Chem 1000A Final Examination - Solutions April 15th, 2003: 9:00 to 12.00 am Your name _______________ Instructor: Dr. M. Gerken Student ID _______________ Time: 3h No. of pages: 3 + 1 Report all your answers using significant figures. Show all units and their conversions throughout your calculations. Question 1 (5 Marks) Complete the following table. 140 Symbol Ce Number of electrons __58_______ Number of neutrons __82_______ Number of protons __58_______ Overall charge 0 __120Sn2+___ 48 70 __50_______ 2+ Question 2 (2 Marks) What is Ψ in Schrödinger’s equation? In Schrödinger’s equation, Ψ is the symbol for a wavefunction. Question 3 (5 Marks) Draw the five 3d orbitals and label them. x x z y dxy dxz x y x y z dyz z dx2-y2 dz2 Question 4 (4 Marks) What is the maximum number of electrons that can be identified with each of the following sets of quantum numbers? (zero is a possible answer) zero, l has to be smaller than 2 if n = 2 (a) n = 2, l = 2, ml = -1, ms = ½ (b) n = 3, l = 2 10 electrons (in the five 3d orbitals) (c) n = 2 8 electrons (2s and three 2p orbitals) (d) n = 4, l = 3, ml = -½ zero, ml has to be an integer number Question 5 (4 Marks) You dissolve 10.0 mg of NaOH and 10.0 mg of HCl in 100. mL of water. (a) Write the balanced reaction equation. (b) What is the NaCl concentration (neglecting the change in volume during the dissolution and reaction)? (a) NaOH + HCl → NaCl + H2O 1 (b) M(NaOH) = 39.9971 g mol-1; M(HCl) = 36.4606 g mol-1 n(NaOH) = 0.0100 g/(39.9971 g mol-1) = 2.50 × 10-4 mol n(HCl) = 0.0100 g/(36.4606 g mol-1) = 2.74 × 10-4 mol The reaction has a 1:1 stoichiometry, therefore, NaOH is the limiting reagent. NaCl produced: n(NaCl) = 2.50 × 10-4 mol [NaCl] = 2.50 × 10-4 mol/0.100 L = 2.50 × 10-3 mol L-1 Question 6 (15 Marks) (i) Draw Lewis structures for the following compounds. (Central atom is underlined) (ii) What are the electron-pair geometries and molecular geometries according to the VSEPR model. (iii) Do these molecules have molecular dipole moments. Indicate the dipole moment if applicable. a) XeF3\ .. - .. .. .. .. .. .. .. :F F: :F Xe F: .. Xe .. .. .. .. .. :F: :F: .. .. electron-pair geometry: octahedral molecular geometry: T-shaped dipole moment: yes b) SCl2 .. .. .. S .. :Cl Cl .. .. : .. .. .. S .. :Cl Cl .. .. : _ electron-pair geometry: tetrahedral molecular geometry: bent dipole moment: yes c) ClO2F _ :O : :O : Cl : : Cl : :O O .. .. :..F : :..F : electron-pair geometry: tetrahedral molecular geometry: T-shaped dipole moment: yes d) XeO2F4 :O: ..: F.... .. : ..F Xe F..: .. :F .. :O : electron-pair geometry: octahedral molecular geometry: octahedral dipole moment: no 2 e) XeO64:O : .. O .. ....: -: O Xe O .... .. : :O.. :O: + several resonance structures electron-pair geometry: octahedral molecular geometry: octahedral dipole