Chapter 4 Answers Practice Examples 1a. (a) 2 H3PO4(aq) + 3 CaO(s) → Ca3(PO4)2(aq) + 3 H2O(l) (b) C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(g) 1b. (a) 4 NH3(g) + 7 O2(g) → 4 NO2(g) + 6 H2O(g) (b) 6 NO2(g) + 8 NH3(g) → 7 N2(g) + 12 H2O(g) 2a. 4 HgS(s) + 4 CaO(s) → 3 CaS(s) + CaSO4(s) + 4 Hg(l) 2b. 2 C7H6O2S(l) + 17 O2 (g) → 14 CO2(g) + 6 H2O(l) + 2 SO2(g) 3a. 2.64 mol O2 3b. 8.63 mol Ag 4a. 5.29 g Mg 3 N 2 4b. 126 g H 2 5a. 0.710 g NH 3 5b. 3.50 g O 2 ( g ) 6a. 3.34 cm3 alloy 6b. 0.79 g Cu 7a. 0.4 mg H 2 ( g ) 7b. 0.15g CO 2 8a. 0.307 M 8b. 0.524 M 9a. 115g NaNO3 9b. 50.9 g Na 2SO 4 ⋅10H 2 O 10a. 0.0675 M 10b. 0.122 M 11a. 18.1 mL Copyright © 2011 Pearson Canada Inc. 1 11b. 4.96 g Ag2CrO4 12a. 936g PCl 3 12b. 1.86 kg POCl3 13a. 3.8 g P4 13b. 57 g O 2 remaining 14a. (a) 30.0 g CH 2 O ; (b) 25.7 g CH2O (g); (c) 85.6 % yield . 14b. 93.7% 15a. 41.8g CO 2 15b. 69.0 g impure C6 H11OH 16a. 2.47 ×103 g HNO3 16b. Approximately 56 g of SiO2 and 30 g of KNO3 are needed. 17a. 83 wt% 17b. 19.47% Integrative Example A. 78.3% yield B. 83.4 % Zn Exercises 1a. 2 SO3 → 2 SO 2 + O 2 1b. Cl2 O7 + H 2 O → 2 HClO 4 1c. 3 NO 2 + H 2 O → 2 HNO3 + NO 1d. PCl3 + 3 H 2 O → H 3 PO3 + 3 HCl 3a. 3 PbO + 2 NH 3 → 3 Pb + N 2 + 3 H 2 O 3b. 2 FeSO 4 → Fe 2 O3 + 2 SO 2 + 1 2 O 2 or 4 FeSO 4 → 2 Fe 2 O3 + 4 SO 2 + O 2 3c. 6 S2 Cl2 + 16 NH 3 → N 4 S4 + 12 NH 4 Cl +S8 Copyright © 2011 Pearson Canada Inc. 2 3d. 2 C3 H 7 CHOHCH(C2 H 5 )CH 2 OH + 23 O 2 →16 CO 2 +18 H 2 O 5a. 2 Mg ( s ) + O 2 ( g ) → 2 MgO ( s ) 5b. 2 NO ( g ) + O 2 ( g ) → 2 NO 2 ( g ) 5c. 2 C2 H 6 ( g ) + 7 O 2 ( g ) → 4 CO 2 ( g ) + 6 H 2 O ( l ) 5d. Ag 2 SO 4 ( aq ) + BaI 2 ( aq ) → BaSO 4 ( s ) + 2 AgI ( s ) 7a. 2 C4 H10 (l) +13O 2 ( g ) → 8CO 2 ( g ) +10 H 2 O ( l ) 7b. 2 CH 3 CH(OH)CH 3 (l) + 9 O 2 ( g ) → 6 CO 2 ( g ) + 8 H 2 O ( l ) 7c. CH 3 CH(OH)COOH ( s ) + 3O 2 ( g ) → 3CO 2 ( g ) + 3H 2 O ( l ) ∆ → N2 O ( g ) + 2 H2 O ( g ) 9a. NH 4 NO3 ( s ) 9b. Na 2 CO3 ( aq ) + 2 HCl ( aq ) → 2 NaCl ( aq ) + H 2 O ( l ) + CO 2 ( g ) 9c. 2 CH 4 ( g ) + 2 NH 3 ( g ) + 3O 2 ( g ) → 2 HCN ( g ) + 6 H 2 O ( g ) 11. 2 N2H4(g) + N2O4(g) → 4 H2O(g) + 3 N2(g) 13. 2 Cr(s) + 3 O2(g) → 2 CrO3(s) 15. 785 g 17a. 0.402 mol O 2 17b. 128 g KClO3 17c. 43.9 g KCl 19. 96.0 g Ag 2 CO3 21a. 12.2 g H 2 21b. 48.1 g H 2 O 21c. 284 g CaH 2 23. 79.7% Fe 2 O3 Copyright © 2011 Pearson Canada Inc. 3 25. % by mass B10 H14 = 25.8% 27. 1.03g H 2 29. Al produces the largest amount of H 2 per gram of metal. 31a. 0.408 M 31b. 0.154 M 31c. 1.53M 33a. 1.753 M 33b. 0.320 M CO(NH 2 ) 2 33c. 0.206 M 35a. 4.73g 35b. 44.1mL CH 3OH 37a. 4.7 mmol C6 H12 O6 L 37b. Molarity = 4.7 ×10−3 mol C6 H12 O6 L 39. Solution (d) is a 0.500 M KCl solution. 41. The 46% by mass sucrose solution is the more concentrated. 43. 0.0820 M 45. 