Lesson 5.1 Skills Practice Name Date Go for the Curve! Comparing Linear and Exponential Functions Vocabulary Describe each type of account as simple interest or compound interest based on the scenario given. Explain your reasoning. 1. Andrew deposits $300 into an account that earns 2% interest each year. After the first year, Andrew has $306 in the account. After the second year, Andrew has $312 in the account, and after the third year, Andrew has $318 in the account. This is a simple interest account because the interest earned at the end of each year is a percent of the original deposit amount. 2. Marilyn deposits $600 in an account that earns 1.5% interest each year. After the first year, Marilyn has $609 in the account. After the second year, Marilyn has $618.14 in the account, and after the third year, Marilyn has $627.41 in the account. This is a compound interest account because the interest earned at the end of each year is a percent of the account balance at the beginning of the year. Problem Set Write a function to represent each problem situation. 5 1. Nami deposits $500 into a simple interest account. The interest rate for the account is 3%. Write a function that represents the balance in the account as a function of time t. © 2012 Carnegie Learning P(t) 5 P0 1 (P0 ? r)t P(t) 5 500 1 (500 ? 0.03)t P(t) 5 500 1 15t 2. Carmen deposits $1000 into a simple interest account. The interest rate for the account is 4%. Write a function that represents the balance in the account as a function of time t. P(t) 5 P0 1 (P0 ? r)t P(t) 5 1000 1 (1000 ? 0.04)t P(t) 5 1000 1 40t Chapter 5 Skills Practice 8069_Skills_Ch05.indd 381 381 25/04/12 4:13 PM Lesson 5.1 Skills Practice page 2 3. Emilio deposits $250 into a simple interest account. The interest rate for the account is 2.5%. Write a function that represents the balance in the account as a function of time t. P(t) 5 P0 1 (P0 ? r)t P(t) 5 250 1 (250 ? 0.025)t P(t) 5 250 1 6.25t 4. Vance deposits $1500 into a simple interest account. The interest rate for the account is 5.5%. Write a function that represents the balance in the account as a function of time t. P(t) 5 P0 1 (P0 ? r)t P(t) 5 1500 1 (1500 ? 0.055)t P(t) 5 1500 1 82.5t 5. Perry deposits $175 into a simple interest account. The interest rate for the account is 4.25%. Write a function that represents the balance in the account as a function of time t. P(t) 5 P0 1 (P0 ? r)t P(t) 5 175 1 (175 ? 0.0425)t P(t) 5 175 1 7.4375t 6. Julian deposits $5000 into a simple interest account. The interest rate for the account is 2.75%. Write a function that represents the balance in the account as a function of time t. P(t) 5 P0 1 (P0 ? r)t P(t) 5 5000 1 (5000 ? 0.0275)t P(t) 5 5000 1 137.5t Sherwin deposits $500 into a simple interest account. The interest rate for the account is 3.75%. The function P(t) 5 500 1 18.75t represents the balance in the account as a function of time. Determine the account balance after each given number of years. 7. 3 years P(t) 5 500 1 18.75t P(t) 5 500 1 18.75t P(3) 5 500 1 18.75(3) P(2) 5 500 1 18.75(2) P(3) 5 556.25 P(2) 5 537.5 In 3 years, the account balance will be $556.25. In 2 years, the account balance will be $537.50. 9. 10 years 382 8. 2 years 10. 15 years P(t) 5 500 1 18.75t P(t) 5 500 1 18.75t P(10) 5 500 1 18.75(10) P(15) 5 500 1 18.75(15) P(10) 5 687.5 P(15) 5 781.25 In 10 years, the account balance will be $687.50. In 15 years, the account balance will be $781.25. © 2012 Carnegie Learning 5 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 382 25/04/12 4:13 PM Lesson 5.1 Skills Practice page 3 Name Date 11. 50 years 12. 75 years P(t) 5 500 1 18.75t P(t) 5 500 1 18.75t P(50) 5 500 1 18.75(50) P(75) 5 500 1 18.75(75) P(50) 5 1437.5 P(75) 5 1906.25 In 50 years, the account balance will be $1437.50. In 75 years, the account balance will be $1906.25. Hector deposits $400 into a simple interest account. The interest rate for the account is 5.25%. The function P(t) 5 400 1 21t represents the balance in the account as a function of time. Determine the number of years it will take for the account balance to reach each given amount. 13. $505 14. $610 P(t) 5 400 1 21t P(t) 5 400 1 21t 505 5 400 1 21t 610 5 400 1 21t 105 5 21t 210 5 21t 55t It will take 5 years for the account balance to reach $505. 15. $1450 It will take 10 years for the account balance to reach $610. 