Composite sustainable development indicators program of Île-de-France/Paris region By Iuli NASCIMENTO - Île-de-France - Paris region September 2007 Association Mondiale des Grandes Métropoles – Métropolis Commission 5 The SD indicators program Step 1: The indicators database has been structured and made available to experts for consultation and validation Step 2: An Environmental Memento has been published Step 3: A set of eco-region indicators has been defined Step 4: UNDP SD indicators (HDI, HPI & GEM) have been tested at the regional level Step 5: New options have been explored (ISS & BIP 40) Step 6: A SD dashboard has been set-up (IQS & IQE) Normalization: an international comparison UNDP indices HDI HPI GEM UNGP and composite indicators In the late 80s the UN proposed a vision of human development which was not limited to traditional monetary indicators like the GDP New indicators were proposed like: HDI: Human Development Indicator HPI: Human Poverty Indicator GEM: Gender Empowerment Measure Human development dimensions UNDP human development definition: A development that allows people to enjoy long, healthy and creative lives This definition includes 3 dimensions: Capacity to live a long and healthy life Access to education and knowledge Access to minimum material resources to reach a decent living condition How to build composite indicators? The Human Development Indicator (HDI) HDI takes into account 3 dimensions: Population living level (GDP per capita) Population education level (adult literacy and combined primary, secondary and tertiary gross enrolment) Population health level (life expectancy) To aggregate these indicators an international normalization is done: Each indicator has a value comprised between 0 and 1, corresponding to minimum and maximum predefined values HDI is the arithmetic mean of these 3 indicators HDI aggregation process Human development dimensions Selected indicators Min. value Max. value 1- Capacity to live a long and healthy life Life expectancy at birth 25 years 85 years 2- Access to education and knowledge Adult literacy rate (weight = 1/3) 0% 100% Indicator value = Adult literacy rate / 100 Gross enrolment rate (weight = 2/3) 0% 100% Indicator value = Gross enrolment / 100 GDP per capita (PPA) 100 US$ 40,000 US$ 3- Access to minimum material resources to reach a decent living condition Sub-indicator value determination Indicator value determination (between 0 and 1) Life expectancy indicator = (Life expectancy – 25) / (85 – 25) 0 % = min. value 100% = max. value Education indicator = (2/3 * Adult literacy indicator) + (1/3 * Gross enrolment indicator) GDP indicator = [log (GDP per capita) – log (100)] / [log (40.000) – log (100)] HDI = (Life expectancy indicator + Education indicator + GDP indicator) / 3 HDI by district Indice santé 0,940 0,932 0,922 0,918 0,930 0,917 0,907 0,897 0,902 0,910 Indice instruction 0,993 0,987 0,987 0,993 0,940 0,957 0,968 0,965 0,965 0,939 Indice niveau de vie 1,000 1,000 1,000 0,930 0,955 0,939 0,932 0,929 0,906 0,923 Indice de Développement Humain - 2003 1,000 0,980 0,960 0,940 0,920 0,900 0,880 0,860 0,840 0,820 is e ne 'O Va l -d ar M et e Sa e in Se Se in l- d in t- D eM ar en is ne es e in nn el so ei ne Es Yv Va au ts - de -S Pa r is 0,800 H Paris Hauts-de-Seine Île-de-France Essonne Yvelines Val-de-Marne France métropolitaine Seine Saint-Denis Seine et Marne Val-d'Oise IDH 0,978 0,973 0,970 0,947 0,942 0,938 0,936 0,930 0,924 0,924 HDI by country 1 Luxembourg Île-de-France 2 Irlande 3 Norvège 4 Etats-Unis 5 Danemark 6 Islande 7 Canada 8 Suisse 9 Autriche 10 Australie 11 Pays-Bas 12 Belgique 13 Japon 14 Allemagne 15 France 16 Finlande Indice de PIB 1,000 1,000 0,990 0,990 0,990 0,960 0,959 0,956 0,955 0,953 0,950 0,948 0,942 0,940 0,939 0,939 0,938 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Hong-Kong - Chine