk Qy u F (P) 0 bl i zd kj i fj Hkkf"kr gSfd t 2 F (x) = t · f (u )du dt 0 1 x F (x) = where f (1) = 3, then F'(1) + F''(1) has the value equal to (B) t gk¡f (1) = 3, r c F'(1) + F''(1) For each value of x a function (Q) 1 f (x) is defined as min {2x + 3, t t 2 · f (u )du dt 0 1 dk eku cj kcj gS A (B) x dsi zR; sd eku dsfy , , d Qy u bl i zd kj i fj Hkkf"kr gSfd ( x 4) , 3(6 – x)}. 3 min.{2x + 3, Maximum value of f (x) is (C) Lim x 1 ln x 1 ( x 1) tan x Exponent of 2 in the binomial coefficient 500C 212 is ( x 4) , 3(6 – x)} 3 r c f (x) dkvf/kdr e eku gksxkA (R) 2 (C) (D) (Q) 1 (S) 3 (D) Lim x 1 ln x f} i n xq . kka d 1 ( x 1) tan x 500C 212 es2 dk ?kkr ka d gksxk (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, ,dkxzrk ls gh fot; feyrh gSA :[email protected] (R) 2 (S) 3 RANK BOOSTER PROGRAM [FULL TEST - 4] 2. (A) Column – I Column – II The number of solution(s) (P) 1 of the equation z2 = 4z + | z |2 + (B) 16 | z |3 Page # 10 2. (A) Lr EHk &I Lr EHk&II l ehdj .k (P) 1 z2 = 4z + | z |2 + 16 | z |3 dsgy ksdhl a [ ; kgksxh is (where z = x + iy, x, y R, (t i2 = –1 and x 2) i2 = –1 r Fkkx 2) Let two non-collinear vectors (Q) 72 a and b inclined at an angle (B) gk¡z = x + iy, x, y R, ekuknksvl j s[kh; l fn' k (Q) 72 2 a r Fkk b dks.k ij 3 2 be such that | a | 3 and 3 | b | 4 . A point P moves so bl i zd kj >q d sgq , gSfd | a | 3 r Fkk | b | 4 ., d A fcUnqP that at any time t the position bl i zd kj xfr eku gSfd fdl h vector OP (where O is the origin) l e; t i j bl dk fLFkfr l fn' k OP is given as ¼ t gk¡ O ew y fcUnqgS½ OP = (et+e–t) a +(et – e–t) b . OP = (et+e–t) a +(et – e–t) b If the least distance of P from } kj k fn; k t kr k gS; fn P l sew y fcUnqdh origin is 2 a b where a, bN then find the value of (a+b). U; w ur e nw jh 2 a b gS t gk¡a, bN r c (a+b) dkeku Kkr dj ksA (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) Just when the caterpillar thought the world was ending, he turned into a butterfly. RANK BOOSTER PROGRAM [FULL TEST - 4] Page # 11 (C) Let a 3î ĵ k̂ , b 4î 2ˆj 4 k̂ (R) 288 (C) ekuk a 3î ĵ k̂ , b 4î 2ˆj 4 k̂ r Fkk c 2î 2ˆj gS A ; fn V1 l ekUr j and c 2î 2ˆj . If V1 is the volume of parallelopiped whose "kV~ Qy d dkvk; r u gSft l dsr hu three coterminous edges are la xkehfdukj sa b, b c, c a (R) 288 the vectors a b, b c, c a gSr Fkk V2 pr q "Qy d dk vk; r u gS and V2 is the volume of ft l dsr hu l xka ehfdukj s tetrahedron whose three a b, b c, c a gSr c (V1 + V2) coterminous edges are the vector a b, b c, c a . dkeku Kkr dj ksA Find the value of (V1 + V2). (D) (D) Let the equation of the plane (S) 11 containing the line x–y–z–4=0 = x + y + 2z – 4 and is parallel ekukj s[kkx–y–z–4=0 = x + y + 2z – 4 dksl (S) 11 ekfgr dj usoky sr Fkkl er y ksa2x + 3y + z = 1 to the line of intersection of the o x + 3y + 2z = 2 dhi zfr PNsnh planes 2x + 3y + z = 1 and j s[kkdsl ekUr j l er y dhl ehdj .k x + 3y + 2z = 2 be x + Ay + Bz + C = 0 gSr c x + Ay + Bz + C = 0. | A + B + C | Kkr dhft , A Find | A + B + C |. (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, ,dkxzrk ls gh fot; feyrh gSA :[email protected] RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 12 PHYSICS [PAPER - II] SECTION - A [INTEGER ANSWER TYPE] Q.1 to Q.8 are INTEGER ANSWER TYPE Questions. (The answer of each of the questions is 1 digits) 1. Particles of sand are sprinkled on to the surface of water in a beaker, filled to a depth SECTION - A [ fo' y s "k. kkRed i z'u i zd kj ] i z-1 l si z-8 r d fo' y s"k.kkRed i z'u gS A¼ i zR; sd i z'u dkmÙkj dsoy 1 va d ksesnhft 1. ; sA , d i k=kesat y dhl r g i j j sr dsd.kksdkfNM+ d ko fd; k of 45.45 mm to reach the bottom. The sand x; kgS ] xgj kbZr d i gq pusdsfy, At y Lr j 45.45 mm particles are spherical and have a diameter gS Aj sr dsd.kxksy h; gSr Fkk0.10 mm. O ; kl dsgS Ai k=k of 0.10 mm. The beaker is kept in a lift moving 1.2 m/s2. dsÅ/oZR oj .kl with an upward acceleration of 1.2 m/s2 . sxfr dj r hgq bZ, d fy ¶V esa Estimate the minimum time to reach the j [ kk gS A d.kks} kj k r y r d i gq pusdsfy , U; w ur e l e; bottom by the particles if viscosity of water d hx. kuk d hft , ] ; fn t y d h' ; kur