16. $2500 P(t) 5 400 1 21t P(t) 5 400 1 21t 1450 5 400 1 21t 2500 5 400 1 21t 1050 5 21t 2100 5 21t 50 5 t It will take 50 years for the account balance to reach $1450. © 2012 Carnegie Learning 10 5 t 17. double the original deposit It will take 100 years for the account balance to reach $2500. 18. triple the original deposit P(t) 5 400 1 21t P(t) 5 400 1 21t 800 5 400 1 21t 1200 5 400 1 21t 400 5 21t 19 ¯ t 5 100 5 t 800 5 21t 38 ¯ t It will take about 19 years for the account It will take about 38 years for the account balance to reach $800. balance to reach $1200. Chapter 5 Skills Practice 8069_Skills_Ch05.indd 383 383 25/04/12 4:13 PM Lesson 5.1 Skills Practice page 4 Write a function to represent each problem situation. 19. Ronna deposits $500 into a compound interest account. The interest rate for the account is 4%. P(t) 5 P0 ? (1 1 r)t P(t) 5 500 ? (1 1 0.04)t P(t) 5 500 ? 1.04t 20. Leon deposits $250 into a compound interest account. The interest rate for the account is 6%. P(t) 5 P0 ? (1 1 r)t P(t) 5 250 ? (1 1 0.06)t P(t) 5 250 ? 1.06t 21. Chen deposits $1200 into a compound interest account. The interest rate for the account is 3.5%. P(t) 5 P0 ? (1 1 r)t P(t) 5 1200 ? (1 1 0.035)t P(t) 5 1200 ? 1.035t 22. Serena deposits $2700 into a compound interest account. The interest rate for the account is 4.25%. P(t) 5 P0 ? (1 1 r)t P(t) 5 2700 ? (1 1 0.0425)t P(t) 5 2700 ? 1.0425t 5 23. Shen deposits $300 into a compound interest account. The interest rate for the account is 1.75%. P(t) 5 P0 ? (1 1 r)t P(t) 5 300 ? 1.0175t 24. Lea deposits $450 into a compound interest account. The interest rate for the account is 5.5%. P(t) 5 P0 ? (1 1 r)t P(t) 5 450 ? (1 1 0.055)t © 2012 Carnegie Learning P(t) 5 300 ? (1 1 0.0175)t P(t) 5 450 ? 1.055t 384 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 384 28/03/14 4:06 PM Lesson 5.1 Skills Practice page 5 Name Date Cisco deposits $500 into a compound interest account. The interest rate for the account is 3.25%. The function P(t) 5 500 ? 1.0325t represents the balance in the account as a function of time. Determine the account balance after each given number of years. 25. 2 years P(t) 5 500 ? 1.0325 26. 4 years P(t) 5 500 ? 1.0325t t P(2) 5 500 ? 1.03252 P(4) 5 500 ? 1.03254 P(2) ¯ 533.03 P(4) ¯ 568.24 In 2 years, the account balance will be $533.03. In 4 years, the account balance will be $568.24. 27. 15 years 28. 20 years P(t) 5 500 ? 1.0325 P(t) 5 500 ? 1.0325t P(15) 5 500 ? 1.032515 P(20) 5 500 ? 1.032520 P(15) ¯ 807.83 P(20) ¯ 947.92 In 15 years, the account balance will be $807.83. In 20 years, the account balance will be $947.92. t © 2012 Carnegie Learning 29. 50 years 30. 65 years P(t) 5 500 ? 1.0325t P(t) 5 500 ? 1.0325t P(50) 5 500 ? 1.032550 P(65) 5 500 ? 1.032565 P(50) ¯ 2474.42 P(65) ¯ 3997.83 In 50 years, the account balance will be 2474.42. In 65 years, the account balance will be $3997.83. 5 Mario deposits $1000 into a compound interest account. The interest rate for the account is 5%. The function P(t) 5 1000 ? 1.05t represents the balance in the account as a function of time. Use a graphing calculator to estimate the number of years it will take for the account balance to reach each given amount. 31. $1500 32. $4000 It will take about 8.3 years for the It will take about 28.4 years for the account account balance to reach $1500. balance to reach $4000. 33. $6000 34. $10,000 It will take about 36.7 years for the It will take about 47.2 years for the account account balance to reach $6000. balance to reach $10,000. Chapter 5 Skills Practice 8069_Skills_Ch05.indd 385 385 25/04/12 4:13 PM Lesson 5.1 Skills Practice 35. double the original amount page 6 36. triple the original amount It will take about 14.2 years for the It will take about 22.5 years for the account account balance to reach $2000. balance to reach $3000. Use the simple and compound interest formula to complete each table. Round to the nearest cent. 37. Teresa has $300 to deposit into an account. The interest rate available for the account is 4%. Quantity Time Simple Interest Balance Compound Interest Balance Units years dollars dollars t 300 1 12t 300 ? 1.04t 0 300.00 300.00 2 324.00 324.48 6 372.00 379.60 10 420.00 444.07 Expression 5 Quantity Time Simple Interest Balance Compound Interest Balance Units years dollars dollars t 700 1 42t 700 ? 