Royaume-Uni Italie Suède Singapour Nouvelle-Zélande Emirats arabes unis Espagne Nord-Pas-de-Calais Israël Grèce Qatar Brunei Darussalam Slovénie Chypre Portugal Corée Sud Indice de PIB 0,936 0,935 0,935 0,933 0,918 0,905 0,903 0,903 0,900 0,885 0,884 0,883 0,878 0,877 0,874 0,868 0,866 HDI and GDP Region Île-de-France HDI Region Île-de-France has one of the highest HDI worldwide One of the reasons to explain this high HDI is the high GDP per capita The hight GDP per capita is mirroring the high concentration of corporate HQs and of companies in region Île-de-France + the presence of the largest and most famous French universities However, this result should be considered with care since HDI calculations are based on international statistics which do not necessarily apply well at the regional level HDI-2 A second HDI, called HDI-2, has been computed to raise the statistics limitations mentioned previously The HDI-2 is made of the same categories as the HDI, however: It is based on data that is more relevant at the regional level (and available up to town-level) The mininum and maximum values have been redefined to reflect the minimum and maximum values found in Île-de-France HDI-2 computation Health: life expectancy at birth Health indicator = (Life expectancy – 65) / (85 – 65) Education: % of population more than 15 years old and olding a degree Knowledge indicator = (% of pop. > 15 olding a degree – 50) / (100 – 50) Living level: median taxable income (US$ PPA) Living level indicator = (log(median taxable income) – log(100)) / (log(40,000) - log(100)) HDI-2 = (Life expectancy indicator + Education indicator + Living level indicator) / 3 Region Île-de-France HDI-2 ID H -2 1,000 F o r m u le c a lc u l a t o ir e d e l'in d ic e : ( i n d i c e s a n t é + i n d i c e é d u0,900 c a tio n + in d ic e n iv e a u d e v ie ) / 3 0,800 ID H -2 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 ,8 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,6 ,6 0 9 8 7 5 5 2 1 7 2 4 9 3 1 3 0 3 6 2 3 0,700 0,600 0,500 0,400 0,300 0,200 0,100 0,000 D eux com m unes : L a C o u rn e u v e N e u illy 0 ,4 8 8 0 ,8 6 5 au P ts -d ari es Se in Yv e el in Es es so nn e Va l-d eM a Va rne Se l-d ' in e Ois et e M ar Se n e in e Sa in La t-D en C is ou rn eu ve N eu illy 2 3 P a r is H a u ts - d e - S e in e Y v e lin e s Essonne Île -d e -F r a n c e V a l- d e - M a r n e V a l- d 'O is e S e in e e t M a r n e F r a n c e m é t r o p o lit a in e S e in e S a in t - D e n is H 1 Region Île-de-France HDI-2 Paris Hauts-de-Seine Yvelines Essonne Île-de-France Val-de-Marne France métropolitaine Val-d'Oise Seine et Marne Seine Saint-Denis Indice santé Indice éduc. diplôme Indice revenu IDH-2 0,763 0,758 0,703 0,733 0,733 0,740 0,685 0,720 0,678 0,680 0,772 0,758 0,762 0,738 0,716 0,708 0,646 0,678 0,688 0,570 0,878 0,880 0,886 0,842 0,812 0,803 0,684 0,772 0,782 0,621 0,804 0,799 0,783 0,771 0,753 0,750 0,672 0,723 0,716 0,624 0,900 0,800 0,700 0,600 0,500 0,400 0,300 0,200 0,100 Indice santé Indice éduc. diplôme M ar ne Sa in t-D en is et Se in e Va l-d 'O ise Se in e Va l-d eM ar ne 0,000 Es so nn e 0,488 0,865 ei ne Yv el in es 0,376 0,995 de -S 0,408 0,840 Pa ris 0,680 0,760 Ha ut s- Deux communes : La Courneuve Neuilly Indice revenu IDH-2 The HDI-2 is more representative of regional social disparities than the HDI The HDI-2 in 1999 (normalized between 0 and 1) IDH–2 sampled between 0 et 1 (minimum and maximum values) Human Poverty Indicator (HPI and IPH-2) The Human Poverty Indicator (HPI - and HPI-2 for developed countries-) is an indication of the level of poverty amongst a social group HPI is not only an economical indicator: it also reflects inequalities of access to health services, employment and education HPI is based on: A monetary poverty indicator The probability at birth to die before the age of 