moment: no Question 7 (5 Marks) For extinguishing fires in rooms with expensive electrical equipment a halon has been used (Halon 1301: CF3Br). Unfortunately, this halon is depleting the ozone layer. As a replacement, a new fire-extinguishing agent has been introduced last year. This new fire-extinguishing agent contains 22.8 % C, 72.1 % F, and 5.1 % O. (a) Determine the empirical formula for this compound. (b) The molar mass of this agent has been found to be 316.046 g mol-1. Determine the molecular formula. In 100 g of sample: 22.8 g C → 1.90 mol 72.1 g F → 3.79 mol 5.1 g O → 0.32 mol C : F : O = 1.90 mol : 3.79 mol : 0.32 mol = 5.96 mol : 11.9 mol : 1.00 mol Empirical formula: C6F12O M(C6F12O) = 31.6046 g mol-1 This calculated molar mass is the same than the experimentally determined one. Molecular mass: C6F12O Question 8 (8 Marks) Draw the Lewis structures and determine the oxidation states for all atoms in the following compounds. a) H3C-O-F (connectivity at indicated) H: +I, C: -II, O: 0, F: -I 2I: +VII, O: -II, F: -I b) IO2F5 (central atom:I) c) NF4+ (central atom: N) N: +V, F: -I 2d) O3S-S-S-SO3 (connectivity as indicated) O-II3S+V-S0-S0-S+VO-II32Question 9 (12 Marks) Balance the following redox reactions in acidic aqueous solutions (add H+ if necessary). First, write the balanced half-reactions and combine them. Indicate the (a) electron balance, (b) material balance, and (c) charge balance of the overall reaction equations. a) I+VO-II3- + S+IVO-II32- → I02 + S+VIO-II42oxidation half-reaction (unbalanced): S+IVO-II32- → S+VIO-II42- + 2ereduction half-reaction (unbalanced): 2I+VO-II3- + 10e- → I02 electron balance: oxidation half-reaction (unbalanced): 5S+IVO-II32- → 5S+VIO-II42- + 10ereduction half-reaction (unbalanced): 2I+VO-II3- + 10e- → I02 material balance: oxidation half-reaction (balanced): 5H2O + 5S+IVO-II32- → 5S+VIO-II42- + 10e- + 10 H+ reduction half-reaction (balanced): 12H+ + 2I+VO-II3- + 10e- → I02 + 6 H2O 3 overall reaction: 2H+ + 2IO3- + 5SO32- → I2 + 5SO42- + H2O material balance: 2H, 2I, 5S, 21O | 2I, 5S, 2H, 21O charge balance: (2+) + (2-) +(10-) = 10- | 10correct electron, material, and charge balance! b) H+ICl+VO-II3 + Cl-I- → Cl+IVO-II2 + Cl02 oxidation half-reaction (unbalanced): 2Cl-I- → Cl02+ 2ereduction half-reaction (unbalanced): H+ICl+VO-II3 + e- → Cl+IVO-II2 electron balance: oxidation half-reaction (unbalanced): 2Cl-I- → Cl02+ 2ereduction half-reaction (unbalanced): 2H+ICl+VO-II3 + 2 e- → 2Cl+IVO-II2 material balance: oxidation half-reaction (balanced): 2Cl-I- → Cl02 + 2ereduction half-reaction (balanced): 2H+ + 2H+ICl+VO-II3 + 2 e- → 2Cl+IVO-II2+ 2H2O overall reaction: 2H+ + 2HClO3 + 2Cl- → 2ClO2+ Cl2 + 2H2O material balance: 4H, 4Cl, 6O | 4Cl, 4H, 6O charge balance: (2+) + (2-) = 0 | 0 correct electron, material, and