Geometry 2nd Semester Final Review Name Period Chapter 6 1. Which of the following does NOT represent a polygon? I. A. B. C. D. E. 2. 4. III. IV. V. I, II, and IV only I and II only II, III, and V only III and V only II and IV only Which term below best describes the polygon? A. B. C. D. 3. II. Equilateral Equiangular Regular None of the above Which term(s) below best describe the polygon? I. III. Equilateral Convex A. B. C. D. I and III I and IV I, II, and IV IV only II. IV. Equiangular Concave Which of the following show a concave hexagon? I. A. B. C. D. E. II. I and II only III and VI only V only IV only III, V, and VI only III. IV. V. VI. Page 2 5. Find the value of x. A. B. C. D. 6. If MATH is a parallelogram, then which of the following must be true? A. B. C. D. 7. M M ≅ H MA ≅ HM MA ≅ AT m A + m T = 180° A H T In Rhombus WXYZ find x. A. B. 8. x° 69 74 125 291 X W 4(x + 2)° 10 22 (3x + 18)° 3 C. 93 D. E. 96 122 7 Z Y H C CHEV is a parallelogram. If HY = 2(2x + 3), CY = 10, and VY = 18, what is the value of x? 2(2x + 3) 10 A. B. C. D. 3 3.75 5.25 6 Y 18 E V 9. MATH is a rhombus. What are the values of x and y? M A. B. C. D. x = 6, y = 3 x = 6, y = 4 x = 3, y = 3 x = 3, y = 6 13 H 10. A y+7 4x + 1 T Quad. ZOID is an isosceles trapezoid with ZO || ID. Find the value of x. A. B. C. D. 21 27 51 69 Z (2x)° D O (x + 27)° I Page 3 11. The lengths of the bases of a trapezoid are 14" and 20". What is the length of the midsegment of the trapezoid? A. B. C. D. 20 in. 17" 18" 20" 34" x 14 in. 12. What is the area of the parallelogram? A. B. C. D. E. 13. 225 cm2 255 cm2 330 cm2 450 cm2 510 cm2 17 cm 30 cm Find the area of ∆CAT A. B. C. D. 15 cm 10 C 2 120 u 125 u2 204 u2 238 u2 T 24 A 14. Find the area of the trapezoid. A. B. C. D. 544 square units 448 square units 272 square units 224 square units 10 22 14 17 K 15. Find the area of the kite. A. B. C. D. 72 117 176 352 9 E 8 8 13 T I Page 4 Chapter 8 16. If 3 x −5 A. B. C. 4x , then x=3 x = –1 x = –7 7 x= 3 D. 17. 7 = Which triangle is not similar to any of the others? A. B. C. 60 D. o 80o 60o 30o 30o 50o 18. Which of the following could be used to prove that ∆REX ∼ ∆JOB. A. B. C. D. J R AA Similarity SAS Similarity SSS Similarity The triangles are not similar 9 30 X E 12 B 19. O 40 The triangles are similar. Find x. x A. B. C. D. 11 16 20 44 22 6 12 20. Find x. A A. B. C. D. 4 8 9 11 15 D x 10 F 6 E C B Page 5 21. The triangles are similar. Find x. A. B. C. D. 3 4 5 6 x+1 9 10 15 22. Find x. A. B. C. D. E. 23. 9 15 20 45 60 77° 15 4 39° 3 A. B. C. D. 8 10 13 25 20 x 25 In which transformation is the image not congruent to the original figure? A. B. C. D. 25. 77° Find x. 8 24. 39° x dilation reflection rotation translation Which dashed figure represents a dilation of the given quadrilateral? I A. I B. II C. III II III Page 6 Chapter 9 26. A 15 foot utility pole must be anchored by a wire 8 feet from its base. How long is the wire from the top of the pole to the ground? A. B. C. D. 17 feet 20 feet 161 feet 25 feet x 15 ft 8 ft 27. A 13 foot ladder leans against a wall so that the base of the ladder is 5 feet from the wall. How high up on the wall will the ladder reach? A. B. C. D. 8 feet 12 feet 194 feet 15 feet 13 ft x 5 ft 28. Choose the sets that could be the side lengths of a right triangle. I. III A. B. C. D. 29. II. IV. 3, 4, 5 5, 12, 13 II only II and IV I, II, IV I, II, III, IV What is the length of AC in the triangle below? A. B. C. D. 30. 1, 2, 5 6, 8, 11 5 5 2 5 3 10 A 45° 5 45° B 5 C What is the value of x in the triangle below? A. B. C. D. 7 7 2 14 14 2 x 45° x 14 2 45° Page 7 31. Which of the following can be the length of the sides of a 30°-60°-90° triangle? I. A. B. C. D. E. 32. 33. 5, 10, 5 3 II. 2, 2, 2 3 III. 3, 6, 3 3 I only II only III only I and III only I, II, and III Find the value of x. A. 4 B. 4 3 C. 4 2 D. 6 60o 8 x 30o The shadow of a monument is 50 feet long when the sun makes a 60o angle of elevation with level ground. What is the height of the monument? A. B C. D. 50 ft 50 2 ft 50 3 ft 100 ft 60o 50 ft 34. Find the value of x. A. B. C. D. 35. 