1.06t 0 700.00 700.00 3 826.00 833.71 10 1120.00 1253.59 20 1540.00 2244.99 Expression 386 © 2012 Carnegie Learning 38. Ye has $700 to deposit into an account. The interest rate available for the account is 6%. Chapter 5 Skills Practice 8069_Skills_Ch05.indd 386 25/04/12 4:13 PM Lesson 5.1 Skills Practice page 7 Name Date 39. Pablo has $1100 to deposit into an account. The interest rate available for the account is 3.5%. Quantity Time Simple Interest Balance Compound Interest Balance Units years dollars dollars t 1100 1 38.5t 1100 ? 1.035t 0 1100.00 1100.00 5 1292.50 1306.45 10 1485.00 1551.66 30 2255.00 3087.47 Expression 40. Ty has $525 to deposit into an account. The interest rate available for the account is 2.5%. Quantity Time Simple Interest Balance Compound Interest Balance Units years dollars dollars t 525 1 13.125t 525 ? 1.025t 0 525.00 525.00 10 656.25 672.04 20 787.50 860.27 50 1181.25 1804.48 © 2012 Carnegie Learning Expression 5 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 387 387 25/04/12 4:13 PM Lesson 5.1 Skills Practice page 8 41. Xavier has $2300 to deposit into an account. The interest rate available for the account is 3.75%. Quantity Time Simple Interest Balance Compound Interest Balance Units years dollars dollars t 2300 1 86.25t 2300 ? 1.0375t 0 2300.00 2300.00 2 2472.50 2475.73 5 2731.25 2764.83 15 3593.75 3995.30 Expression Quantity Time Simple Interest Balance Compound Interest Balance Units years dollars dollars t 100 1 6.25t 100 ? 1.0625t 0 100.00 100.00 5 131.25 135.41 15 193.75 248.28 30 287.50 616.41 Expression 5 388 © 2012 Carnegie Learning 42. Denisa has $100 to deposit into an account. The interest rate available for the account is 6.25%. Chapter 5 Skills Practice 8069_Skills_Ch05.indd 388 25/04/12 4:13 PM Lesson 5.2 Skills Practice Name Date Downtown and Uptown Graphs of Exponential Functions Vocabulary Define the term in your own words. 1. horizontal asymptote A horizontal asymptote is a horizontal line that the graph of a function gets closer and closer to but never intersects. Problem Set Write a function that represents each population as a function of time. 1. Blueville has a population of 7000. Its population is increasing at a rate of 1.4%. P(t) 5 P0 ? (1 1 r)t P(t) 5 7000 ? (1 1 0.014)t P(t) 5 7000 ? 1.014t 2. Youngstown has a population of 12,000. Its population is increasing at a rate of 1.2%. P(t) 5 P0 ? (1 1 r)t P(t) 5 12,000 ? (1 1 0.012)t 5 P(t) 5 12,000 ? 1.012t © 2012 Carnegie Learning 3. Greenville has a population of 8000. Its population is decreasing at a rate of 1.75%. P(t) 5 P0 ? (1 2 r)t P(t) 5 8000 ? (1 2 0.0175)t P(t) 5 8000 ? 0.9825t 4. North Park has a population of 14,000. Its population is decreasing at a rate of 3.1%. P(t) 5 P0 ? (1 2 r)t P(t) 5 14,000 ? (1 2 0.031)t P(t) 5 14,000 ? 0.969t Chapter 5 Skills Practice 8069_Skills_Ch05.indd 389 389 25/04/12 4:13 PM Lesson 5.2 Skills Practice page 2 5. West Lake has a population of 9500. Its population is increasing at a rate of 2.8%. P(t) 5 P0 ? (1 1 r)t P(t) 5 9500 ? (1 1 0.028)t P(t) 5 9500 ? 0.028t 6. Springfield has a population of 11,500. Its population is decreasing at a rate of 1.25%. P(t) 5 P0 ? (1 2 r)t P(t) 5 11,500 ? (1 2 0.0125)t P(t) 5 11,500 ? 0.9875t Waynesburg has a population of 16,000. Its population is increasing at a rate of 1.5%. The function P(t) 5 16,000 ? 1.015t represents the population as a function of time. Determine the population after each given number of years. Round your answer to the nearest whole number. 7. 1 year 8. 3 years t P(t) 5 16,000 ? 1.015t P(1) 5 16,000 ? 1.0151 P(3) 5 16,000 ? 1.0153 P(t) 5 16,000 ? 1.015 P(3) ¯ 16.731 The population after 1 year The population after 3 years will be 16,240. will be about 16,731. P(1) 5 16,240 9. 5 years 10. 10 years P(t) 5 16,000 ? 1.015 P(t) 5 16,000 ? 1.015t P(5) 5 16,000 ? 1.0155 P(10) 5 16,000 ? 1.01510 t 5 P(10) ¯ 18.569 The population after 5 years will be The population after 10 years will be about 17,237. about 18,569. 11. 20 years 12. 50 years P(t) 5 16,000 ? 1.015 P(t) 5 16,000 ? 1.015t P(20) 5 16,000 ? 1.01520 P(50) 5 16,000 ? 1.01550 t P(20) ¯ 21,550 P(50) ¯ 33,684 The population after 20 years will be The population after 50 years will be about 21,550. about 33,684. 390 © 2012 Carnegie Learning P(5) ¯ 17,237 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 390 25/04/12 4:13 PM Lesson 5.2 Skills Practice page 3 Name Date Morristown has a population of 18,000. Its population is decreasing at a rate of 1.2%. The function, P(t) 5 18,000 ? 