k = 1.1 × 10– = 1.1 × 10–3 Nsm–2, density of water is 3 1000 kg/m3, density of sand is 2000 kg/m3 Nsm–2, t y dk ?kuRo 1000 kg/m3, j sr dk ?kuRo 2000 kg/m3 and g is 9.8 ms . (Express your answer in s) r Fkkg is 9.8 ms–2. (vki dkmÙkj s esa –2 2. O ; Dr dhft , ) The temperature T and density of an ideal diatomic gas obey the equation T(1 – ) = k, 2. r ki T r Fkk?kuRo dh, d f} i j ek.kq d vkn' kZxS l l ehdj .k where k is a constant, If V and V' are T(1 – ) = kdk i ky u respectively the volumes, then it is found ; fn V r FkkV' Øe' k%vk; r u gS ] r c ; g i k; kt kr kgSfd 15 that – V ' p 2 n when 32. Then, what p' V V ' V 32 dj r hgS ] t gk¡k , d fu; r ka d gs] 15 – gS ] p 2 n A r c n dk eku D; k gS \ p' is the value of n? (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 13 3. Four cylindrical rods of metal are welded as shown in Figure. The A R rod AB is tapped at R= R 2 one- third points. If R 3 R is the thermal D R= 3 resistance of the rod R3 R AB, the effe ct i v e C R = 6 R thermal resistance of 3 the network of rods B R between AB is . What is the value of 38 n n? 3. 3 pkj csy ukdkj NM+ ksadksfp=kkuq l kj osYMfd; kx; kgS ANM+ AB , d fr gkbZfcU nq v ksai j Vsij A R R= gS A ; fn R NM+AB dkÅ"eh; R 2 3 i zfr j ks/k gS ] r c AB dse/; R D R= 3 NM+ ksadsusVodZdki zHkkohÅ"eh; R 3 2 2 1 4. Inside a solid sphere of radius R and mass M, a spherical cavity of R R/2 R radius is made, such P 2 C C Q R that the surface of the cavity passes through the centre C1 of the sphere. C2 is the centre of the cavity. A particle of mass m is released from rest at a point P, a distance R from the surface of the sphere nearer to the cavity as shown in the Figure. The speed with which the particle strikes the point Q is given by u 1 = R i zfr j ks/k 38 n D; k gS \ 4. R 6 xksy sdsvUnj 1 2 pky l sVdj k, xkog u = R 2 f=kT; k nGM 3R 2 } kj knht kr hgS An dk eku Kkr dj ksA nGM . Find the value of n. 3R A parallel beam of monochromatic light falls on a thin biconvex lens with equal radius of curvature R and of refractive index 1.5. After two internal reflections, one at each face of the lens, the beam of light comes out of the lens and meets the optic axis at a distance R f=kT; kr FkkM nz O ; eku dsBksl R1= dhxksy h; xq fgdkbl i zd kj cuhgSfd xq fgdk dhl r g R/2 R P xksy s ds dsUnz C1 l s gksd j C C Q R xq t j r hgS AC2 xq fgdkdkdsUnz gS AfcUnqP l sfoj kekoLFkkl s , d m nzO ; eku dsd.kdksNksM+ kx; kgS ] xq fgdkdsl ehi xksy sdhl r g l sR nw j hi j fp=kkuq l kj ] d.kfcUnqQ l sft l 5. 5. gS An dkeku 3 C R 3 B , d , do.khZ ; i zd k' kdhl ekUr j che , d R oØr kf=kT; k , oa1.5 vi ofr Z r fxj r h gS A nksvkUr fj d i j kor Z uksads i ' pkr ~ ] , d yS l dhi zR;sd l r g i j ] che y S a l l sckgj vkr h a gSr Fkky S l dsdsUnzl s3 cm dhnw a j hi j i zd kf' kd v{ki j (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, :[email protected] RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 14 3 cm from the centre of the lens. The focal length of the lens is given by f = 3x cm. Find the value of x. 6. A 30 rpm record plate has a 6 kHz tone cut in the groove. The number of full waves recorded in a groove is of the order of 1.2 × 10x. What is the value of x? 7. A potential difference of 160 V is applied between the plates of a parallel plate capacitor. Midway between the plates, an e l e ct ron and a prot on are rel ease d simultaneously, such that electron is released from rest and proton is projected at right angles to the negative plates with an initial speed. If the electron and proton reach the positive and negative plates at the same instant of time respectively, then find the initial speed of the proton in the unit of 1 106 ms–1. 