soil C:N:P stoichiometry as a means to constrain decomposition Nick Ostle, Niall McNamara, Eva Tregidgo and Richard Bardgett Dynamic Global Vegetation Models (DGVMs) Simulate fluxes of carbon, water and nitrogen along with changes in the vegetation dynamics, within an integrated system. light succession fire climate CO2 soil GCM Cox et al. 2000 (Nature) Climate input: ? Precip, s i s PAR, he Tair, RH Carbon Fluxes in DGVMs GPP1 GPP2 Ra2 Needleleaf hy Ra1 t n y s o t o h p f o GPP R n o i Broadleaf t a GPP3 Ra3 l PFT (H1, FRACr1e, LAI1) or po C3 he t grass n L1 it o wood RH ra i p s e r l i so Soil layer (Tsoil, Cstore, H2O) is 4 a4 GPP5 no vegetation 5 PLANTWFUNCTIONAL TYPES: COMPETING, INTERACTING 1 GLOBAL SOIL TYPE Ra5 C4 grass L4 Process studies Rate of loss of CO2 from soil = k x Cstored x fH2O x Q10temp/10 =2 Propose variable Ecosystem Q10’s Soil Functional Types (SFT’s) Case for soil function types (SFTs) Large stocks of C in high latitude soils High latitude soils will warm the most Experimental evidence on Q10 variability QUERCC: focus on organic soils. ECOSSE Evidence of P limitation during forest decline phase Significant increase in humus N:P and C:P with increasing age at all sites >600,000 yrs 14,000 yrs >22,000 yrs Wardle, Walker and Bardgett (2004) Science. 14,000 yrs 4,100,000 yrs >600,000 yrs Peat respiration experiment Objective: To compare respiration rates in peat soils from UK and European sites in relation to C:P, N:P, C:N stoichiometry and abiotic conditions. Great Dun Fell (England) 54º 65’N 2º 45’W Altitude: 848 m Peat layer: 2-3 m Jyvaskyla (Finland) 62º 11’ N, 25º 40’E Altitude: 165 m Peat layer: < 0.5 m Auchencorth Moss (Scotland) 55º 47’N 3º 14’W Altitude: 270 m Peat layer: 0.6 m Plynlimon (Wales) 52º 26´N 3º 46’W Altitude: 648 m Peat layer: 1-2 m Moor House Bog (England) 54º 42’N 2º 18’W Altitude: 290 m Peat layer: 2-3 m Samples under incubation Moor House (England) 54º 42’N 2º 18’W Altitude: 290 m Peat layer: 1-3 m Xistral (Spain) 42º 48’N 8º 6’W Altitude: 1039 m Peat layer: 2 m Sites in this study (7) Sites recently sampled (3) SITE C:P N:P C:N Moor House Bog 984 32 31 Moor House 641 24 26 Auchencorth Moss 442 21 21 Finland 427 13 32 Great Dun Fell 361 19 19 Plynlimon 351 18 19 Xistral, Spain 275 13 21 Mere Bleu Canada, Bonanza Creek Alaska, Caithness, Gallway Eco-stoichiometric framework : to explain peat C temperature sensitivity WET Soil Q10 (exp.) Soil respiration DRY 15oC 10oC 5oC stoichiometric limitation (C:N, C:P) Earth Respiration System controlled temperature rooms 4oC 10oC ● Automated CO2, CH4 and N2O measurements 15oC ● Measure 32 soils simultaneously ● Can make repeated measurements over time ● Constant or variable temperature 20oC 20oC 15oC 10oC 4oC 30 -1 40 20 10 μ g CO2-C g dry wt peat 30 -1 60% WHC 50 20oC 15oC 10oC 4oC 20oC 15oC 10oC 4oC 20oC 15oC 10oC 4oC 20oC 15oC 10oC 4oC 20oC 15oC 10oC 4oC 20oC 15oC 10oC 20oC 15oC 10oC 4oC 20oC 15oC 10oC 4oC 20oC 15oC 10oC 4oC 20oC 15oC 10oC 4oC 20oC 15oC 10oC 4oC 20oC 15oC 10oC 4oC 20oC 15oC 10oC 4oC 0 4oC 0 100% WHC 50 40 20 10 μg CO2-C g dry wt peat 60 60 7 6 5 4 3 2 1 0 3 R2 = 0.78 P < 0.05 R2 = 0.4 P > 0.05 60% WHC 100% WHC 2 Q10 Q10 peat C:P and respiration Q10 values 1 0 0 250 500 C:P 750 1000 0 250 500 C:P 750 1000 “The temperature sensitivity of peat SOM to decomposition increases with increasing C:P” 3000 m PERU ANDES 2007 60 -1 μg CO2-C g dry wt soil Soil cores collected along 3 (so far of 14) altitudinal gradients with variable C:P and N:P y = 91.894e-0.5045x R2 = 0.9729 50 40 30 20 10 0 10 oC 15 oC 20 oC 25 oC 1500 m 1000 m -1 μg CO2-C g dry wt soil 7 y = 10.767e-0.5259x R2 = 0.96 6 -1 μg CO2-C g dry wt soil 16 14 y = 24.29e-0.5604x R2 = 0.98 12 10 8 6 4 2 5 4 0 10 oC 15 oC 20 oC 25 oC 3 2 1 0 10 oC 15 oC 20 oC 25 oC In collaboration with: Patrick Meir & Yadvinder Malhi ● CO2 & CH4 flux measurements insitu on 30 islands with variable C:P and N:P. N:P SWEDEN ● Laboratory incubations under different temperature ranges. 40 yr 5300 yr time since disturbance NEW ZEALAND ● Laboratory incubations under different temperature ranges. N:P ● Nutrient assays on soils under incubation with different temperature ranges. chronosequence stage Examining the temperature sensitivity of different soil carbon pools → Developing methods to parameterise 3 pool organic soil models ● Size fractionation ● Density fractionation ● Chemical fractionation Eva Tregidgo PhD “Organic Soil Carbon Fractions” Examination of soil microbial and C pools at experimental end point 4oC 10ooC 10 C 15oC 20oC PLFA microbial biomass Respiration function “Examining the temperature sensitivity of different soil C pools Nutrients (C, N, P) microbial communities All treatments → 10 oC “soil fractions (Eva Tregidgo)” carbon quality Eco-stoichiometric framework : to explain peat C temperature sensitivity WET Soil Q10 (exp.) Soil respiration DRY 15oC 10oC 5oC stoichiometric limitation (C:N, C:P) SO, Organic soil stoichiometry experiments on-going and extended to other soil types e.g. tropical soils. Development of meaningful measures of organic soil C pools for modelling Looking to expand capability for soil Q10 studies with our Earth Resp System Continued contribution of benchmark data for ECOSSE and Roth-C for JULES development.
© Copyright 2026 Paperzz