0.988t represents the population as a function of time. Use a graphing calculator to estimate the number of years it will take for the population to reach each given amount. 13. 17,000 14. 15,000 It will take about 4.7 years for the population It will take about 15.1 years for the population to reach 17,000. to reach 15,000. 15. half 16. one-third It will take about 57.4 years for the It will take about 91.0 years for the population population to reach 9000. to reach 6000. 17. 0 18. 10,000 The range of the function is all numbers It will take about 48.7 years for the population greater than 0. The function never actually to reach 10,000. reaches 0. Complete each table and graph the function. Identify the x-intercept, y-intercept, asymptote, domain, range, and interval(s) of increase or decrease for the function. 19. f(x) 5 2x © 2012 Carnegie Learning y x f(x) 22 1 4 21 __ __ 1 0 1 1 2 2 4 2 4 5 3 2 1 0 1 24 23 22 21 21 2 3 4 x 22 23 24 x-intercept: none y-intercept: (0, 1) asymptote: y 5 0 domain: all real numbers range: y . 0 interval(s) of increase or decrease: increasing over the entire domain Chapter 5 Skills Practice 8069_Skills_Ch05.indd 391 391 25/04/12 4:13 PM Lesson 5.2 Skills Practice page 4 20. f(x) 5 4x y x f(x) 22 1 16 21 ___ __ 1 4 0 1 1 4 2 16 16 12 8 4 0 4 216212 28 24 24 8 12 16 x 28 212 216 x-intercept: none y-intercept: (0, 1) asymptote: y 5 0 domain: all real numbers range: y . 0 interval(s) of increase or decrease: increasing over the entire domain x 21. f(x) 5 __ 1 3 x f(x) 22 9 21 3 0 1 1 1 3 2 __ __ 1 9 8 6 4 2 0 2 28 26 24 22 22 4 6 8 24 26 28 x-intercept: none y-intercept: (0, 1) x © 2012 Carnegie Learning 5 y asymptote: y 5 0 domain: all real numbers range: y . 0 interval(s) of increase or decrease: decreasing over the entire domain 392 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 392 25/04/12 4:13 PM Lesson 5.2 Skills Practice page 5 Name Date x 22. f(x) 5 __ 1 4 y x f(x) 22 16 21 4 0 1 1 1 4 2 ___ 1 __ 16 16 12 8 4 0 4 216212 28 24 24 8 12 16 x 28 212 216 x-intercept: none y-intercept: (0, 1) asymptote: y 5 0 domain: all real numbers range: y . 0 interval(s) of increase or decrease: decreasing over the entire domain © 2012 Carnegie Learning 23. f(x) 5 22 ? 2x y x f(x) 22 2 1 6 2 4 21 21 2 __ 0 22 1 24 2 28 5 8 0 2 28 26 24 22 22 4 6 8 x 24 26 28 x-intercept: none y-intercept: (0, 22) asymptote: y 5 0 domain: all real numbers range: y , 0 interval(s) of increase or decrease: decreasing over the entire domain Chapter 5 Skills Practice 8069_Skills_Ch05.indd 393 393 25/04/12 4:13 PM Lesson 5.2 Skills Practice page 6 x 24. f(x) 5 22 ? __ 1 2 y x f(x) 22 28 21 24 0 22 1 21 2 2 2 __1 8 6 4 2 0 2 28 26 24 22 22 4 6 8 x 24 26 28 x-intercept: none y-intercept: (0, 22) asymptote: y 5 0 domain: all real numbers range: y , 0 interval(s) of increase or decrease: increasing over the entire domain © 2012 Carnegie Learning 5 394 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 394 25/04/12 4:13 PM Lesson 5.3 Skills Practice Name Date Let the Transformations Begin! Translations of Linear and Exponential Functions Vocabulary Match each definition to its corresponding term. 1. t he mapping, or movement, of all the points of a figure in a plane according to a common operation A basic function B transformation 2. a type of transformation that shifts the entire graph left or right B transformation F horizontal translation C vertical translation 3. a function that can be described as the simplest function of its type A basic function 4. a type of transformation that shifts the entire graph up or down D coordinate notation C vertical translation E argument of a function 5. the variable on which a function operates E argument of a function F horizontal translation 6. n otation that uses ordered pairs to describe a transformation on a coordinate plane 5 D coordinate notation © 2012 Carnegie Learning Problem Set Rewrite each function g(x) in terms of the basic function f(x). 1. f(x) 5 x 2. f(x) 5 x g(x) 5 x 1 4 g(x) 5 x 2 7 g(x) 5 f(x) 1 4 g(x) 5 f(x) 2 7 3. f(x) 5 x 4. f(x) 5 3x g(x) 5 x 2 8 g(x) 5 3x 1 1 g(x) 5 f(x) 2 8 g(x) 5 f(x) 1 1 5. f(x) 5 3x 6. f(x) 5 4x g(x) 5 3x 1 2 g(x) 5 4x 2 6 g(x) 5 f(x) 1 2 g(x) 5 f(x) 2 6 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 395 395 25/04/12 4:13 PM Lesson 5.3 Skills Practice page 2 Represent each vertical translation, g(x), using coordinate notation. 