3 me [Take m 2000, Me = 9 × 10–31 kg and p e = 1.6 × 10–19 C] 8. A charged particle of mass m and charge q is shot along a horizontal rough plane with coefficient of friction . A uniform magnetic field is applied at right angles to the plane. If the charged particles enters the magnetic field region perpendicular to the uniform field with velocity v0, then the radius fo curvature of the path after time t 0 is givey by 8g 7mv0 , where n is an integer. What is the nqB value of n? r fey r hgS Ay S a l dhQksd l nw j hf = 3x cm } kj knht kr h gS A x dkeku Kkr dhft , & 6. , d 6 kHz l q j ksadh30 rpm fj dkMZIysV [ kka psl sdVhgS A [ kka psesadVhdq y iw . kZr j a xs1.2 × 10x dksfV dhgS Ax dk eku D; k gS \ 7. , d l ekUr j Iy sV l a /kkfj =k dhIy sVksadse/; 160 V dk foHkokUr j y xk; k x; k gS A Iy sVksadse/; e/; fcUnql s] , d bysDVªkW u r Fkk, d i zksVksu dksbl i zd kj , d l kFkNksM+ kx; k gSfd bysDVªkW u dksfoj kekoLFkkl sr Fkki zksVksu dks_ .kkRed Iy sV dhvksj y Ecor ~fdl hi zkj fEHkd osx l si z{ksfi r fd; k t kr k gS A ; fn by sDVªkW u r Fkk i zksVksu Øe' k%/kukRed r Fkk _ .kkRed Iy sVksai j l e; ds, d {k.ki j i gq ¡psr c i zksVksu dhi zkj fEHkd pky [ 1 106 ms–1 dsek=kd 3 esaKkr dhft , & me 2000, M =9×10–31 kg and e=1.6×10–19 C e mp yhft , ] 8. , d m nzO ; eku r Fkk q vkos'k dk ?k"kZ . k xq . kka d ds dkd.k [ kq j nj s{kS fr t r y i j nkxkt kr k gS A , d l e: i pq Ecdh; {kS =kr y dsy Ecor ~vkj ksfi r fd; kt kr kgS A; fn vkosf' kr d.kl e: i {kS =kdsy Ecor ~{ks=kesav0 osx l si zos'k dj r kgS ]rc t r 7mv0 nqB 0 8g l e; i ' pkr ~i FkdhoØr kf=kT; k } kj knht kr hgS ] t gk¡n , d i w . kkZ d gS A n dk eku Kkr dhft , \ (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 15 SECTION - B SECTION - B [ cgqoS d fYi d i z'u i zd kj [MULTIPLE OBJECTIVE TYPE] Q.1 to Q.10 has four choices (A), (B), (C), (D) out of which ONE OR MORE THAN ONE is correct i z-1 l si z-10 esapkj fodYi 1. ; k, d l svf/kd^^ l ghgS A 2. Which of the followin statements is/are false? (A) The magnitude of momentum of a heavy object is greater than that of a light object moving at the same speed (B) In a perfectly inelastic collision, all the initial kinetic energy of the colliding bodies is dissipated (C) The momentum of a system of colliding bodies may be conserved even though the total mechanical energy may not be (D) The velocity of the center of mass of a system is the system's net momentum divided by its total mass Two satellites S1 and S2 revolve round a planet in coplanar circular orbits in the same sense. Their periods of revolution are 1 hr and 8 hr respectively. The orbital radius of S1 is 104 km when S2 is closest to S1. Then, (A) the speed of S2 relative to S1 is × 104 km/hr. (B) the angular speed of S1 as actually observed by an astronaut in S2 is rad / hr . 6 (C) the angular speed of S2 as actually 7 rad / hr. observed by an astronaut in S1 is 4 (D) the speed of S2 as actually observed by an astronaut in S1, when S1 and S2 are farthest from each other is 3 × 104 km/hr. 1. ] (A), (B), (C), (D) gS ] ft uessal s^^, d fuEu esal sdkS ul k@dkS ul sdFku vl R; gS \ (A) l eku pky i j , d H kkj hoLr qdsl a osx dki fj ek.kgYdh oLr ql svf/kd gksxk (B) , d i w . kZ r %vi zR; kLFk VDdj esa ] VDdj dj usoky h oLr q v ksadhi w j hi zkj fEHkd xfr t Åt kZmRl ft Z r gkst kr hgS A (C) VDdj dj usoky hoLr q v ksadsfudk; dkl a osx l a j f{kr gksl dr kgS ] t cfd i w . kZ; ka f=kd Åt kZdkl a j {k.kughaHkhgksA (D) , d fudk; dsnz O ; eku dsUnzdhxfr fudk; dsdq y la osx r Fkkbl dsdq y nzO ; eku dkvuq i kr gS 2. nksS1 r FkkS2 mi xzg , d vFkZesa, d ghxzg dsi fj r %xksy h; d{kkesa?kw e j gsgS Abuds?kw . kZ u dsvkor Z d ky Øe' k%1 hr r Fkk8 hr gS At c S2, S1 dsfudVr e gS ] r c S1 dhd{kh; f=kT; k104 km gS Ar c] (A) S2 dhS1 dsl ki s {kpky × 104 km/hr gS A (B) mi xz g S2 esal sS1 dhvUr fj {k ; k=kh} kj k okLr fod i zsf{kr dks.kh; pky rad / hr gS A 6 (C) mi xz g S1 esal sS2 dhvUr fj {k ; k=kh} kj k okLr fod 7 rad / hr gS i zsf{kr dks.kh; pky A 4 (D) S1 es al sS2 dhokLr fod i zsf{kr pky ] nkc S1 r FkkS2 , d nw l j sl svf/kdr e nw j hgS3 × 104 km/hr gS A (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, :[email protected] RANK BOOSTER TEST SERIES_FULL TEST - 4 3. 