charge balance! Question 10 (6 Marks) Chlorine dioxide, ClO2, (melting point of 11 °C) is a reddish-yellow, highly toxic gas and has a pungent odor. On gentle heating above 45 °C it decomposes by exploding violently into oxygen and chlorine. (a) Write the balanced reaction equation for the decomposition. (b) At STP you have 1.505 g of chlorine dioxide in a 500 mL cylinder. Heating the cylinder to 50 °C results in the decomposition (nicer word for explosion) of the chlorine dioxide sample. Assuming the cylinder survives the explosion (which may not be the case in real life – so don’t try it at home), calculate the partial pressures (in Pa and atm) for oxygen and chlorine and the total resulting pressure (in Pa and atm) in the cylinder. (a) 2ClO2 → Cl2 + 2O2 (b) M(ClO2) = 67.4515 g mol-1 n(ClO2) = 1.505 g/(67.4515 g mol-1) =0.0223 mol n(Cl2) = 0.0223 mol ClO2 × (1 Cl2 produced/2 ClO2 consumed) = 0.0112 mol Cl2 n(O2) = 0.0223 mol ClO2 × (1 O2 produced/1 ClO2 consumed) = 0.0223 mol O2 pV = nRT; T = (273.15 + 50) K = 323 K p(O2) = (nRT)/V = 0.0223 mol × 8.314 J K-1 mol-1 × 323 K/0.0005 m3 = 120000 J m-3 = 120000 kg m2 s-2 m-3 = 120000 kg m-1 s-2 = 120000 Pa (three sign. Fig.) = 120000 Pa × 1 atm/ 101325 Pa = 1.18 atm p(Cl2) = ½ 120000 Pa = 60000 Pa = 0.591 atm total pressure = 120000 Pa + 60000 Pa = 180000 Pa = 1.18 atm + 0.591 atm = 1.77 atm Question 11 (5 Marks) Draw the Lewis structure of chlorine dioxide, ClO2. What class of molecules does ClO2 belong to? Predict its molecular geometry. .. . Cl :O O .. .. : ClO2 is a radical, since it has an unpaired electron pair. It has a bent geometry. 4 Question 12 (6 Marks) Write the electron configuration of Europium (Eu) in the orbital box notation. Eu: ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ 1s 2s 2p 3s 3p 4s 3d ↑↓ 5s ↑↓ ↑↓ ↑↓↑↓ ↑↓ 4d ↑↓↑↓ ↑↓ 5p ↑↓ 6s ↑ ↑ ↑ 4f ↑↓ ↑↓ ↑↓ 4p ↑ ↑ ↑ ↑ Question 13 (5 Marks) Write the electron configurations of Cu and Cu2+ using the noble-gas notation. Cu: [Ar]4s1 3d10 Cu2+: [Ar]4s0 3d9 Both, Cu and Cu2+ are paramagnetic. Question 14 (4 Marks) (a) What is the mass of 1 mole of H2O (in g and in amu)? (b) What is the mass of 1 molecule of H2O (in g and amu)? (a) mass of 1 mole H2O: 18.0152 g or 1.085 × 1025 g (b) mass of 1 H2O molecule: 18.0152 amu or 2.992 × 10-23 g Question 15 (7 Marks) Describe the bonding situation in protonated cyanic acid (H-C≡N-H+) using the valence bond theory. (a) What is the hybridization of the carbon and nitrogen atoms? (b) Draw two energy diagram indicating the formation of the hybrid orbitals on nitrogen starting from the atomic orbitals on N, going to the hybrid orbitals on N. (c) Describe which orbitals are involved in forming bonds between C and H, C and N, and N and H. (a) C: sp hybridization, N: sp hybridization (b) Nitrogen: E ↑ ↑ ↑ ↑↓ ↑ 2p ↑ ↑ px py