7. f(x) 5 x 8. f(x) 5 x g(x) 5 x 1 8 g(x) 5 x 1 9 (x, y) → (x, y 1 8) (x, y) → (x, y 1 9) 9. f(x) 5 x 10. f(x) 5 4x g(x) 5 x 2 4 g(x) 5 4x 2 1 (x, y) → (x, y 2 4) (x, y) → (x, y 2 1) 11. f(x) 5 4x 12. f(x) 5 3x g(x) 5 4x 1 6 g(x) 5 3x 2 5 (x, y) → (x, y 1 6) (x, y) → (x, y 2 5) Rewrite each function g(x) in terms of the basic function f(x). 13. f(x) 5 3x 14. f(x) 5 3x g(x) 5 3(x 1 1) g(x) 5 3(x 1 5) g(x) 5 3(x 1 1) 5 f(x 1 1) g(x) 5 3(x1 5) 5 f(x 1 5) 15. f(x) 5 2x 16. f(x) 5 2x g(x) 5 2(x 2 1) g(x) 5 2(x 2 9) g(x) 5 2(x 2 1) 5 f(x 2 1) g(x) 5 2(x 2 9) 5 f(x 2 9) 17. f(x) 5 2x 5 18. f(x) 5 2x g(x) 5 2(x 2 3) g(x) 5 2(x 1 4) g(x) 5 2(x 2 3) 5 f(x 2 3) g(x) 5 2(x 1 4) 5 f(x 1 4) 19. f(x) 5 3x 20. f(x) 5 3x g(x) 5 3(x 2 2) g(x) 5 3(x 1 2) (x, y) → (x 1 2, y) (x, y) → (x 2 2, y) 21. f(x) 5 4x 22. f(x) 5 4x g(x) 5 4(x 1 1) g(x) 5 4(x 2 3) © 2012 Carnegie Learning Represent each horizontal translation, g(x), using coordinate notation. (x, y) → (x 2 1, y) (x, y) → (x 1 3, y) 23. f(x) 5 3x 24. f(x) 5 3x g(x) 5 3(x 2 1) g(x) 5 3(x 1 1) (x, y) → (x 1 1, y) (x, y) → (x 2 1, y) 396 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 396 25/04/12 4:13 PM Lesson 5.3 Skills Practice page 3 Name Date Describe each graph in relation to its basic function. 25. Compare f(x) 5 (x) 1 b when b , 0 to the basic function h(x) 5 x. The graph of f(x) is b units below the graph of h(x). 26. Compare f(x) 5 bx 2 c when c . 0 to the basic function h(x) 5 bx. The graph of f(x) is c units to the right of the graph of h(x). 27. Compare f(x) 5 (x 2 b) when b . 0 to the basic function h(x) 5 x. The graph of f(x) is b units to the right of h(x). 28. Compare f(x) 5 bx 2 c when c , 0 to the basic function h(x) 5 bx. The graph of f(x) is c units to the left of the graph of h(x). 29. Compare f(x) 5 bx 1 k when k . 0 to the basic function h(x) 5 bx. The graph of f(x) is k units up from the graph of h(x). 30. Compare f(x) 5 (x 2 b) when b , 0 to the basic function h(x) 5 x. The graph of f(x) is b units to the left of h(x). Each coordinate plane shows the graph of f(x). Sketch the graph of g(x). 31. g(x) 5 f(x) 1 2 32. g(x) 5 f(x) 1 4 © 2012 Carnegie Learning y 4 8 3 6 2 4 1 2 0 1 24 23 22 21 21 5 y 2 3 4 x 0 2 28 26 24 22 22 22 24 23 26 24 4 6 8 x 28 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 397 397 25/04/12 4:13 PM Lesson 5.3 Skills Practice 33. g(x) 5 f(x) 2 2 page 4 34. g(x) 5 f(x 2 3) y y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 28 4 6 8 4 6 8 4 6 8 x 28 35. g(x) 5 f(x 1 3) 36. g(x) 5 f(x 2 4) y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 5 y 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 x 28 28 38. g(x) 5 f(x 1 5) y y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 28 x © 2012 Carnegie Learning 37. g(x) 5 f(x) 1 5 28 398 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 398 25/04/12 4:13 PM Lesson 5.3 Skills Practice page 5 Name Date Write the equation of the function given each translation. 39. f(x) 5 x 40. f(x) 5 x Vertical translation up 2 units Vertical translation down 5 units g(x) 5 x 1 2 g(x) 5 x 2 5 41. f(x) 5 3x 42. f(x) 5 2x Horizontal translation right 4 units Horizontal translation left 6 units g(x) 5 3x 2 4 g(x) 5 2x 1 6 43. f(x) 5 3x 44. f(x) 5 4x Vertical translation down 5 units Horizontal translation right 3 units g(x) 5 3x 2 5 g(x) 5 4(x 2 3) Each graph shows the function g(x) as a translation of the function f(x). Write the equation of g(x). 45. 46. y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 © 2012 Carnegie Learning y 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 28 28 4 6 8 g(x) 5 x 2 3 g(x) 5 x 1 6 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 399 5 x 399 25/04/12 4:13 PM Lesson 5.3 Skills Practice y 47. page 6 y 48. 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 28 28 4 6 8 4 6 8 x g(x) 5 2x 1 2 g(x) 5 2x 2 4 49. 50. y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 5 y 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 28 28 x © 2012 Carnegie Learning g(x) 5 2x 2 3 g(x) 5 2x 1 5 400 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 400 25/04/12 4:13 PM Lesson 5.4 Skills Practice Name Date Take Some Time to Reflect Reflections of Linear and Exponential Functions Vocabulary Define each term in your own words. 