8-7 Factor Completely Name Date Factor completely: 3x3 ⫺ 24x2 ⫹ 48x 3x(x2 ⫺ 8x ⫹ 16) 3x(x ⫺ 4)2 Factor completely: 9v3 ⫺ 2 9v3 ⫺ 2 The GCF is 3x. x2 ⫺ 8x ⫹ 16 is a perfect-square trinomial. ? Check: 3x3 ⫺ 24x2 ⫹ 48x ⫽ 3x(x ⫺ 4)2 ? ⫽ 3x(x2 ⫺ 8x ⫹ 16) ⫽ 3x3 ⫺ 24x2 ⫹ 48x True No GCF Not the difference of two perfect squares 9v3 ⫺ 2 cannot be factored. It is prime. Factor completely. Check using multiplication. If the polynomial cannot be factored using integers, label it prime. 1. 2a2 ⫺ 162 2. 3b2 ⫺ 48 3. 8c3 ⫺ 80c2 ⫹ 200c 2(a2 ⴚ 81) 2(a ⴙ 9)(a ⴚ 9) Check: ? 2a2 ⴚ 162 ⴝ 2(a ⴙ 9)(a ⴚ 9) ? ⴝ (2a ⴙ 18)(a ⴚ 9) ⴝ 2a2 ⴚ 162 True 4. 2f 3 ⫺ 28f 2 ⫹ 98f 2f(f 2 ⴚ 14f ⴙ 49) Copyright © by William H. Sadlier, Inc. All rights reserved. 2f(f ⴚ 7)2 7. ⫺5x2y ⫺ 25xy ⫺ 15y ⴚ5y(x2 ⴙ 5x ⴙ 3) x2 ⴙ 5x ⴙ 3 is prime. ⴚ5y(x2 ⴙ 5x ⴙ 3) 10. 4a3b ⫺ 9b2 ⫹ 4a 3(b2 ⴚ 16) 3(b ⴙ 4)(b ⴚ 4) 5. 3ab2 ⫹ 21ab ⫺ 54a 3a(b2 ⴙ 7b ⴚ 18) 3a(b ⴚ 2)(b ⴙ 9) 8. ⫺2hj2 ⫺ 18hj ⫺ 2h 8c(c ⴚ 5)2 6. 5vw2 ⫹ 20vw ⫺ 160v 5v(w2 ⴙ 4w ⴚ 32) 5v(w ⴚ 4)(w ⴙ 8) 9. 8x2y ⫺ 4x2 ⫹ 19y ⴚ2h(j2 ⴙ 9j ⴙ 1) j2 ⴙ 9j ⴙ 1 is prime. ⴚ2h(j2 ⴙ 9j ⴙ 1) 11. 48t3 ⫹ 88t2 ⫹ 24t 8t(6t2 ⴙ 11t ⴙ 3) ac ⴝ 18; 2 ⴙ 9 ⴝ 11 8t(6t2 ⴙ 2t ⴙ 9t ⴙ 3) 8t[2t(3t ⴙ 1) ⴙ 3(3t ⴙ 1)] prime 8c(c2 – 10c ⴙ 25) 8t(2t ⴙ 3)(3t ⴙ 1) Lesson 8-7, pages 216–217. prime 12. 140m3 ⫹ 133m2 ⫹ 21m 7m(20m2 ⴙ 19m ⴙ 3) ac ⴝ 60; 4 ⴙ 15 ⴝ 19 7m(20m2 ⴙ 4m ⴙ 15m ⴙ 3) 7m[4m(5m ⴙ 1) ⴙ 3(5m ⴙ 1)] 7m(5m ⴙ 1)(4m ⴙ 3) Chapter 8 207 For More Practice Go To: Factor completely. Check using multiplication. If the polynomial cannot be factored using integers, label it prime. 14. 8c4 ⫺ 128 7(d4 ⴚ 1) ⴙ 1)(d2 ⴚ 1) 7(d2 7(d2 ⴙ 1)(d ⴙ 1)(d ⴚ 1) 16. a4b ⫺ 5a2b ⫹ 4b – ⴙ 4) d(a2 ⴚ 4)(a2 ⴚ 1) b(a4 5a2 b(a ⴙ 2)(a ⴚ 2)(a ⴙ 1)(a ⴚ 1) 19. a4 ⫺ 2a2b2 ⫹ b4 (a2 (a2 ⴚ b2)2 ⴚ b2)(a2 ⴚ b2) (a ⴙ b)2(a ⴚ b)2 15. c4d ⫺ 13c2d ⫹ 36d d(c4 ⴚ 13c2 ⴙ 36) d(c2 ⴚ 9)(c2 ⴚ 4) 8(c4 2 16) 1 4)(c2 2 4) 8(c2 8(c2 1 4)(c 1 2)(c 2 2) d(c ⴙ 3)(c ⴚ 3)(c ⴙ 2)(c ⴚ 2) 17. 