sp ↓↑ 2s (c) C-H bond: overlap between the sp hybrid orbital on C and the 1s orbital on H C≡N bonds: overlap between the sp hybrid orbital on C and the sp hybrid orbital on N, forming the σ bond Overlap between two p orbitals on C with two p orbitals on N, forming the two π bonds N-H: overlap between the sp hybrid orbital on N and the 1s orbital on H 5 Question 16 (4 Marks) Ultraviolet radiation below 290 nm (the ozone cut-off) will be absorbed by the ozone layer and will not reach the earth’s surface. (a) What range of frequencies will not reach the earth’s surface? (b) Photons of what energy range will be absorbed by the ozone layer? (a) ν = c/λ = 2.998 × 108 ms-1/ (2.90 × 10-9 m) = 1.03 × 1015 s-1 Frequencies of 1.03 × 1015 Hz and larger will not reach the earth’s surface. (b) E=hν = 6.626 × 10-34 Js × 1.03 × 1015 s-1 = 6.85 × 10-19 J Photons with energies of 6.85 × 10-19 J and larger will not reach the earth’s surface. Question 17 (3 Marks) Assuming an intact ozone layer, can sun light/radiation excite an electron of a hydrogen atom from the L shell (n = 1) to the M shell (n = 2)? ∆E = RRyd h c (1/22 – 1/12) = 1.097 × 107 m-1 × 6.626 × 10-34 Js × 2.998 × 108 ms-1× (-0.75) = -1.634 ×10-18 J This energy is larger than the energy calculated for 290 nm (6.85 × 10-19 J). Since energy larger than 6.85 × 10-19 J is cut off, photons on earth’s surface do not have sufficient energy for the excitation of an electron in a hydrogen atom from the L to the M shell. Electronegativities 1 18 2.1 H 1 1.0 Li 3 1.0 Na 11 0.9 K 19 0.9 Rb 37 0.8 Cs 55 0.8 Fr 87 2 13 2.0 1.5 Be 5 1.5 Mg Ca 20 1.0 3 1.3 Ba 56 1.0 Ra 88 4 1.4 Sc 21 1.2 Sr 38 1.0 2.5 B 4 1.2 12 1.0 14 Y 39 1.1 La 57 1.1 5 1.5 Ti 22 1.3 Zr 40 1.3 Hf 72 V 23 1.5 Nb 41 1.4 Ta 73 6 1.6 Cr 24 1.6 Mo 42 1.5 W 74 7 1.6 Mn 25 1.7 Tc 43 1.7 Re 75 8 1.7 Fe 26 1.8 Ru 44 1.9 9 1.7 1.8 Co 27 1.8 Ni 28 1.8 Rh 45 1.9 Os 76 10 Pd 46 1.8 Ir 77 Pt 78 Ac 89 6 11 1.8 Cu 29 1.6 Ag 47 1.9 Au 79 12 1.6 Zn 30 1.6 Ga 31 1.6 Cd 48 1.7 In 49 1.6 Hg 80 Tl 81 3.0 C 6 1.8 Al 13 1.7 15 Ge 32 1.8 Sn 50 1.7 7 2.1 As 33 1.9 Sb 51 1.8 Bi 83 17 8 2.5 F 9 3.0 S 16 2.4 Se 34 2.1 Po Cl Ar 18 Br 35 2.5 Kr 36 I 53 2.1 At 85 Ne 10 17 2.8 Te 52 1.9 84 He 2 4.0 O P 15 2.1 Pb 82 3.5 N Si 14 1.9 16 Xe 54 Rn 86 Prefixes Pico, p 10-12; nano, n 10-9; micro, µ 10-6 ;milli, m 10-3; centi, c 10-2; deci, d 10-1 Fundamental Constants Rydberg Constant 1.097 x 107 m-1 Planck's constant, h 6.626 × 10-34 J s Avogadro's number 6.022 × 1023 mol-1 Proton mass 1.67252 × 10-24 g Neutron mass 1.6749 × 10-24 g Elementary charge, e 1.6022 × 10-19 C -28 Electron mass 9.1095 × 10 g Speed of light in vacuum, C 2.998 x 108 m s-1 Gas constant, R 8.314 J K-1mol-1 = 0.082057 L atm K-1 mol-1 n= m M ρ= m V pV = nRT PT = ∑ pi i 1 1 ∆E = (E final − Einitial ) = − RRyd hc 2 − 2 n final ninitial