1. reflection A reflection of a graph is a mirror image of the graph about a line. 2. line of reflection The line that a graph is reflected about is called the line of reflection. Problem Set Rewrite each function g(x) in terms of the basic function f(x). 1. f(x) 5 3x 2. f(x) 5 3x g(x) 5 2(3x) g(x) 5 32x © 2012 Carnegie Learning g(x) 5 2f(x) g(x) 5 f(2x) 3. f(x) 5 4x 4. f(x) 5 4x g(x) 5 2(4x) g(x) 5 42x g(x) 5 2f(x) g(x) 5 f(2x) 5. f(x) 5 2x1 4 6. f(x) 5 2x2 1 g(x) 5 22x 1 4 g(x) 5 2(2x2 1) g(x) 5 f(2x) 5 g(x) 5 2f(x) Chapter 5 Skills Practice 8069_Skills_Ch05.indd 401 401 25/04/12 4:13 PM Lesson 5.4 Skills Practice page 2 Represent each reflection using coordinate notation. Identify whether g(x) is a reflection about a horizontal line of reflection or a vertical line of reflection. 7. f(x) 5 2x 8. f(x) 5 2x g(x) 5 2(2x) g(x) 5 22x (x, y) → (x, 2y) (x, y) → (2x, y) g(x) is a horizontal reflection about y 5 0. g(x) is a vertical reflection about x 5 0. 9. f(x) 5 5x 10. f(x) 5 5x g(x) 5 2(5x) g(x) 5 5(2x) (x, y) → (x, 2y) (x, y) → (2x, y) g(x) is a horizontal reflection about y 5 0. g(x) is a vertical reflection about x 5 0. 11. f(x) 5 3x1 7 12. f(x) 5 4x2 3 g(x) 5 32x 1 7 g(x) 5 2(4x2 3) (x, y) → (2x, y) (x, y) → (x, 2y) g(x) is a vertical reflection about x 5 0. g(x) is a horizontal reflection about y 5 0. Each coordinate plane shows the graph of f(x). Sketch the graph of g(x). 13. g(x) 5 2f(x) 14. g(x) 5 f(2x) 5 y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 4 8 x 0 2 28 26 24 22 22 24 24 26 26 28 28 402 6 4 6 8 x © 2012 Carnegie Learning y Chapter 5 Skills Practice 8069_Skills_Ch05.indd 402 25/04/12 4:13 PM Lesson 5.4 Skills Practice page 3 Name Date 15. g(x) 5 f(2x) 16. g(x) 5 2f(x) y y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 17. g(x) 5 2f(x) 18. g(x) 5 f(2x) y 8 4 6 8 x y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 © 2012 Carnegie Learning 6 28 28 4 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 28 28 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 403 5 x 403 25/04/12 4:13 PM Lesson 5.4 Skills Practice page 4 Write a function, g(x), to describe each reflection of f(x). 20. f(x) 5 4x 19. f(x) 5 3x Reflection about the horizontal line y 5 0. Reflection about the vertical line x 5 0. g(x) 5 23 g(x) 5 42x x 21. f(x) 5 212x 22. f(x) 5 7x Reflection about the vertical line x 5 0. Reflection about the horizontal line y 5 0. g(x) 5 12x g(x) 5 27x 23. f(x) 5 2x1 9 24. f(x) 5 28x1 1 Reflection about the horizontal line y 5 0. Reflection about the vertical line x 5 0. g(x) 5 2(21 9) g(x) 5 282x 1 1 x Write an equation for g(x) given each transformation. Sketch the graph of g(x). 25. f(x) 5 5x 26. f(x) 5 5x g(x) is a reflection of f(x) over the line y 5 0. g(x) is a reflection of f(x) over the line x 5 0. g(x) 5 25 g(x) 5 52x x y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 28 404 28 4 6 8 x © 2012 Carnegie Learning 5 y Chapter 5 Skills Practice 8069_Skills_Ch05.indd 404 25/04/12 4:13 PM Lesson 5.4 Skills Practice page 5 Name Date 27. f(x) 5 3x 28. f(x) 5 4x g(x) is a translation of f(x) up 2 units. g(x) is a translation of f(x) right 3 units. g(x) 5 3x1 2 g(x) 5 4x23 y y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 28 6 8 29. f(x) 5 4x 30. f(x) 5 3x g(x) is a translation of f(x) down 4 units. g(x) is a translation of f(x) left 5 units. g(x) 5 42 4 g(x) 5 3x15 y y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 4 6 8 x 5 0 2 28 26 24 22 22 24 24 26 26 4 6 8 x 28 28 x 28 x © 2012 Carnegie Learning 4 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 405 405 25/04/12 4:13 PM Lesson 5.4 Skills Practice page 6 Identify the transformation required to transform f(x) to g(x) as shown in each graph. 32. y 16 16 12 12 8 8 4 4 0 4 216 212 28 24 24 8 12 16 x 0 4 216212 28 24 24 28 28 212 212 216 216 33. 34. y 16 12 12 8 8 4 4 8 12 16 x 406 0 4 216212 28 24 24 28 28 212 212 216 216 g(x) is a translation of f(x) up 10 units or g(x) is a translation of f(x) left 5 units. 12 16 x y 16 0 4 216 212 28 24 24 8 g(x) is a reflection of f(x) over the line y 5 0. g(x) is a reflection of f(x) over the line x 5 0. 5 y 8 12 16 x g(x) is a translation of f(x) left 6 units. © 2012 Carnegie Learning 31. Chapter 5 Skills Practice 8069_Skills_Ch05.indd 406 25/04/12 4:13 PM Lesson 5.4 Skills Practice page 7 Name Date 35. 