4. A wooden plank OP of length 1m and uniform cross - section 's' is hinged at one end to the bottom of a tank. The tank is filled with water up to a height h m. The specific gravity s of the plank is 0.5. In the equilibrium position, the plank makes angle with the vertical as shown in Figure. Then, if = 45º, (A) the value of P h is 0.5 m. (B) horizontal component of reaction at O is zero. (C ) ot he r t h i n g s remaining the O same, centre of buoyancy would get shifted if s is altered. (D) l ocati on of centre of buoyancy i s s proportional to . A conducting shell, having charge 15mC and radius a is surrounded by another concentric conducting shell of charge –15 mC and inner radius 2a and outer radius 3a as shown in the Figure. If the inner shell is grounded, then, (A) the charge on –Q inner shell is 6 mC. +Q = 15 mC (B) the charge on outer surface of a outer shell is zero (C) the charge on inner shell is zero 3a 2a (D) the charge on inner surface of outer shell is – 6 mC Page # 16 3. , d 1m yEckbZr Fkkl e: i dkV 's' dkVS d dsr y ds, d a fl j sl sVa xkgq v ky dM+ hdkCykW d OP gS AVS a d t y l shm Å¡pkbZr d Hkj k gS A xq Vdsdk fof' k"V xq : Ro s, 0.5 gS A fp=kkuq l kj l kE; koLFkkdhfLFkfr esaml dkÅ/ok/Zkj dsl kFk dks . kcukr k gS A r c ; fn = 45º gS ] (A) h dk eku 0.5 m gS P (B) O i j i z fr fØ; kdk {kS fr t ?kVd ' kw U; gS A (C) ; fn s cny fy ; k t k, r ksckdh j kf' k; ksadsl eku j gr s gq, mRi y kou d k O dsUnz foLFkkfi r gks t kr kgS A (D) mR i y kou dsdsUnzdhfLFkfr s 4. dsl ekuq i kr hgS A , d 15mC vkos'k r Fkk a f=kT; k dk pky d dks'k vkos'k –15 mC r FkkvkU r fj d f=kT; k2a r Fkkckg~ ; f=kT; k3a ds la d sfUnz; pky d dks'k l si fj c) gS A ; fn vkUr fj d dks'k Hkw &l Ei fdZ r gS ]rc –Q (A) vkU r fj d dks'ki j +Q = 15 mC vkos'k6mC gS A a (B) ckg~ ; dks'kdhckg~ ; l r g i j vkos'k' kw U; gS A 3a 2a (C) vkU r fj d dks'k i j vkos'k' kw U; gS (D ) ckg~ ; d ks' k d h v kUr fj d l r g i j – 6 mC vkos ' kgS A (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 17 5. Two charged particles M and N enter a space of a uniform magnetic field with velocities perpendicular to the magnetic field. The paths are as shown in Figure below. Momentum of the chargd particles are p1 and p2 respectively, then (A) the charge of M is p p > q q greater N M than that M N of N if p1 = p2 (B) the momentum of N is greater than that of M (C) the specific charge of M is greater than that of N, if v is same (D) the speed of M is less than that of N 5. p1 = p2 gSr ks Mij Mark the correct statements(s): (A) Direction of wave propagation is along the normal to wavefront (B) For a point source of light, the shape of wavefronts can be considered to be plane at very large distance from the source (C) A point source of light is placed at the focus of a thin spherical lens, then the shape of the wavefront for emerged light can be plane (D) The shape of the wavefront for the light incident on a thin spherical lens is plane, the shape of the wavefront corresponding to emergent light would be always spherical vkos'kN p p > l svf/kd gS A q q N M (B) N dk M N la osx M l s vf/kd gS A (C) M dkfof' k"V vkos ' kN l svf/kd gS ] ; fn v l eku gS (D) M 6. 6. , d l e: i pq Ecdh; {ks=k esapq Ecdh; {ks=k dsy Ecor ~nks vkosf' kr d.kM r FkkN i zos'kdj r sgS Ai Fkfp=kkuq l kj uhps fn; sx; sgS Avkosf' kr d.kksadsl a osx Øe' k%p1 r Fkkp2 gS ]rc (A) ; fn dhpky N l sde gS l ghdFku@dFkuksadksfpfUgr dhft , % (A) r j a x dsxeu dhfn' kkr j a xnS /; ZdsvfHkyEc dsvuq fn' k gS A (B) i z d k' k, d fcUnqL=kksr dsfy , ] r j a xkxzdhvkdf̀r L=kksr l scgq r vf/kd nw j hi j l er y ekuht kr hgS A (C) , d i z d k' k dk fcUnqL=kksr , d i r y sxksy h; y S a l ds Qksd l i j j [ kk x; k gS ] r c fuxZ r i zd k' k dsr j a xkxzdh vkdf̀r l er y gksl dr hgS (D) i r y sxks y h; y S l i j vki fr r i zd k' k dsr j a xkxzdh vkdf̀r l er y gS ] fuxZ r fdj .kdsvuq : i rja xkxzdhvkdf̀r ges'skkxksy h; gksxh (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, :[email protected] RANK BOOSTER TEST SERIES_FULL TEST - 4 7. In the circuit given below, if R1 = 240 and R2 = 120 respectively, L is a lamp of 300 W then Page # 18 7. fn; sx; sfuEu i fj i Fk esa ] ; fn Øe' k%R1 = 240 r Fkk R2 = 120 gS ( L 300 W dh, d y S Ei gS ] rc A A 120V 60 120V 60 R2 R2 300W L 300W L (A) R1 es avi O ; ; ' kfDr 60 W gS A (B) R2 es avi O ; ; ' kfDr 120 W gS A (C) i fj i Fkdki z Hkkohi zfr j ks/k50gS A (D) vehVj A 6 A i <+ r k gS A (A) power dissipated in R1 is 60 W (B) power dissipated in R2 is 120 W (C) effective resistance