27a4 ⫹ 27a3 ⫺ 12a2 ⫺ 12a 18. 64x4 ⫹ 64x3 ⫺ 324x2 ⫺ 324x 3a(9a3 ⴙ 9a2 ⴚ 4a ⴚ 4) 3a[9a2(a ⴙ 1) ⴚ 4(a ⴙ 1)] 3a(9a2 ⴚ 4)(a ⴙ 1) 4x(16x3 ⴙ 16x2 ⴚ 81x ⴚ 81) 4x[16x2(x ⴙ 1) ⴚ 81(x ⴙ 1)] 4x(16x2 ⴚ 81)(x ⴙ 1) 3a(3a ⴚ 2)(3a ⴙ 2)(a ⴙ 1) 4x(4x ⴚ 9)(4x ⴙ 9)(x ⴙ 1) 20. 16x4 ⫺ 72x2y2 ⫹ 81y4 (4x2 (4x2 ⴚ 9y2)2 ⴚ 9y2)(4x2 ⴚ 9y2) (2x ⴙ 3y)2(2x ⴚ 3y)2 21. x8 ⫺ 1 (x4 ⴚ 1)(x4 ⴙ 1) (x2 ⴚ 1)(x2 ⴙ 1)(x4 ⴙ 1) (x ⴚ 1)(x ⴙ 1)(x2 ⴙ 1)(x4 ⴙ 1) 22. A rectangular prism has a volume of x3y ⫹ xy3 ⫺ 2x2y2 with a square base. If it has a lateral area of 30 in.2, what is the volume in cubic inches? 23. A rectangular prism has a volume of x3 ⫺ y3 ⫹ x2y ⫺ xy2, and a square base. If a lateral side has an area of 16 cm2, what is the volume in cubic centimeters? First factor: xy(x2 ⴚ 2xy ⴙ y2) xy(x ⴚ y)2; the area of a lateral side is xy(x ⴚ y) ⴝ 30 5(2)(5 ⴚ 2) ⴝ 10(3) ⴝ 30; so x ⴝ 5, y ⴝ 2 V ⴝ 5(2)(3)2 ⴝ 90; The rectangular prism has a volume of 90 in.3. (x3 ⴙ x2y) ⴚ (xy2 ⴙ y3); x2(x ⴙ y) ⴚ y2(x ⴙ y) (x2 ⴚ y2)(x ⴙ y); (x ⴙ y)(x ⴚ y)(x ⴙ y); (x ⴙ y)2(x ⴚ y); the area of a lateral side is (x ⴙ y)(x ⴚ y) ⴝ 16 or x2 ⴚ y2 ⴝ 16 52 ⴚ 32 ⴝ 25 ⴚ 9 ⴝ 16; so x ⴝ 5, y ⴝ 3; V ⴝ (8)2(2) ⴝ 128 The rectangular prism has a volume of 128 cm3. Multiply. 24. (24)(36) (24)(36) 5 (30 2 6)(30 1 6) 5 900 2 36 5 864 25. (91)(89) (91)(89) 5 (90 1 1)(90 2 1) 5 8100 2 1 5 8099 26. (74)(66) (74)(66) 5 (70 1 4)(70 2 4) 5 4900 2 16 5 4884 2 2 2 27. (29)2 (30 2 1) 5 (30) 2 2(30)(1) 1 (1) 5 900 2 60 1 1 5 840 1 1 5 841 2 2 2 28. (63)2 (60 1 3) 5 (60) 1 2(60)(3) 1 (3) 5 3600 1 360 1 9 5 3960 1 9 5 3969 208 Chapter 8 Copyright © by William H. Sadlier, Inc. All rights reserved. 13. 7d4 – 7
© Copyright 2026 Paperzz