STM and STS at Solid-Liquid Interfaces Jürgen P. Rabe Department of Physics Humboldt University Berlin Outline • Molecular Self-Assembly at Solid-Liquid Interfaces • STM/STS at Solid-Liquid Interfaces • Bilayers of Electron Donors and Acceptors • Charge-Transfer Complexes as Nanoscopic FET-Gates Molecular Self-Assembly at Inert Solid-Liquid Interfaces z E ¾ Minimize enthalpy (H) => Maximum adsorbate density at interface ¾ Maximize entropy (S): => Adsorption of large and rigid molecules from solution (since less translational and conformational entropy is lost) ª Minimizing free energy (G): 2D cystals of large and rigid molecules J.P.R, S. Buchholz, Science 253 (1991) 424; Phys. Rev. Lett. 66 (1991) 2096 P. Samori, N. Severin, K. Müllen, J.P.R. Adv. Mater. 12 (2000) 579 STM & STS at Solid-Liquid Interfaces feedback control piezo tube scanner solution tip adsorbate substrate Solution: Solvent: Substrate: Probe: Molecular Imaging: Almost saturated 1,2,4 trichlorobenzene (TCB) Highly Oriented Pyrolytic Graphite Pt/Ir (80%, 20%) etched tips It= 0.01 - 1 nA Ut= 0.1 - 1.2 V J.P.R, S. Buchholz, Science 253 (1991) 424; Phys. Rev. Lett. 66 (1991) 2096 2D Single Crystal of a Rigid Rod Molecule on the Basal Plane of Graphite (HOPG) Unit cell: a=(1.83±0.11) nm b=(3.42±0.12) nm a=108 ° P. Samorì, V. Francke, K. Müllen, J.P.R., Chem. Eur. J. 5 (1999) 2312 Polycrystallinity STM image of PPE trimer P. Samorí, V. Francke, V. Enkelmann, K. Müllen, J.P.R., Chem. Mater. 15 (2003) 1032 Ostwald Ripening P. Samorí, V. Francke, V. Enkelmann, K. Müllen, J.P.R., Chem. Mater. 15 (2003) 1032 Alkylated Nanographenes C 12H25 (C12 -chain) C 12H25 H 25 C12 H 25C12 C 12H25 H 25C 12 C 12H25 C 12H25 H25 C12 H25C12 C 12H25 H 25C 12 C 12H25 C12 H 25 C 12H25 H25C 12 C 12H25 H 25C 12 H 25C 12 C 12H25 C 12H25 ~7.3eV 1 2 2.68eV 2.68 eV IE~6.9eV I~9.6eV I(Graphite)~4.7eV [ 2.34eV 2.34 eV 2.03eV 2.03 eV „C78“ on HOPG Long Molecular Axis Graphite-Axes (zig-zag) 2nm STM at constant height Model for Orientation S. Ito, P.T. Herwig, T. Böhme, J.P.R., W. Rettig, K. Müllen, J. Am. Chem. Soc. 122 (2000) 7698 I-V Characteristics Different scans of one junction Different junctions I/nA 0.8 I/nA 0.8 0.4 0.4 U/V 0.0 -1.5 0.75 0.0 1.5 -0.75 -1.5 U/V 1.5 0.75 -0.75 -0.4 -0.4 Different tip-sample distances Normalized tip-sample distances I/nA 1.2 I/nA 0.8 0.6 0.8 0.4 0.4 0.2 U/V 0.0 -1.5 -0.75 0.75 U/V 0.0 1.5 -1.5 -0.75 -0.2 -0.4 0.75 1.5 Asymmetric I-V Characteristics Through Single Symmetric Molecules vacuum Assumptions • Resonantly enhanced tunneling • Fermi-level non-symmetric in HOMO-LUMO-gap • Molecules closer to substrate e- Result Enhanced tunneling due to HOMO of HBC at negative sample bias e- tip HOPG positive sample bias HOPG tip negative sample bias I-V Characteristics of PAHs with Increasing Size a.u. 2,75 Tunnelcurrent-Ratio at -1.4V: 2,50 2,25 2,00 1,75 1 : 2 : 3 : 5 1,50 1,25 1,00 Each Potential Shift ~0.15V l 0,75 0,50 0,25 0,00 -0,25 -0,50 -0,75 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 Substrate-Potential [V] T. Böhme, C.D. Simpson, K. Müllen, J.P.R., Chem. Eur. J. (in press) Frontier orbitals of a free C42 (PM3) T. Schmitz-Hübsch et al. / Surface Science 445 (2000) 358-367 First HBC Adlayer P. Samorí, N. Severin, C.D. Simpson, K. Müllen, J.P.R., J. Am. Chem. Soc. 124 (2002) 9454 Identical to UHV data (T. Schmitz-Hübsch et al., Surface Science 445 (2000) 358) First and Second HBC Adlayer First layer strongly perturbed Second layer weakly perturbed C42 3 nm 2.7·107 - 1.7·109 Ω Tunneling junction impedance 1.1·109 - 8.4·109 Ω - Perturbation decreases with the distance from the substrate - Additional effect on