of the circuit is 50 (D) the ammeter A reads 6 A 8. R1 R1 A cylinder has 40.0 cm radius and is 50.0 cm deep. It is filled with air at 20ºC and 1.00 atm (Figure a). A 20.0 kg piston is now slowly lowered into the cylinder compressing the air 8. , d csy u 40.0 cm f=kT; kr Fkk50.0 cm xgj kgS A; g 20ºC r Fkk 1.00 atm (fp=ka) i j ok; ql sHkj kgS A vc , d 20.0 kg dkfi LVu /khjs&/khjsok; qdkscsy u esal EihfM+ r trapped inside (Figure b). Finally, a 75.0 kg dj r kgq v kuhpsvkr kgS Av{kesa ] bl dsckn , d 75.0 kg man stands on the piston further compressing dk, d vknehfi LVu i j ok; qdksl a i hfMr dj r sgq , [ kM+ k the air, without any appreciable change in gksrkgS ] fcukfdl hr ki dsi ; kZ Ir i fj or Z u dsAok; q e.Myh; temperature. The atmospheric pressure p0 = nkc p0 = 1 × 105 N/m2 gS ] rc & 1 × 10 N/m . Then, 5 2 (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 19 50cm hi Fig.a 50cm Fig.b Fig.c Fig.a (A) when the man steps on the piston, it moves down by 0.011m. (B) the temperature to which the gas be heated so as to raise the piston and the man back to hi is 24.2ºC. (C) when the man stands on the piston the process involved is isothermal. (D) when the gas is heated, the process involved is isobaric. 9. A particle of charge 32 nC is in a uniform electric field. In addition to the electric force, another force acts on the particle so that when it is released from a point O at rest, it moves against the electric field. The kinetic energy of the particle after it has moved a distance of 8 cm from O found to be 4.8 × 10–5 J at point A and the additional force has done a work of 6.4 × 10–5 J. Point out correct statement/s from the following: (A) The work done by the electric field is 16J. (B) The potential at point O is less than that at A by 500 V. (C) The magnitude of electric field is 6.25 × 103 NC–1 (D) The point O is at higher potential than the point A by 500 V. hi Fig.b Fig.c t c vknehfi LVu i j p<+ r k gS ] ; g 0.011m uhps t kr kgS A (B) og r ki ft l r d xS l dksxeZdj usi j fi LVu r Fkk vknehhi r c i q u%i gq ¡p t k, 24.2ºC gS A (C) t c vknehfi LVu ; g p<+ r k gS ] i zØe l er ki h; gS A (D) t c xS l xeZdht kr hgS ] i zØe l enkch; gS A (A) 9. , d 32 nC vkos'k dk d.k , d l e: i fo| q r {kS =k esagS A fo| q r cy dsvfr fj Dr ] , d vU; cy bl i zd kj gSfd t c bl sfcUnqO l sfoj kekoLFkkl sNksM+ kt kr kgS ] ; g fo| q r {ks=k dsfoi j hr xfr dj r k gS A bl dsO l s8 cm dhnw j hr ; d j us d s i ' pkr ~d .k d h xfr t Åt kZfcUnq A i j 4.8 × 10–5 J gSr Fkkvfr fj Dr cy 6.4 × 10–5 J dk; Z dkpq d k gS A fuEu esal sl ghdFku pq fu, & (A) fo| (B) fcUnqO i j foHko A i j 500 V l sde gS A (C) fo| (D) q r {ks=k} kj kfd; kx; kdk; Z16J gS A q r {ks=kdki fj ek.k6.25 × 103 NC–1 gS A fcUnqO, A i j 500 V l smPpr j l sfoHko i j gS A (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, :[email protected] RANK BOOSTER TEST SERIES_FULL TEST - 4 10. A plane spiral made of stiff smooth wire is rotated with a constant angular velocity in a horizontal plane about the fixed vertical axis O. A small sleeve M slides along that spiral without friction. Find its velocity v' relative to the spiral as a function of the distance form the rotation axis O if the initial velocity of the sleeve is equal to v'0. (A) v '20 22 2 0 Page # 20 10. , d n`<+fpdusr kj dkl fi Z y r y fu; r dks.kh; osx l s fLFkj Å/okZ /kj v{kO dsi fj r %{kS fr t r y esa?kw . kZ u dj j gk gS A, d NksVkvkoj .kM l fi Z y dsvuq fn' k?k"kZ . kl sfQl y r k gS Abl dkosx v' ?kw . kZ u v{kO l snw j hdsQy u ds: i esa l fi Z y dsl ki s{kKkr dhft , ] ; fn vkoj .kdki zkj fEHkd osx v'0 gS A V' (A) v '20 22 (B) v ' (C) v '20 22 (D) v '20 22 O 2 0 [MATCH THE COLUMN TYPE] Match the entries in Column - I with the entries in Column- II. One or more entries in Column - I may match with one or more entries in Column - II. A charged spherical conductor A of radius rA is surrounded by a hollow conductor B of radius rB such q B that r B > r A as A shown in Figure. A r is given a charge q qA and that of B, qB. VA and VB are r the potential of A and B respectively. Now match the items in Column I with those in Column II for the