5 5 3 10 10 3 D x 30° O 5 3 Using ∆ABC, give the ratio for sin C. A. B. C. D. 8 6 4 3 4 5 3 5 A 8 B 10 6 C G Page 8 36. Find tan D. A. . B. C. D. 37. B. C. D. D 8 4 F x 10 10 sin 34° = x x cos 34° = 10 x tan 34° = 10 sin 34° = 34o 10 x Find the equation that will find the height of the air balloon. A. B. C. D. 39. E 4 5 Which equation can be used to find the value of x in the triangle? A. 38. 5 5 1 2 2 5 5 2 h 75 75 tan51o = h 75 cos51o = h h sin51o = 75 tan51o = h 51o 75 ft Which equation could you use to find the value of x? B. tan 42 10 x = 10(tan 42) C. x = A. x = D. 10 tan 42 x = 10(cos 42) E. x = 10 cos 42 42° x 10 Page 9 Chapter 10 40. Which figure represents a chord of circle P? A. B. C. D. PM MN PS TS M O N P S Q 41. 42. Which figure represents a tangent of the circle? A. B. OT MN C. QS D. PM T Find the value of x. x° A. B. C. D. 43. o 30 45o 60o 90o . If m∠OWL = 70°, find m OL A. B. C. D. 70° 110° 140° 220° P L O 70° W 44. Use the diagram to find the measure of ∠ x. 184° A. B. C. D. 54° 58° 122° 126° x° 68° Page 10 45. Use the diagram to find m∠x. A. B. C. D. 46. 80° x° 4 4 8 9 17 4 x 18 72 Use the diagram to find the value of x. A. B. C. D. 48. 150° Find the value of x. A. B. C. D. 47. 35° 55° 70° 110° 3 9 20 3 12 3 x 4 5 LM and LN are tangent to circle O. Find the value of x. M 7x – 4 A. B. C. D. L 4 –8 9 –9 2x + 41 N 49. Find the equation of the circle with center (3, –5) and radius of 5. A. B. C. D. (x + 3)2 + (y – 5)2 = 5 (x – 3)2 + (y + 5)2 = 5 (x + 3)2 + (y – 5)2 = 25 (x – 3)2 + (y + 5)2 = 25 Page 11 Chapter 11 50. What is the sum of the interior angles of a pentagon? A. B. C. D. 51. 180° 360° 540° 720° An archaeologist discovered an ancient cutting tool. The tool is in the shape of a pentagon. She hopes to learn its use by measuring the sharpness of the cutting blade, but the blade is lodged in rock. What is the measure, in degrees of angle x? A. B. C. D. 45 50 51 63 Note: The tool is not drawn to scale. 52. Find the circumference of the circle. A. B. C. D. 53. C. D. 660 ft 11π ft 11π ft 3 22π ft P A 11 ft 60° B Find the area of a circle if the diameter is 18 inches. A. B. C. D. 55. 6 cm . Find the arc length of AB A. B. 54. 6 cm 6π cm 12π cm 36π cm 9π inches2 18π inches2 81π inches2 162π inches2 18 in Find the area of the shaded sector. A. B. C. D. 4π m2 9π m2 36π m2 144π m2 6m Page 12 Chapter 12 56. Using Eulers Theorem (F + V = E + 2) which of the following polyhedron(s) can be drawn? I. II. III. IV. Faces 7 6 12 5 A. B. C. D. 57. I and IV only II and III only I, III, and IV only III and IV only 6 8 12 14 How many faces and edges does the polyhedron shown have? A. B. C. D. 59. Edges 16 11 23 12 If a rectangular prism has 6 faces and 12 edges, how many vertices does it have? A. B. C. D. 58. Vertices 11 8 13 9 6 faces, 6 edges 6 faces, 12 edges 7 faces, 12 edges 9 faces, 16 edges Which figures below are pyramids? I. A. B. C. D. II. II only I, II, IV I and IV all of them III. IV. Page 13 60. Which solid corresponds to the net shown at the right? 61. What solid will be made if the net below is folded along the dotted lines? A. B. C. D. 62. Which solid does this represent? A. B. C. D. 63. square prism rectangular prism square pyramid cone Find the surface area of the right cylinder. A. B. C. D. 64. cube hexagonal prism rectangular pyramid rectangular prism 4 in 37π in2 40π in2 72π in2 96π in2 8 in The surface area of the right cone is _____ A. B. C. D. 33π in2 60π in2 84π in2 96π in2 8 in. 6 in. Page 14 65. What is the volume of the rectangular prism below? A. B. C. D. 162 in3 216 in3 288 in3 324 in3 9 in. 3 in. 12 in. 66. Find the volume of the cone. 10 cm A. B. C. D. 13π cubic cm 30π cubic cm 60π cubic cm 90π cubic cm 3 cm 67. Find the volume of the cylinder. 4 in A. B. C. D. 68. 13π cubic in 25π cubic in 144π cubic in 324 cubic in 9 in Find the volume of the pyramid below with a square base. A. B. C. D. 96 cm 3 120 cm3 144 cm3 180 cm3 8 6
© Copyright 2026 Paperzz