Chapter8| SummaryandFutureProspects Isoquinolinesulfonamidebasedkinaseinhibitors Anincreasingnumberofbacterialstrainsdevelopresistanceagainstmultipleantibiotics, 1 includingsomeofthesocalledlastresortdrugs. TheseMultidrugresistantbacterialstrains poseaserioushealththreat.Inordertoremainabletotreatfutureoutbreaksseveral,steps must be taken. First, besides the optimization of existing antibiotics, new classes of antibiotics must be developed. Second, these new classes of drugs should preferentially target biochemical pathways that are currently unexploited. Chapter 2 describes the discoveryofanewdruggabletargetforantibiotics.InhibitorsofproteinkinaseB(PKB/Akt1) are currently pursued as potential antitumor agents. The chapter describes the discovery thatthisproteinisrequiredforintracellularsurvivalofseveralstrainsofpathogenicbacteria, including Salmonella. Targeting host cell kinases is a promising new strategy to treat pathogenbacterialinfections.Chapter3describesthesynthesisoftwoseriesofcompounds aimed at optimizing the inhibition profile towards PKB/Akt1. Starting point is the known protein kinase A inhibitor, H89. Several structural modifications of the H89 structure 143 Chapter8 resulted in the identification of two positions on the H89 skeleton amenable for optimization towards more potent and selective inhibitors. Application of the reduction transimination reduction sequence led to the construction of a library of derivatives with increased structural variation, namely phenyl substitutions, double bond substitutions and double bond configurations. Chapter 4 describes the parallel synthesis of a 63member compound library based on Suzuki coupling of the bromine moiety in three suitably protectedH89derivatives,bearingthebromineontheortho,metaandparaposition,with 21differentboronicacids. Figure1;NovelH89analoguesdescribedinChapters3and4 ModificationsoftheH89skeletonarebynomeanslimitedtothepositionsdescribedin chapters 3 and 4. In the next section, several strategies are discussed that allow the modificationoftheH89skeletoninthe3regionsdepictedinFigure2. 144 SummaryandFutureProspects Figure2;ThestructureofH89.Highlightedarethethree domainsthatarediscussedinthetextbelow. ModifyingregionA Thisregionofthepharmacophoreengagesinhydrogenbondingwiththesocalledhinge region which is located at the bottom of the ATP binding pocket of the kinase. The isoquinoline nitrogen atom serves as a hydrogen bond acceptor in the active site of the kinase. Replacing the isoquinoline moiety with an aminonaphtyl group would make this group a hydrogen bond donating moiety. A synthetic strategy towards this class of compoundsisexemplifiedbythesynthesisof6aminonaphtylderivative11,(inScheme1). Amineprotectionin6aminonaphtalenesulfonicacidusingBoc2OandtriethylamineinMeOH shouldgiveprotected2.Transformationofthesulfonicacidintothecorrespondingsulfonyl chloride requires 6 as mild chlorinating agent. Acylation of 8 followed by Staudinger reduction of the azide in 9 should yield amine 10. Submitting known 4 and 10 to the reduction transimination reduction protocol as described in chapter 3, followed by acidic deprotectionwouldgive11asnovelH89analogue. Scheme1;Synthesisofnapthylaminobasedinhibitors.Reagentsandconditions:(i)Et3N,Boc2O,MeOH.(ii) NaH, pbromobenzaldehyde, DMF, 0°C. (iii) SOCl2, DCM. (iv) 2, DCM. (v) DiPEA, DCM. (vi) PMe3, THF/H2O. (vii)a:4,DiBAlH,Et2O,78°C.b:MeOH,100°C.c:9.d:NaBH4.(viii)TFA/DCM. 145 Chapter8 ModifyinglinkerregionB 2 The linker region in H89 serves two purposes. It contains a crucial amino functionality which is involved in hydrogen bonding and it enables proper alignment of the isoquinolinesulfonamide moiety and the styrene end group. Reducing the number of rotatable bond by rigidifying this region using a variety of cyclic diamine spacers neither 3 improved potency nor selectivity. Incorporating small substituents on the diamine spacer maybeamoresubtlewaytoreducerotatablefreedomwithoutlockingthestructure.The assemblyofbuildingblocks4,12and13usingchemistrydescribedinchapter2enablesthe synthesisof15and17asdepictedinScheme2. Scheme2;Introducingrotationalconstraintsinthelinker.Reagentsandconditions:(i)DiPEA,DCM. (ii)TFA/DCM.