electronic decoupling due to change of packing symmetry P. Samorí, N. Severin, C.D. Simpson, K. Müllen, J.P.R., J. Am. Chem. Soc. 124 (2002) 9454 Donor-Stacks STM: Dimers HBC I/nA 0.5 U/V 0.0 -1.5 -1.0 -0.5 -0.5 0.5 1.0 1.5 STS: Inequivalent dimers -1.0 -1.5 -2.0 F. Jäckel, M.D. Watson, K. Müllen, J.P.R., Phys. Rev. B 73 (2006) 045423 P. Samorí, N. Severin, C.D. Simpson, K. Müllen, J.P.R., J. Am. Chem. Soc. 124 (2002) 9454 Model for HBC Bilayer B A A • HBCs in each row electronically equivalent • HBCs in each dimer electronically not equivalent • off-sets 0.38/0.62 nm F. Jäckel, M.D. Watson, K. Müllen, J.P.R., Phys. Rev. B 73 (2006) 045423 Aviram and Ratner’s 1974-Proposal for a Molecular Rectifier Donor-Bridge-Acceptor no bias + + electrode electrode - electrode electrode electrode - forward bias electrode vacuum reverse bias A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 1974, 277 Stacks of Donors and Acceptors? C10H21 O O C8H17 HBC N N C8H17 O O C10H21 Coronene-di-imide (CDI) zigzag-HBC K. Müllen et al., MPI-P Mainz Mixed Donor-Acceptor Layer a α b A A Ut=1450 mV It=140 pA a=(1.85± 0.15) nm ; b=(1.80± 0.15) nm ; α=(86±5)° P. Samorí, N. Severin, C.D. Simpson, K. Müllen, J.P.R., J. Am. Chem. Soc. 124 9454 (2002) F. Jäckel I-Vs through Mixed Donor-Acceptor Layer I/nA 0.8 0.4 0.0 -1.5 -1.0 0.5 1.0 U/V 1.5 -0.5 -0.4 Donor on Donor -0.8 -1.2 F. Jäckel -1.6 Acceptor on Donor Reverse Orientation of Molecular Diodes? => I-Vs through Donors and Acceptors vacuum Assumptions • Resonantly enhanced tunneling • Fermi-level non-symmetric in HOMO-LUMO-gap • Molecules closer to substrate Result Enhanced tunneling due to HOMO of Donor and LUMO of Acceptor at opposite bias e- e- Donor Acceptor tip HOPG positive sample bias HOPG tip negative sample bias HBC-Anthraquinone6 R R 0.8 R = C 12H 25 I/nA R R O R = (CH 2) 11 R R 0.4 O O a) 0.0 1.0 -1.0 O U/V HBCs alkyl chains -0.4 AQs tunneling current in nA -0.8 2,1 1,4 HBC 0,7 AQ 0,0 alkyl chain -0,7 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 sample bias in V F. Jäckel, Z. Wang, M.D. Watson, K. Müllen, J.P.R., Chem. Phys. Lett. 387 (2004) 372 Donors and Acceptors vacuum 0.35 0.97 2.28 4.7 6.15 6.55 8.47 HOPG DMA HBC AQ Dimethoxyanthracene (DMA) as donor and AQ as acceptor: known to form CT complexes in the solid state (E. Ostuni et al., Liquid Crystals 26, 1999, 541) STM of HBC-Anthraquinone6 + DMA no DMA co-adsorbed 5 nm Us = +1.4 V It = 300 pA 15 nm Us = -1.4 V It = 108 pA 5 nm Us = -1.2 V It = 270 pA Charge Transfer Complexes F. Jäckel, M.D. Watson, K. Müllen, J.P.R., Phys. Rev. Lett. 92 (2004) 188303 STS of HBC-Anthraquinone6 + DMA I/nA 0.8 DMA co-adsorbed DMA not co-adsorbed 0.4 0.0 5 nm 1.0 -1.0 OFF ON -0.4 ... AQ-DMA-Complex HBC U/V ... F. Jäckel, M.D. Watson, K. Müllen, J.P.R., Phys. Rev. Lett. 92 (2004) 188303 I-V-Master-Curve I/nA 0.8 with DMA, normalized without DMA 0.6 0.4 0.2 0.0 1.0 U/V -1.0 -0.2 Shift by 120 mV and normalization F. Jäckel, M.D. Watson, K. Müllen, J.P.R., Phys. Rev. Lett. 92 (2004) 188303 Interface-Dipole-Model vacuum - + no interface dipole LUMO with interface dipole EF HOMO interface normal Helmholtz equation: ∆φ = N µe ε 0ε r calculations: µ ~ 3 Debye => ∆φ ~ 120 meV Prototypical Single-Molecule Chem-FET with a Nanometer-Sized Gate SOURCE U DMA GATE AQ CT complex I HBC DRAIN F. Jäckel, M.D. Watson, K. Müllen, J.P.R., Phys. Rev. Lett. 92 (2004) 188303 Why STM & STS at Solid-Liquid Interfaces? • General processing scheme for large molecules • Clean & self-repairing due to strong interfacial forces • High similarity to UHV results (if available) • Ambient conditions attractive for applications
© Copyright 2026 Paperzz