36. y y 16 16 12 12 8 8 4 4 0 4 216212 28 24 24 8 12 16 x 0 4 216212 28 24 24 28 28 212 212 216 216 g(x) is a translation of f(x) right 4 units. 8 12 16 x g(x) is a translation of f(x) down 8 units or g(x) is a translation of f(x) right 4 units. Identify the transformation required to transform each f(x) to g(x). 37. f(x) 5 8x 38. f(x) 5 9x g(x) 5 2(8x) g(x) 5 92x g(x) is a reflection of f(x) over the line y 5 0. 39. f(x) 5 8x 40. f(x) 5 3x g(x) 5 82 5 g(x) 5 3 x g(x) is a translation of f(x) down 5 units. © 2012 Carnegie Learning g(x) is a reflection of f(x) over the line x 5 0. g(x) is a translation of f(x) right 1 unit. 41. f(x) 5 10x 42. f(x) 5 212x g(x) 5 10x 1 2 g(x) 5 212(x 1 1) g(x) is a translation of f(x) up 2 units. 5 x21 g(x) is a translation of f(x) left 1 unit. Chapter 5 Skills Practice 8069_Skills_Ch05.indd 407 407 25/04/12 4:13 PM © 2012 Carnegie Learning 5 408 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 408 25/04/12 4:13 PM Lesson 5.5 Skills Practice Name Date Radical! Because It’s Cliché! Properties of Rational Exponents Vocabulary Match each definition to its corresponding term. n 1. the number a in the expression a A cube root D radicand 2. the number b when b35 a B index A cube root 1 in the expression a__ n1 3. the exponent __ n C nth root n 4. the number n in the expression a D radicand E rational exponent B index 5. the number b when bn5 a E rational exponent C nth root Problem Set 5 Write each expression as a single power. 10 2. ___ 104 1. ___ 108 10 5 0 ___ 5 10 10 10 © 2012 Carnegie Learning 5 5 1023 528 8 102 3. ___ 105 5 1023 225 5 3 10 5 1024 024 4 __ x 5 x x 4 9 5 x25 429 y2 6. __ 8 y 3 5 5. ___ 510 ___ 5 5 5 5 0 x4 4. __ x9 ___ 5 10 10 10 2 ___ 5 10 10 10 5 527 3210 __ y 5 y y 2 8 5 y26 228 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 409 409 25/04/12 4:13 PM Lesson 5.5 Skills Practice page 2 Evaluate each expression. 3 5 7. 216 5 8. 3 64 3 216 56 9. 3 2125 5 3 2125 5 25 11. 3 729 5 5 4 3 64 10. 3 2343 5 3 2343 5 27 12. 3 28 5 3 729 59 3 28 5 22 Evaluate each expression. 5 13. 5 32 14. 4 625 5 5 2 5 32 4 625 55 15. 6 729 5 16. 5 21024 5 6 729 53 17. 7 2128 5 5 7 2128 5 22 5 21024 5 24 18. 5 2243 5 5 2243 5 23 19. 4 15 __1 515 4 4 15 21. 4 31 __ 1 5 314 4 31 23. 6 y __ 1 5 53 3 5 22. 3 x x 5 3 __ 1 x3 __ __1 6 y 5 y6 410 20. 3 5 © 2012 Carnegie Learning Write each radical as a power. 24. √z __ √ z 5 1 __ z 2 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 410 25/04/12 4:13 PM Lesson 5.5 Skills Practice page 3 Name Date Write each power as a radical. __ 1 __ 1 25. 123 3 1235 12 __ 1 27. 184 __1 4 18 4 5 18 __ 1 29. d 5 1 __ 5 d 55 d __ 1 26. 75 __ 1 5 755 7 __ 1 28. a 2 __ 1 __ 25 √ a a 1 __ 30. c 6 1 __ 6 65 c c Write each expression in radical form. __ 2 31. 5 3 __ 2 3 2 35 5 5 __ 3 33. 184 __3 4 18 4 5 1 83 __ 4 35. y3 © 2012 Carnegie Learning __ 4 3 y35 y4 __ 2 32. 8 5 __ 2 5 2 55 8 8 __ 3 34. x 5 __ 3 5 3 x 55 x 5 __ 5 36. m2 __ 5 ___ m25 √ m5 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 411 411 25/04/12 4:13 PM Lesson 5.5 Skills Practice page 4 Write each expression in rational exponent form. 4 3 37. 6 4 5 4 38. 8 __ 3 3 6 5 64 5 __ 3 39. 1 22 __ 2 3 1 22 5123 4 41. p7 40. √ n5 __ __5 √ n5 5 n2 5 __ 7 7 p 5 p4 4 __ 4 4 8 5 85 3 42. m 5 3 __ 3 m 5 m5 © 2012 Carnegie Learning 5 412 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 412 25/04/12 4:13 PM Lesson 5.6 Skills Practice Name Date Checkmate! Solving Exponential Functions Problem Set Complete each table. Write a function that represents the data in the table and explain how you determined your expression. 2. 1. x f(x) Expression x f(x) Expression 0 1 0 3 0 5 0 1 5 4 1 3 1 3 1 9 1 1 5 4 2 9 2 3 2 21 2 1 5 4 3 27 3 3 3 69 3 1 5 4 4 81 4 3 4 261 4 1 5 4 5 243 5 3 5 1029 5 1 5 4 x x 3 ----- x x1 5 4 ----- The exponents of the expressions in the third column equal x. So, f(x) 5 4x1 5. 5 © 2012 Carnegie Learning The exponents of the expressions in the third column equal x. So, f(x) 5 3x. Chapter 5 Skills Practice 8069_Skills_Ch05.indd 413 413 25/04/12 4:13 PM Lesson 5.6 Skills Practice 3. page 2 4. x f(x) Expression x f(x) Expression 0 21 220 22 1 2 __ 2 2221 1 22 221 21 21 220 2 24 222 0 22 221 3 28 223 1 24 222 4 216 224 2 28 223 5 232 225 3 216 224 x 22x ----- x 22x11 ----- The exponents of the expressions in the third column equal x. So, f(x) 5 22x. 6. 