conditions indicated in Column I. B A A B 2 2 (B) v ' M 2 0 O M 2 2 (C) v' (D) v '20 2 2 SECTION - C 1. V' 2 2 SECTION - C [l q esy u l q phi zd kj ] Lr EHk- I dhi zfo"Vh; ksdkLr EHk - II dhi zfo"Vh; ksadsl kFkl q esy u dhft ; sALr EHk- I es, d ; k, d l svf/kd i zfo"Vh; kaLr EHk- II ds , d ; kvf/kd i zfo"Vh; ksadsl kFkl q esfy r gksl dr hgS A 1. rA f=kT; kdkvkos f' kr pky d [ kks[ky spky d B l sbl i zd kj f?kj kgSfd rB > rA xksy kA , d rB f=kT; kds qB B A tS l kfd fp=kesan' kkZ ;k r q gS A A i j vkos'k qA r Fkk B i j qB fn; kgS AA r Fkk r B dsfoH ko Øe' k% VA r Fkk VB gS A vc Lr EHk I dh Lr EHk l si zfr f"B; ksadk fey ku dhft , ] t ksLr EHk II dh fLFkfr ; ksadksn' kkZ r hgS% A A B (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 21 Column I (A) qA = + m C and qB = +n C and m < n Column II (P) potential difference depends on qA only (Q) VA > VB (B) qA = – m C and qB = – n C and m > n (C) qA = – m C and (R) VA < VB qB = – n C and m < n and A and B are connected by a conducting wire (D) qA = – m C and (S) charge qB = – n C and m > n flows from A to B and A and B are connected by a conductiing wire (T) qA = 0 2. Match the entries of Column I with that of column II Column I Column II (A) For a particle moving in (P) The acceleration a circle may be perpendicular to its velocity (B) For a particle moving in (Q) The acceleration a straight line velocity may be in the direction of (C) for a particle undergoing (R) The acceleration projecticle motion with may be at some angle angle of projection : 0 with the 2 0 velocity 2 (D) For a particle is moving (S) The acceleration in space may be opposite to its velocity Column I (A) qA = + m C r Fkk qB = +n C r Fkkm < n (B) qA = – m C r Fkk qB = – n C r Fkkm > n (C) qA = – m C r Fkk qB = – n C r Fkkm < n r Fkk A r Fkk B pky d r kj Column II (P) foH kokUrj dsoy qA i j fuH kZ j dj r kgS (Q) VA > VB (R) VA < VB l st q M+ kgS (D) qA = – m C r Fkk qB = – n C r Fkkm > n r Fkk A r Fkk B pky d r kj (S) vkos ' kA l sB dhvksj cgr kgS l st q M+ kgS (T) qA = 0 Lr EHkI dsl kFk Lr EHkII dksfey kb, & Lr EHkI Lr EHk II (A) , d oR̀ r esaxfr ' khy (P) R oj .kbl dsosx ds , d d.k dsfy , y Ecor gksl dr kgS A (B) , d l h/khj s [ kkesaxfr ' khy (Q) R oj .kosx dh , d d.k dsfy , fn' kkesagksl dr kgS A (C) i z {ksi.kdks.k l s (R) R oj .kosx dsl kFk 2. 0 2 i z{ksI; xfr esa , d d.k dsfy , (D) d.kvU r fj {kesa xfr ' khy gksusdsfy , : 0 2 dks.ki j gksl dr kgS A (S) R oj .kbl dsosx dh foi j hr gksl dr kgS A (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, :[email protected] RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 22 CHEMISTRY [PAPER - 1] SECTION - A [INTEGER ANSWER TYPE] SECTION - A [ fo' y s "k. kkRed i z'u i zd kj ] Q.1 to Q.8 are INTEGER ANSWER TYPE Questions. (The answer of each of the questions is 1 digits) i z-1 l si z-8 r d fo' y s"k.kkRed i z'u gS A¼ i zR; sd i z'u dkmÙkj dsoy 1. If the percentage of water of crystallization in MgSO4. xH2O is 13%. What is the value of x? 2. The graph of compressibility factor (Z) vs. P for one mole of a real gas is shown in following diagram. The graph is plotted at constant temperature 273 K. If the slope of dZ is graph at very hi gh pre ssure dP 1 va d ksesnhft 1. ; fn MgSO4. xH2O esafØLVy hdj .k dst y dk i zfr ' kr 13% gSr ksx dk eku D; k gS ? 2. , d eksy okLr fod xS l dsfy , l Ei hM~ ; r k xq . kka d (Z) fo: ) P dkvkj s[kuhpsfp=kesafn[ kk; kx; kgS AxzkQ fu; r r ki 273 K i j cuk; k x; k gS A ; fn cgq r mPp nkc dZ ij dP K–1 mole fn; k gq v k gS %NA = 6 × 1023 r FkkR = 22.4 and R = L atm 273 K–1 mole 22.4 L atm 273 –1 –1 dZ 1 atm1 dP 2.8 Z dZ 1 atm1 dP 2.8 Z 1 xzkQ dh<ky dk eku 2.8 atm–1 gS ] r ks , d eksy okLr fod xS l v.kq v ksadkvk; r u Kkr dj ksA(1L/ mole es )a 1 atm–1, then calculate volume of one 2.8 mole of real gas molecules (in 1L/mole) Given : NA = 6 × 1023 ; sA P P 3. Count the total number at – O bonds which are having equal length in HSO–4 . 3. – i j O ca /kksdhdq y la [ ; kKkr dj kst ksHSO–4 esacj kcj y EckbZj [ kr sgS \ (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 23 4. 