Çankaya University Department of Mathematics 2016 - 2017 Fall Semester MATH 155 - Calculus for Engineering I Final Examination 1) Evaluate the following limits if they exist. a)(7 pts) lim √ x→0 tan(3x) √ x sin(2 x) b)(8 pts) ex − 1 − x − lim x→0 x3 + x4 x2 2 2) a)(9 pts) Find the derivative of the function: y = f (x) = (x + ex )ln x b)(6 pts) Find the slope of the tangent line to the curve x8 + 4x2 y 2 + y 8 = 6 at the point (1, 1). 3) Evaluate the integrals: a)(7 pts) Z (x3 + 6x2 )7 (x2 + 4x)dx b)(8 pts) Z 2 1 3e3x + 2 dx e3x + 2x 4) a)(10 pts) Find the area between the curve y = x2 − 5x + 4 and the line y = 18. b)(10 pts) Evaluate the integral Z (3x + 1)e−2x dx 5) Evaluate the integrals. a)(10 pts) Z 2π sin3 x cos12 x dx π 2 b)(10 pts) Z dx √ 7 + x2 6) a)(9 pts) Evaluate the integral Z 4x2 + 2x − 2 dx (x2 + 1)(2x − 3) b)(6 pts) Evaluate the integral if exists Z ∞ e−2x dx 0 Answers 1) a) Using the change of variable u = lim u→0 √ x we obtain: tan(3u2 ) u sin(2u) Now multiply and divide by 3u and rearrange to obtain: = lim u→0 tan(3u2 ) 3u · 2 3u sin(2u) Similarly, multiply and divide by 2 and rearrange: = lim u→0 = 3 tan(3u2 ) 2u · · 2 3u2 sin(2u) 3 3 ·1·1= 2 2 b)This limit is in the form ex − 1 − x − lim x→0 x3 + x 4 0 , so using L’Hôpital’s rule we obtain: 0 x2 2 = lim ex − 1 − x 3x2 + 4x3 = lim ex − 1 6x + 12x2 = lim ex 6 + 24x x→0 x→0 x→0 At this point, the limit is NOT in the form Just insert x = 0 to obtain: = 1 6 0 , so we can NOT use L’Hôpital. 0 2) a) ln y = ln x ln(x + ex ) (ln y) 0 1 + ex 1 x ln(x + e ) + = ln x x x + ex ln(x + ex ) 1 + ex y0 = + ln x y x x + ex ln(x + ex ) 1 + ex 0 x ln x y = (x + e ) + ln x x x + ex b) Using implicit differentiation we obtain: 8x7 + 8xy 2 + 8x2 yy 0 + 8y 7 y 0 = 0 y0 = −x7 − xy 2 x2 y + y 7 At (1, 1) the slope is: y0 = −2 = −1 2 3) a) The substitution u = x3 + 6x2 gives du = (3x2 + 12x) dx 1 du = (x2 + 4x) dx 3 Rewriting the integral in terms of u, we obtain: Z 1 (x + 6x ) (x + 4x) dx = 3 3 2 7 2 Z u7 du = u8 +c 24 = (x3 + 6x2 )8 +c 24 b) Use the substitution u = e3x + 2x du = (3e3x + 2) dx ⇒ The new integral limits are: x=1 ⇒ u = e3 + 2 x=2 ⇒ u = e6 + 4 Rewriting the integral in terms of u, we obtain: Z 1 2 3e3x + 2 dx = e3x + 2x Z e6 +4 e3 +2 du u e6 +4 = ln |u| 3 e +2 = ln(e6 + 4) − ln(e3 + 2) = ln e6 + 4 e3 + 2 4) a) y 20 y = 18 16 12 y = x2 − 5x + 4 8 4 x −2 −1 1 2 3 4 5 −4 x2 − 5x + 4 = 18 x2 − 5x − 14 = 0 (x − 7)(x + 2) = 0 ⇒ x = 7, x = −2 The area is: Z 7 A = 18 − (x2 − 5x + 4) dx 14 + 5x − x2 dx −2 Z 7 = −2 7 5 2 x3 = 14x + x − 2 3 −2 245 343 8 = 98 + − − −28 + 10 + 2 3 3 = 243 2 6 7 b) We have to use integration by parts. u = 3x + 1 ⇒ dv = e−2x dx ⇒ Z (3x + 1)e −2x du = 3 dx e−2x −2 v = e−2x dx = (3x + 1) − −2 Z e−2x 3 dx −2 (3x + 1) e−2x 3 = − + 2 2 Z 5) a) e−2x dx = − 3 (3x + 1) e−2x − e−2x + c 2 4 = − (6x + 5) e−2x +c 4 2π 3 Z 2π Z 12 sin2 x cos12 x sin x dx sin x cos x dx = π 2 π 2 2π Z (1 − cos2 x) cos12 x sin x dx = π 2 Using the substitution: u = cos x, du = − sin x dx Z 1 −(1 − u2 )u12 du = 0 Z = 1 (u14 − u12 ) du 0 u15 u13 = − 15 13 = − 2 195 1 0 b) We need the trigonometric substitution √ √ x = 7 tan θ, dx = 7 sec2 θ dθ Z Z √ dx 7 sec2 θ dθ √ √ = 7 + x2 7 + 7 tan2 θ Z sec2 θ dθ √ 1 + tan2 θ Z sec2 θ dθ √ sec2 θ = = Z = sec θ dθ = ln | sec θ + tan θ| + c x x + √ +c = ln sec arctan √ 7 7 OR: r x2 x = ln 1 + + √ +c 7 7 3 √ √ = ln 7 + x2 + x − ln 7 + c OR: √ = ln 7 + x2 + x + k 3 3 6) a)Using partial fractions expansion, we find: 4x2 + 2x − 2 Ax + B C = 2 + 2 (x + 1)(2x − 3) x +1 (2x − 3) 4x2 + 2x − 2 = (Ax + B)(2x − 3) + C(x2 + 1) 4x2 + 2x − 2 = (2A + C)x2 + (−3A + 2B)x + (−3B + C) 2A + C = 4 ⇒ −3A + 2B = 2 ⇒ A= 22 40 6 , B= , C= 13 13 13 −3B + C = −2 Z 4x2 + 2x − 2 6 dx = 2 (x + 1)(2x − 3) 13 Z x dx 22 + 2 x + 1 13 Z dx 40 + 2 x + 1 13 Z 3 22 20 2 = ln |x + 1| + arctan x + ln x − 13 13 13 Z b) ∞ −2x e Z dx = lim t→∞ 0 t e−2x dx 0 e−2x = lim t→∞ −2 = lim − t→∞ = 1 2 The integral is convergent. t 0 e−2t 1 + 2 2 dx 2x − 3 3 +c 2
© Copyright 2026 Paperzz