(iii)a:DiBAlH,Et2O,78°C.b:MeOH,100°C.c:13ordeprotected14.d:NaBH4. Another way to functionalize the linker is depicted in Scheme 3. Acylation of 2 aminoacetonitrilewithisoquinolinesulfonylchloride12givesnitrile18.Submittingnitrile18, cynnamic aldehyde 19 (chapter 3) and diethyl methylphosphonate to nbutyllithium under HornerEmmons conditions according to the method developed by Orru et al. gives 4 unsaturatedimine20. Thisintermediatecanbeprocessedinatransiminationreactionwith avarietyofaminestogeneratederivativesof21. 146 SummaryandFutureProspects Scheme3;Linkermodifications:Reagentsandconditions:(i)2aminoacetonitril,DMAP,pyridine.(ii)nBuLi,THF. (iii)R1CH2NH2,MeOH. ModificationofregionC The reductiontransiminationreduction procedure described in chapter 3 can be 5 modified to introduce substuted amines (see Scheme 4). Treatment of 4 with Grignard reagentsinrefluxingEt2O,followedbymethanolysisoftheintermediatemagnesiumspecies affordssecondaryimine22,whichaftertransiminationwith12andNaBH4reductionaffords isoquinolinesulfonamides23asracemates. Scheme4;Grignardtransiminationreductionstrategy.Reagentsandconditions:(i)RMgBr,Et2O,reflux.(ii) MeOH,100°C.(iii)12.(iv)NaBH4 Asisdescribedinchapter3,increasingthesizeofthedoublebondsubstituentincreases selectivity towards PKB/Akt1. Several strategies can be envisaged to elaborate on these results(Scheme5).HornerWittigreactionbetweentheanionofsubstitutedacetonitriles24 and diphenylphosphinyl chloride 25 yields anion 26. Addition to, for instance, p bromobenzaldehyde should result in the formation of isomeric mixtures of substituted cynnamic aldehydes 27. These can be used to extend the range of substituents in 28. Condensingbromoacetonitrileto25usingLiHMDSfollowedbyadditionofbenzaldehyde 147 Chapter8 Scheme5;Noveldoublebondsubstitutions.(i)LiHMDS,THF.(ii)LiHMDS,pbromobenzaldehyde,THF.(iii)) a:DiBAlH,Et2O,78°C.b:MeOH,100°C.c:N(2aminoethyl)isoquinoline5sulfonamide.d:NaBH4.(iv)2eq, LiHMDS,bromoacetonitril,THF,78°C.(v)K2CO3,phenylboronicacid,Pd(PPh3)4,toluene/H2O.(vi)KOH.(vii) Br2,CHCl3,reflux. should yield bromocynnamic aldehyde 29. Transformation into 30 yields a precursor that,afternitrogenprotection,allowsforSuzukitype crosscouplingsleadingtoavarietyof arylsubstitutedanalogueslike31.Similaranalogueswithanadditionalarylsubstituentcan be obtained starting from a Knoevenagel condensation between benzophenone 32 and acetonitrile33.Thethusobtained,unsaturatednitrile34canbebrominatedleadingto 148 SummaryandFutureProspects 35assingleisomer,whichcanbetransformedintovinylbromide36that,afterprotectionof the secondary amine group, may serve as precursor for palladium based crosscoupling reactionstowards37. The restriction of flexibility in the styrene moiety is exemplified by the synthesis of 41 (Scheme6).Herecomerciallyavailable6bromo2napthoicacid38isreducedto39andre oxidized towards the aldehyde 40 followed by reductive amination with the appropiate aminetoaffordnaphtylatedisoquinolinesulfonamide41. Scheme6;constraintanalogues;Reagentsandconditions:(i)LiAlH4,Et2O,0°C.(ii)DessMartinperiodane.(ii)a: DiBAlH,Et2O,78°C.b:MeOH,100°C.c:N(2aminoethyl)isoquinoline5sulfonamide.d:NaBH4. Cationicantimicrobialpeptides Killingbacteriabydisruptingtheircellwallmembranewithcationicantimicrobialpeptides(CAPs) is currently being explored as a new approach in the treatment of multidrug resistant bacterial infections.Theagentsusedintheseapproachesareusuallyverypotent,buttheirlackofselectivity 6 hamperstheirclinicalapplicationtotopicaluse. Chapter5describesresultspreviouslyobtainedwith the cationic peptide Gramicidin S 38 and analogues thereof (39a and 39b, Figure 3). Structural analysisofanalogues4042revealedasimilarsheetstructurecomparedtoGSwith,however,an alteredbackboneorientationaroundtheSAAamidegroupand anincreased twistangle. Biological evaluationoftheseanaloguesrevealedalossinactivityfor39a.Analogue39bwasshowntobeas