5. How many geometrical isomers are possible for given compound. CH = N – OH CH3 – CH = C CH = N – OH 4. Total no. of orbital taking part in the 5. CH = N – OH CH3 – CH = C CH = N – OH d j .kesaHkkx y susoky sd{kdksadhdq yla [;k MnO–4 dsl a gS \ hybridised of MnO–4 . 6. 6. fn; sx; s; kS fxdksdsdq y fdr usT; kfer h; l eko; oh l EHko gS A CH3 – CH – CH = CH – CH – CH3 OH OH OH Stereoisomers for given compound will be - 7. In Nido Borane How many hydrogen atom in Formula (taking n = 1). 8. When one litre of a saturated solution of PbCl2 (mol. wt. = 278) is evaporated, the residue is found to weight 2.78 g. If Ksp of PbCl2 is represented as y × 10–6 then find the value of y. CH3 – CH = CH – CH –CH = CH – CH3 fn; sx; s; kS fxd dsdq y fdr usf=kfoe l eko; ohl EHko gksxsA 7. uk; Mkscksjsu esal w =k esafdr usgkbMªkst u i j ek.kqgksrsgS A (y s r sgSn = 1). 8. PbCl2 (mol. wt. = 278) ds, d yhVj l kUrfj r foy; u dkokf"i r fd; kx; kr ksvo' ks"kdkHkkx 2.78 g i k; kx; k gS A; fn PbCl2 dkKsp, y × 10–6 } kj kfu: fi r gksrkgS r ksy dk eku Kkr dj ks\ SECTION - B SECTION - B [MULTIPLE OBJECTIVE TYPE] [ cgqoS d fYi d Q.1 to Q.10 has four choices (A), (B), (C), (D) i z-1 l si z-10 esapkj fodYi out of which ONE OR MORE THAN ONE is correct ; k, d l svf/kd^^ l ghgS A 1. For the reacti on A i z'u i zd kj ] (A), (B), (C), (D) gS ] ft uessal s^^, d B, the rate l aw d[A] 1/2 expression is d t = k [A] . If initial concentration of [A] is [A]0, then 1. d[A] vfHkfØ; kA B dsfy , ] nj fu; e O ;a t d dt =k [A]1/2 gS a A ; fn [A] dhi zkj fEHkd l kUnzrk[A]0 gS a ] r c& (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, :[email protected] RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 24 (A) The integerated rate expression is (A) 2 1/ 2 1/ 2 k = (A 0 A ) t l ekdy u nj O ;a t d k= (B) (B) The graph of 2[ A ]10/ 2 (D) vfH kfØ; kds75% i w . kZgksusdsfy , [ A]0 t3/ 4 = k 2. The correct order of increasing X – O – X bond angle is (X = H, F or Cl) : (A) H2O > Cl2O > F2O (B) Cl2O > H2O > F2O (C) F2O > Cl2O > H2O (D) F2O > H2O > Cl2O 3. Which of the following molecules are chiral ? OH HO (B) [ A]0 k gS a A X - O - X ca /kdks.kdkc<r kgq v kØe gS(X = H, F or Cl) : (A) H2O > Cl2O > F2O (B) Cl2O > H2O > F2O (C) F2O > Cl2O > H2O (D) F2O > H2O > Cl2O 3. fuEu esal sdkS ul kv.kqfdj S y gS? CH3 OH H (A) HO fy ; kx; kl e; 2. CH3 OH gksxkA K t (C) v) Zvk; qdky 1 / 2 = 2[ A ]1 / 2 0 K (D) The time taken for 75% completion of (A) A Vs t dk xzkQ A Vs t will be (C) The half life period t1 / 2 = reaction t 3 / 4 = 2 1/ 2 (A 0 A1 / 2 ) gS a A t H CH3 (B) OH HO H HO H CH3 (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 25 OH (C) OH CH3 (D) CH2 (C) OH 4. 5. 6. 7. CH3 (D) CH2 OH Select correct statement about hydrolysis of BCl3 and NCl3 (A) NCl3 is hydroysed and gives HOCl but BCl3 is not hydrolysed. (B) Both NCl3 and BCl3 on hydrolysis gives HCl (C) NCl3 on hydrolysis gives HOCl but BCl3 gives HCl. (D) Both NCl3 and BCl3 on hydrolysis gives HOCl. Which statement/s is/are correct (A) A solution is prepared by addition of excess of AgNO3 solution in KI solution. The charge likely to develop on colloidal particle is positive. (B) The effects of pressure on physical adsorption is high if temperature is low. (C) Ultracentrifugation process is used for preparation of lyophobic colloids. (D) Gold number is the index for extent of gold plating done. Which of the following species is (are) isostructural with XeF4 ? (A) ICl4– (B) I5– (C) BrF4– (D) XeO 4 Which of the following has been arranged in order of decreasing dipole moment ? 4. BCl3 r FkkNCl3 dst y h; dj .kdsfy , l ghdFku gS\ (A) NCl3 t y h; Ñr gks r k gSvkS j HOCl nsrk gSy sfdu BCl3 t y h; Ñr ughgks r kgS (B) NCl3 r FkkBCl3 nks uksat y h; Ñr gksd j HCl nsrsgS (C) NCl3 t y h; Ñr gks d j HOCl nsrk gSt cfd BCl3, HCl ns r kgS A (D) nks uksaNCl3 r FkkBCl3 t yh; Ñr gksd j HOCl nsrsgS 5. dkS ul kdFku l R; gS a & dsvkf/kD; dsl kFk KI foy ; u esavkosf' kr dksy kbMhd.kksai j /kukos'kgksrkgS a A (A) AgNO3 (B) H kkS fr d vf/k' kks"k.ki j nkc dki zHkko mPp gksxk] ; fn r ki fuEu gS A (C) vYVªkl sfUVªQ; w t u i zØe nzoj ks/khdksy kbMhdkscukusesa mi ; ksx gksrkgS a A (D) Lo.kZl 6. 