60 The illiteracy rate amongst adults aged 16 to 65 The long-term unemployment rate HPI-2 computation Cubic mean Health and life expectancy: probability at birth to die before the age of 60 (P1) Knowledge and education: illiteracy rate amongst adults aged 16 to 65 (P2) Living level: monetary poverty rate (P3) Labor and social exclusion: long term unemployment rate (P4) IPH-2 = 1/4 (P13+P23+P33+P43)1/3 HPI-2 by district HPI-2 by district Difficulties encountered: Illiteracy data not available at district level Use of an amplification coefficient for long-term unemployment: highly debatable Partial conclusions: Human poverty is rather evenly distributed, except in Seine-Saint-Denis district (higher than everywhere else) There is a big difference between the average living level and the poverty level, especially in Paris (with questions as regards the reliability of some data DEFM1) Gender Empowerment Measure The Gender Empowerment Measure (GEM) tries to measure participation to the political and economical life GEM is not computed for France (apparently because of some incompatibility between the French and the international statistical classification systems) GEM computation Dimensions de parité Hommes-Femmes Indicateurs retenus Participation et pouvoir décisionnaire dans la sphère politique Participation et pouvoir décisionnaire dans le domaine économique Pourcentage des femmes (resp. des hommes) dans les chambres parlementaires nationales (Sénat et Assemblée nationale en France) Pourcentage des femmes (resp. des hommes) occupant des fonctions de représentation parlementaire, de direction et d'encadrement supérieur (catégorie 1 de la CITP-88) Pourcentage de femmes (resp. des hommes) occupant des postes d’encadrement et fonctions techniques (catégories 2 et 3 de la CITP-88) Pourcentage du revenu estimé (par tête) du travail des femmes (resp. de celui des hommes) Maîtrise des ressources économiques Exemple : valeur Norvège 38,2% PEER1 30,0% PEER2 50,0% 0,75 PEER3 Indice de Participation des Femmes (IPF) = (PEER 1 + PEER 2 + PEER 3)/3 Data used to compute GEM Participation of women in the economic life The weight hence given to the GDP in the GEM could be discussed This data is hard to collect for region Île-de-France (lack of details in labor studies) Data estimation based on Yearly Declaration of Social Data (DADS) GEM by country IPF IPF 1 Norvège 0,928 14 Nouvelle-Zélande 0,769 2 Danemark 0,860 15 Espagne 0,745 3 Suède 0,852 16 Irlande 0,724 17 Bahamas 0,719 Île-de-France 0,849 4 Islande 0,834 18 Royaume-Uni 0,716 5 Finlande 0,833 19 France (2001)* 0,686 6 Belgique 0,828 20 Argentine 0,665 7 Australie 0,826 21 Portugal 0,656 8 Pays-Bas 0,814 22 Israël 0,622 9 Allemagne 0,813 23 Costa Rica 0,606 10 Canada 0,807 24 Grèce 0,594 11 Suisse 0,795 25 Italie 0,589 12 Etats-Unis 0,793 26 Japon 0,534 13 Autriche 0,779 Nord-PDC (2001)* 0,492 Indice de participation des Femmes (IPF) dans quelques pays développés et en ÎleÎle-dede-France (2003) Sources : PNUD 2005, *Gadrey et ali. 2006, + notre estimation pour Île-de-France - Women's participation in the political life for region Île-de-France is above national average - Women's participation in the economic life is decent Conclusion on UNDP indicators use in region Île-de-France Results vary enormously: The indicators appear to be well-adapted to the international level: this is less true for the regional level Some data is missing at the sub-regional level The indicators lack discrimination power at the regional level; this is particularily true for the HDI It is very difficult to compare UNDP indicators at a national level and at a regional level 2 suggestions for further R&D work: Try to normalize HDI-2 so that it may used up to townlevel Try to normalize ISS and BIP40 so that we can get time series Thank you for your attention!
© Copyright 2025 Paperzz