E = mc 2 Physical quantity Unit λ= Symbol hc E = hν = pi = X i ⋅ PT h mv λ c λ = ν ∆x ⋅ ∆(mv ) > h 4π Definition Frequency, f or ν hertz Hz s-1 Energy , W or E joule J kg m2 s-2 Force, F newton N J m-1 = kg m s-2 Pressure, p pascal Pa N m-2 = kg m-1 s-2 Temperature: 0 K = -273.15 °C; 0 °C = 273.15 K Pressure: 1 atm = 760 Torr = 760 mmHg = 1.01325 bar = 101325 Pa; 1 bar = 105 Pa Volume: 1 mL = 1 cm3; 1 L = 1000 cm3 = 1 dm3 = 0.001 m3 1 Chem 1000 Standard Periodic Table 18 1.0079 1H 4.0026 2He hydrogen 2 13 14 15 16 17 helium 6.941 9.0122 10.811 12.011 14.0067 15.9994 18.9984 20.1797 3Li 4Be 5B 6C 7N 8O 9F 10Ne 11Na 12Mg lithium berrylium 22.9898 24.3050 boron 26.9815 3 4 5 6 7 8 9 10 11 12 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.693 63.546 65.39 21Sc 22Ti 23V 24Cr 25Mn 26Fe 29Cu 30Zn 39Y 40Zr 41Nb 42Mo 43Tc 44Ru 72Hf 73Ta 74W sodium magnesium 39.0983 40.078 44.9559 19K 20Ca 37Rb 38Sr 55Cs 56Ba La-Lu 88Ra Ac-Lr potassium calcium scandium titanium vanadium chromium manganese iron 85.4678 (98) 101.07 87.62 88.9059 91.224 92.9064 95.94 rubidium strontium 132.905 137.327 cesium (223) 87Fr francium yttrium zirconium niobium 178.49 180.948 barium 226.025 molybdenum technetium 183.85 hafnnium tantalum tungsten (263) (261) (262) 104Rf rutherfordium radium 47Ag 48Cd 76Os 78Pt 79Au gold mercury thallium 81Tl 82Pb 157.25 158.925 162.50 164.930 167.26 66Dy 67Ho dysprosium holmium 68Er 77Ir osmium (265) iridium (266) 109Mt 144.24 (145) 150.36 151.965 89Ac 90Th platinum 60Nd 61Pm 62Sm 63Eu 64Gd praesodymium neodymium promethium samarium europium gadolinium 65Tb 231.036 238.029 237.048 (240) (243) (247) terbium (247) 91Pa 92U 93Np 94Pu 95Am 96Cm 97Bk protactinium 50Sn 46Pd 108Hs 59Pr 49In 45Rh hassium meitnerium 140.908 32Ge zinc 112.411 107Bh 58Ce 31Ga uranium neptunium plutonium americium curium 7 80Hg (251) oxygen 32.066 16S fluorine 35.4527 neon 39.948 17Cl 18Ar 74.9216 sulfur 78.96 chlorine 79.904 33As 34Se 35Br 51Sb 52Te 83Bi gallium germanium arsenic selenium bromine 114.82 118.710 121.757 127.60 126.905 copper 107.868 106Sg 140.115 actinium9 thorium 75Re 15P phosphorus silicon 72.61 ruthenium rhodium palladium silver cadmium indium 186.207 190.2 192.22 195.08 196.967 200.59 204.383 rhenium (262) 14Si aluminum 69.723 nickel 106.42 105Db 57La 28Ni nitrogen 30.9738 cobalt 102.906 dubnium seaborgium bohrium 138.906 lanthanum cerium 227.028 232.038 27Co 13Al carbon 28.0855 (252) tin 207.19 lead erbium (257) antimony tellurium 208.980 (210) 53I argon 83.80 36Kr krypton 131.29 54Xe iodine (210) xenon (222) 84Po 85At 88Rn 168.934 173.04 174.967 69Tm 70Yb 71Lu bismuth polonium astatine thulium ytterbium lutetium (259) (258) (260) 98Cf 99Es 100Fm 101Md 102No 103Lr berkelium californium einsteinium fermium mendelevium nobelium lawrencium radon
© Copyright 2026 Paperzz