potentasGSinboththeantimicrobialandthehemolyticalassay.Chapter5describesthesynthesis ofthreenovelGSanalogues(40–42)andtheirstructuralandbiologicalevaluation.Thestructureof 40, containing a furanoid SAA, adopted a similar sheet structure with reoriented backbone conformationinsolutioncomparedto39b.Thesolutionstructureofanalogues41and42resemble theoverallstructureofGSitselfandthebackbonereorientationcouldnotbeobserved.Theresults obtainedfromtheantimicrobialandhemolyticalassaysshowasimilarprofilefor40comparedtoGS and analogue 39b. Whereas the antimicrobial potencies of 41 and 42 are comparable to GS, both showareducedtoxicityforerythrocytesinthehemolyticalassaywith41abouthalfastoxicasGS. TheintroductionofcyclicfuranoidSAAsapparentlyaltersthebackboneconformationbutdoesnot 149 Chapter8 influence the biological profile. Linear dipeptide isosters 41 and 42 did not disrupt the backbone conformationandshowedanimprovedbiologicalprofile. Figure3;GS,knownderivatives39aandbandnewlydevelopedderivative40 42 Introduction of a second copy of AAA 44 might shed light on the tolerance for less conformationallyrestricteddipeptideisosterswithrespecttoantimicrobialandhemolyticalactivity. Figure4;GSanaloguewithincreasedflexibility 150 SummaryandFutureProspects InChapter6,asimilarstrategy,theuseofdipeptideisosters,isappliedonLoloatinCand thestructuralandbiologicalconsequencesoftheincorporationoffuranoidSAA46replacing three different motifs (highlighted in Figure 5). Structural analysis by means of NMR indicated that the solution structure of each analogue differed from the dumbbelllike conformation of Loloatin C. Also, all analogues containing SAA 46 were shown to be less potentintheantimicrobialandthehemolyticalassaythentheparentcompound,LoloatinC. Possibly, incorporating AAA 48 into the Loloatin C allows the compound to adopt the dumbbelllike conformation but still profit from the benefits of nonnatural amino acid replacements. Figure5;StructuresofSAA46andLoloatinC,47.HighlightedmotifhavebeenreplacedbySAA46. Biotinylatedmethylfluorphosphonateasbiochemicalprobe In Chapter 7, the synthesis of biotinylated methylfluorophosphonate 50 has been described.Thecompoundswereappliedtostudythebiologicaleffectsofintoxicationwith toxins like sarin 51 and the isolation of butyrylcholinesterase from human plasma. Competitionexperimentsbetween50and51inmonkeyliverhomogenates,intactandlysed A549lungcellsidentified8proteinsthatwereinhibitedby51inacompetitivemanner.The synthesis of 50 from precursor 49 allows the synthesis of organophosphonate bearing a differentleavinggroup(52)oradifferentreportergroup(53).In52,thefluorideisreplaced bya2(diisopropylamino)ethanethiolmoietythatisalsofoundinthenerveagentVXwhich enables a detailed study on the inhibition profile of the agent. The introduction of a solid supportintotheconstructmayopenthewayforanalternativeisolationprocedure. 151 Chapter8 Scheme7;Structuresandproposedsynthesisofbiotinylatedmethylfluorophosphonate50andanaloguebearinga differentleavinggroup(52)ortag(53).Reagentandconditions:(i)TBAT,THF.(ii)TFA/DCM.(iii)biotinOSu,DiPEA, DMF.(iv)2(diisopropylamino)ethanethiol,DBU,THF.(v)SepharoseOSu,DiPEA,THF References 1 W.M.M.Kirby,Science,1944,99,219–220. 2 T.G.Davies,M.L.Verdonk,B.Graham,S.SaalauBethell,C.C.F.Hamlett,T.McHardy,I.Collins,M.D.Garret, P.Workman,S.J.Woodhead,H.Jhoti,D.Barforf,J.Mol.Biol.,2007,367,882–894. 3 I.Collins,J.Caldwell,T.Fonseca,A.Donald,V.Bavetsias,L.J.K.Hunter,M.D.Garret,M.G.Rowlands,G.W. Aherne, T.G. Davies, V. Berdini, S.J. Woodhead, D. Davies, L.C.A. Seavers, P.G. Wyatt, P. Workman, E. McDonald,Bioorg.Med.Chem.,2006,14,1255–1273. 4 a)D.J.Vugts,H.Jansen,R.F.Schmitz,F.J.J.dekanter,R.V.A.Orru,Chem.Comm.,2003,2594–2595.b)M. Paravidino,R.S.Bon,R.Scheffelaar,D.J.Vigts,A.Znabet,R.F.Schmitz,J.J.deKanter,M.Lutz,A.L.Spek,M.B. Groen,R.V.A.Orru,Org.Lett.,2006,8,5369–5372. 5 J.Brussee,A.vanderGen,Recl.Trav.Chim,PaysBas,1991,110,25–26. 6 Forareviewsee:R.E.W.Hancock,Exp.Op.Invest.Drugs,2000,9,1723–1729. 152
© Copyright 2026 Paperzz