7. a [ ; k] Lo.kZIy sfVa x dsi zl kj dsfy , bUMsDl gS A fuEufy f[ kr esal sfdl Li h'kht dhl a j pukXeF4 dsl eku gS (A) ICl4– (B) I5– (C) BrF4– (D) XeO 4 fuEufy f[ kr dksmudsf} /kzq o vk/kw . kZds?kVr sgq ; sØe esa O ; ofLFkr dhft , ? (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, :[email protected] RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 26 (A) CH3Cl > CH3F > CH3Br > CH3I (B) CH3F > CH3Cl > CH3Br > CH3I (C) CH3Cl > CH3Br > CH3I > CH3F (D) CH3F > CH3Cl > CH3I > CH3Br Products Products are: (A) Ph – CH2–I (C) Ph – I 9. (A) (B) (C) (D) 10. HI O — CH2 8. (A) CH3Cl > CH3F > CH3Br > CH3I (B) CH3F > CH3Cl > CH3Br > CH3I (C) CH3Cl > CH3Br > CH3I > CH3F (D) CH3F > CH3Cl > CH3I > CH3Br HI O — CH2 8. mRikn gS: (B) Ph – CH2–OH (D) Ph – OH Pick out the incorrect statement among the following Change i n Gibb's function at constant temperature and pressure in a process envolving no non PV work is equal to qrev – qirr For a reaction with S 0 is positive, as temperature is increased, Keq for the reaction increases necessarily Exothermic reactions have lesser tendency to g o i n forw ard di re ct i on at hi gher temperature Decrease in Gibb's function at constant temperature and pressure is equal to non PV work done by system in spontaneous process Correct statement(s) about fol l owi ng compounds 9. (A) (B) (C) (D) 10. (A) Ph – CH2–I (B) Ph – CH2–OH (C) Ph – I (D) Ph – OH fuEufy f[ kr esavl R; dFku dkpq uko dj ks fxC l Qyu dkfu; r r ki o nkc i j i fj or Z u t ksdksbZukW u PV dk; Zughans r k gS ] qrev – qirr dsl eku gS a A fdl hvfHkfØ; kdsfy, S /kukRed gS at S l s&2 r ki c<k; k t kr kgS aKeq dkeku vfHkfØ; kesavko' ; d : i l sc<r kgS A a Å"ek{ksihvfHkfØ; kdsfy , mPp r ki i j vkxst kusdhi zof̀Ùk de gksrhgS a A Lor %i zfØ; kesafxCl Qy u esal eku r ki nkc i j dehr a =k } kj k non PV dsdk; Zcj kcj gksrkgS a A fn; sx, ; kS fxdksdsckj sesal ghdFku gS a A OH OH OH OH HO OH H H (P) (Q) OH COOH COOH HO (P) mRikn H OH (Q) OH OH H OH COOH COOH (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.) RANK BOOSTER TEST SERIES_FULL TEST - 4 Page # 27 HO HO OH (R) (R) (A) Compound (P) have cos (A) ; kS fxd (P) l fEer r y gS A (B) ; kS fxd (P) (Q) vkS j (R) eht ksgS A (C) ; kS fxd (R) ckg~ ; i zfr dkj dsdkj.ki zd k'kh; fuf"Ø; gS A (D) ; kS fxd (Q) vkS j (R) - cU/kdspkj ksavksj ?kw e l dr s gS ay sfdu f=kohe l eko; or kesaoghgksrkgS A (B) Compound (P) (Q) & (R) are meso (C) Compound (R) is optically inactive due to external compensation (D) Compound (Q) and (R) can rotate along -bond but stereochemistry will remain same SECTION - C [l q esy u l q phi zd kj ] SECTION - C [MATCH THE COLUMN TYPE] Match the entries in Column - I with the entries in Column- II. One or more entries in Column - I may match with one or more entries in Column - II. 1. Match the column Column–I (A) Magenetic moment in a paramagnetic substance (B) Magnetic moment in a ferromagnetic (C) Magnetic moment in a antiferromagnetic (D) Magnetic moment in a ferrimagnetic Column–II (P) (S) Lr EHk- I dhi zfo"Vh; ksdkLr EHk - II dhi zfo"Vh; ksadsl kFkl q esy u dhft ; sALr EHk- I es, d ; k, d l svf/kd i zfo"Vh; kaLr EHk- II ds , d ; kvf/kd i zfo"Vh; ksadsl kFkl q esfy r gksl dr hgS A 1. fey ku dhft , & Lr a Hk–I (A) vuq pq Ecdh; i nkFkZesapq Ecdh; vk?kw . kZ (B) y kS gpq Ecdh; i nkFkZesapq Ecdh; vk?kw . kZ (C) i z fr y kS g pq Ecdh; i nkFkZesapq Ecdh; vk?kw . kZ (D) y ?kqy kS g pq Ecdh; i nkFkZesapq Ecdh; vk?kw . kZ Lr a Hk–II (P) (Q) (R) OH (Q) (R) (S) (SPACE FOR ROUGH WORK) : 0744-2209671, 08003899588 | url : www.motioniitjee.com, :[email protected] RANK BOOSTER TEST SERIES_FULL TEST - 4 2. Match the column Column-I O O S 2. Match the column Column-I O O OH SH – CH – NH2 (B) OH SH – CH – NH2 OH CH=CH–COOH OH CH=CH–COOH (C) (C) (D) S (A) (A) (B) Page # 28 CH3 – CH – CH2 – OH Column-II (P) p – d Resonance (Q) p – p Resonance (R) O/P Director (S) – p Resonance (T) M/P Director (D) CH3 – CH – CH2 – OH Column-II (P) p – d vuq ukn (Q) p – p vuq ukn (R) O/P fn' kk (S) – p vuq ukn (T) M/P fn' kk (SPACE FOR ROUGH WORK) Corporate Head Office : Motion Education Pvt. Ltd., 394 - Rajeev Gandhi Nagar, Kota-5 (Raj.)
© Copyright 2026 Paperzz