dietterich-aladdin-t..

 X:
D
E
T
E
R
M
I
N
E
Y:
>
d
0
i
>
t
1
−
<
R
>
m
0
x
<
n
<
−
!" # $%&'()
!
"### $ ! "### "%& * "! "' ( ) *+
%##"
! , ! " #
$%& !& & '(()
y1
y3
y4
y5
y6
y7
! -+ .
/ 0 1
, /,2
0 3 4 y2
0
3
0¼ ¼ ¼
* + ! " #
+ ,
,- . 5
+ 5
+ 1
-+ -
/ 01 *2 5
+ - , -+ - --- 1--67 7+ ,
! " #
3 3 3 8, $ 9
2 # !" + : ; : < : %##%
4 / , *
, -
/ 9 =
>
2 3 4 4 4 ? @
A 2
? 3 ½
B
? " , - *
3 3 " 2
3
"
? 3
3 C? $ D
3 4 $ ½
3 4 $ *
% , - !"#
1 1 + 5 1"
3 * "EF& + 2
3 0 3 ! ? 3 3 C0 4 0 D
C0 4 0 D
, - + !"# '
3 #
3 " 3 " 3 " ? 3 3 3 C?
3 4 $ 72 7 9 $ D
+ " !"#
s1
s4
s18
0.324
! 3 #G%H
3 <
1
>./ + 9 "& H# &H# >5 *
I
"## & >5 " . . !
/ & 01 1 '(
Regression Tree CRF vs. Recurrent Decision Tree for word prediction
35
Viterbi CRF
Greedy CRF
Recurrent Decision Tree
30
% correct words
25
20
15
10
5
0
50
100
Iterations
150
200
. 2 + 3 4
Regression Tree CRF using 3 & 7 letter windows for word prediction
45
Boosted Regression Trees w/ 3 letter window
Boosted Regression Trees w/ 7 letter window
Recurrent Decision Tree w/ 3 letter window
Recurrent Decision Tree w/ 7 letter window
40
% correct words
35
30
25
20
15
10
5
0
50
100
Iterations
150
200
*% + 5 Regression Tree CRF using 3 & 7 letter windows for letter prediction
85
Boosted Regression Trees w/ 3 letter window
Boosted Regression Trees w/ 7 letter window
Recurrent Decision Tree w/ 3 letter window
Recurrent Decision Tree w/ 7 letter window
% correct letters
80
75
70
65
60
0
50
100
Iterations
150
200
.% , - $
6 02 5 ! + 9
+ - !
+#, ! 7 >./ : >./ >J> Æ +# "