5 x f(x) Expression x f(x) Expression 0 1 2 ___ 25 2522 0 16 4 2 1 1 2 __ 5 2521 1 8 3 2 2 21 250 2 4 2 2 3 25 251 3 2 21 4 225 252 4 1 0 2 5 2125 253 5 1 2 __ 21 2 x 25x22 ----- x 2x14 2 ----- The exponents of the expressions in the third column equal x 2 2. So, f(x) 5 25x22 . 414 © 2012 Carnegie Learning 5. The exponents of the expressions in the third column equal x 1 1. So, f(x) 5 22x11 . The exponents of the expressions in the third column equal 4 2 x. So, f(x) 5 22x14 . Chapter 5 Skills Practice 8069_Skills_Ch05.indd 414 25/04/12 4:13 PM Lesson 5.6 Skills Practice page 3 Name Date Graph each function. 8. f(x) 5 82x 7. f(x) 5 3x y y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 28 9. f(x) 5 5 ? 22x 10. f(x) 5 2 ? 3x y 8 x y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 © 2012 Carnegie Learning 6 28 4 6 8 x 5 0 2 28 26 24 22 22 24 24 26 26 28 4 4 6 8 x 28 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 415 415 25/04/12 4:13 PM Lesson 5.6 Skills Practice 11. f(x) 5 24x page 4 12. f(x) 5 23x12 y y 8 8 6 6 4 4 2 2 0 2 28 26 24 22 22 4 6 8 x 0 2 28 26 24 22 22 24 24 26 26 6 8 x 28 28 4 Use the intersection feature of your graphing calculator to answer each question. 13. For the function f(x) 5 6x21 determine the value of x for which f(x) 5 7776. For the function f(x) 5 6x21 , f(x) 5 7776 when x 5 6. 14. For the function f(x) 5 24x12 determine the value of x for which f(x) 5 24096. For the function f(x) 5 4x12 , f(x) 5 24096 when x 5 4. 15. For the function f(x) 5 52x11 determine the value of x for which f(x) 5 625. For the function f(x) 5 52x11, f(x) 5 625 when x 5 23. 5 16. For the function f(x) 5 2x14determine the values of x for which f(x) , 128. 17. For the function f(x) 5 23x11 determine the values of x for which f(x) . 29. For the function f(x) 5 23x11 , f(x) . 29 when x , 1. 18. For the function f(x) 5 5x12 determine the values of x for which f(x) 5 15,625. For the function f(x) 5 5x12 , f(x) 5 15,625 when x 5 4. 416 © 2012 Carnegie Learning For the function f(x) 5 2x14 , f(x) , 128 when x , 3. Chapter 5 Skills Practice 8069_Skills_Ch05.indd 416 25/04/12 4:13 PM Lesson 5.6 Skills Practice page 5 Name Date Solve each exponential equation for x. 19. 4 x5 256 20. 6 3x 5 216 x5 256 4 3x5 216 6 4 5 256 4 35 216 6 x54 3x 5 3 x51 21. 2 52x 5 ___ 1 16 252x 5 1 16 224 5 1 16 5 2 x 5 24 ___ ___ x59 23. 4 x135 4 x13 4 5 4 1 5 4 4 x1351 x 5 22 22. 3 22x5 ____ 1 729 322x 5 1 729 26 3 5 1 729 22x 5 26 ____ ____ x53 ____ ____ ___ 24. 1 5 625 5x14 1 5 625 5x14 124 5 625 5 5 x 1 4 5 24 © 2012 Carnegie Learning x 5 28 1 25. 26x225 _______ 21296 x22 26 5 1 21296 24 26 5 1 21296 x 2 2 5 24 _______ _______ x 5 22 ____ ____ __ 1 26. 1 5 __ 2x26 4 5 1 1 2x26 4 12 5 1 2 4 __ __ x2652 x58 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 417 417 25/04/12 4:13 PM Lesson 5.6 Skills Practice page 6 For each pair of expressions, determine whether the second expression is an equivalent form of the first expression. 1 (2)s 27. 2 s21 __ 2 221 ? 2s 1 (3)x 28. 3 x11 __ 3 321 ? 3x 2s21 3x21 1 (25)x 30. 5 2x21 __ 5 21 2x 5 ?5 29. 2 2x11 2(4)x 21 ? (22)x __ 1 ? (5 ) 5 __ 1 (25) 21 ? 22x 2 x 22x11 x 5 ( ) x 32. __ 1 __ 1 223x21 2 8 223x ? 221 31. 4(64)x 43x11 4 ?4 3x 1 __ ( ( __ ) ) __ ( __ ) __ __ ( __ ) (43)x ? 4 (223 )x? 1 2 3 x 1 ? 1 2 2 x 1 1 ? 8 2 x 1 1 28 64 ? 4 x 4(64)x Write the exponential function represented by the table of values. 5 x y x y 0 2 0 1 1 1 2 25 2 __ 1 4 625 3 __ 1 6 15625 2 4 f(x) 5 a ? bx f(x) 5 a ? bx f(x) 5 2 ? bx f(x) 5 1 ? bx 1 5 2 ? b1 1 5 b 2 x f(x) 5 2 1 2 25 5 1 ? b2 __ ( __ ) © 2012 Carnegie Learning 34. 33. 25 5 b2 55b f(x) 5 5x 418 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 418 01/04/14 2:27 PM Lesson 5.6 Skills Practice page 7 Name Date 35. 36. x y x y 0 1 0 21 1 __ 3 2 24 2 ___ 9 4 216 3 ___ 27 6 264 4 16 64 f(x) 5 a ? bx f(x) 5 a ? bx f(x) 5 1 ? bx f(x) 5 21 ? bx 1 24 5 21 ? b2 __ 3 5 1 ? b 4 __ 3 5 b 4 f(x) 5 ( __ 3 ) 4 24 5 2b2 25b x f(x) 5 2(2)x © 2012 Carnegie Learning 37. 38. x y x y 0 3 0 22 3 __ 1 1 1 2 __ 2 6 ____ 1 2 1 2 __ 8 9 _____ 1 3 1 2 ___ 32 f(x) 5 a ? bx f(x) 5 3 ? bx 1 5 3 ? b1 __ 1 5 b 3 ( __ ) x f(x) 5 3 1 3 9 243 6561 f(x) 5 a ? bx f(x) 5 22 ? bx 1 2 5 22 ? b1 2 1 2 1 5 1 (22b) 2 2 2 1 5 b 4 x f(x) 5 22 1 4 __ ( __ ) __ __ __ ( __ ) Chapter 5 Skills Practice 8069_Skills_Ch05.indd 419 5 419 25/04/12 4:13 PM © 2012 Carnegie Learning 5 420 Chapter 5 Skills Practice 8069_Skills_Ch05.indd 420 25/04/12 4:13 PM
© Copyright 2026 Paperzz