0.236 M 47. The ratio of the volume of the volumetric flask to that of the pipet would be 20:1. We could use a 100.0-mL flask and a 5.00-mL pipet, a 1000.0-mL flask and a 50.00-mL pipet, or a 500.0mL flask and a 25.00-mL pipet. There are many combinations that could be used. 49a. 0.177 g Na 2S 49b. 0.562 g Ag 2S 51. 59.4 mL K 2 CrO 4 53. 8.46 ×10−3 mol HNO3 L Copyright © 2011 Pearson Canada Inc. 4 55a. 0.0693mol AlCl3 55b. 2.91 M AlCl3 57. 12.8 g Ag 2 CrO 4 59. 0.624g Na 61. 0.2649 M 63. 3.00 moles of NO (g) 65. HNO3 (aq) is the limiting reactant, it will be completely consumed, leaving some Cu unreacted. 67. 143g Na 2 CS3 69a. 10.5g NH 3 69b. 10.1 g excess Ca ( OH )2 71. 211.51 g CrSO 4 73a. 1.80 mol CCl4 73b. 1.55 mol CCl2 F2 73c. 86.1% yield 75. 87.6% 81. A main criterion for choosing a synthesis reaction is how economically it can be run. In the analysis of a compound, on the other hand, it is essential that all of the material present be detected. Therefore, a 100% yield is required; none of the material present in the sample can be lost during the analysis. 84. 1.22 ×103 g CO 2 86. 0.0386 g C2 H 6 87. 1.34 kg AgNO3 per kg of I2 produced. 89a. ∆ SiO2(s) + 2 C(s) → Si(s) + 2 CO(g) Si(s) + 2 Cl2(g) → SiCl4(l) SiCl4(l) + 2 H2(g) → Si(s, ultrapure) + 4 HCl(g) Copyright © 2011 Pearson Canada Inc. 5 89b. 885 g C , 5.05 × 103 g Cl2 , 144 g H 2 . 91. 73.33 % Integrative and Advanced Exercises ∆ 93a. CaCO 3 (s) → CaO(s) + CO 2 (g) ∆ 93b. 2 ZnS(s) + 3 O 2 (g) → 2 ZnO(s) + 2 SO 2 (g) 93c. C 3 H 8 (g) + 3 H 2 O(g) → 3 CO(g) + 7 H 2 (g) 93d. 4 SO 2 (g) + 2 Na 2 S(aq) + Na 2 CO 3 (aq) → CO 2 (g) + 3 Na 2 S 2 O 3 (aq) 95. 1.96 ×104 g LiOH 96. 68.0% CaCO3 98. 3 FeS + 5 O2 → Fe3O4 + 3 SO2 99. 8.88 M CH 3CH 2 OH 101. 143 mL 105. 0.2 cm 2 106. 0.365g Zn 114. 9.2% ( C2 H 5 )2 O , 90.8% CH 3CH 2 OH . 115. 16.95 % 116a. Cu 5 (CrO 4 ) 2 (OH)6 5 CuSO 4 (aq) + 2 K 2 CrO 4 (aq) + 6 H 2 O (l) 116b. ↓ Cu 5 (CrO 4 ) 2 (OH)6 (s) + 2 K 2SO 4 (aq) + 3 H 2SO 4 (aq) 117. C3 H 4 O 4 (l) + 2 O 2 (g) → 3 CO 2 (g) + 2 H 2 O(l) 118. 5.2 g Fe , mass of excess Fe 2 O 3 = 2.1 g. 119. 0.850 g AgNO3 120. The balanced equation for the reaction is: S 8 (s) + 4 Cl 2 (g) → 4 S 2 Cl 2 (l). Both “a” and “b” are consistent with the stoichiometry of this equation. Copyright © 2011 Pearson Canada Inc. 6 121. 1.25 g C3 N 3 (OH)3 123. We must use all of the most concentrated solution and dilute this solution down using the next most concentrated solution. A total of 374 mL may be prepared this way. 127a. 2 C 3 H 6 (g) + 2 NH 3 (g) + 3 O 2 (g) → 2 C 3 H 3 N(l) + 6 H 2 O(l) 127b. 555 kg NH 3 Self-Assessment Exercises 135. The answer is (d). 136. The answer is (d). 137. The answer is (a). 138. The answer is (a). 139. The answer is (c). 140. The answer is (d). 141. The answer is (b). 142. The answer is (d). 143a. 2 C 8 H 18 + 25 O 2 → 16 CO 2 + 18 H 2 O 143b. 2 C8H18 + 25 O2 → 12 CO2 + 4 CO + 18 H2O 144. Dolomite is the compound. 145. The answer is (b). 146. The answer is (c). Copyright © 2011 Pearson Canada Inc. 7
© Copyright 2026 Paperzz