The Hidden Treasure of Captain Vector

Name:
Regents Physics Lab #6
Date:
Due:
The Hidden Treasure of Captain Vector (Part 2)
Purpose: In this activity you will be practicing vector addition by the tip-to-tail method and the component
addition method. You will also gain practice with graphing, compass reading, and trigonometric ratios.
Materials:
 List of vectors supplied by the teacher
 Graph paper
 Ruler
 Protractor
 Calculator
Procedure:
1. You have just performed a tip-to-tail addition of ten vectors. Using graph paper, a ruler, and a
protractor, draw a scale model of the route you just took to find the key card.
2. Once you have drawn all ten vectors in the tip-to-tail method, complete the resultant (displacement)
vector by drawing a line from the origin to the tip of the tenth vector.
3. Using your protractor and ruler to measure the resultant vector, determine (and record in polar form
below) your actual displacement during the treasure hunt.
𝑑⃑ = __________________________
4. Showing all work, convert your displacement vector into rectangular form and record.
5. Calculate your distance traveled by adding together the magnitudes of the ten vectors you walked.
Name:
Regents Physics Lab #6
Date:
Due:
Discussion: The method of vector addition we will use more commonly in this class is the component addition
method. This provides us with a straight-forward method of adding vectors mathematically. In order to
accomplish this, we must convert any vectors in polar form to rectangular form. Once this is completed, we
simply add the x-components together and then add the y-components together. The result of those additions
will be the x and y components of our displacement vector.
Procedure:
6. Complete the data table below with your group’s ten addend vectors. Convert each vector into
rectangular form and place your results in columns labeled x-component and y-component.
Distance (m)
Angle (°)
x-component (m)
y-component (m)
7. Add the magnitudes in each column to find the x and y components of the displacement vector.
8. Record the displacement vector in correct rectangular notation.
𝑑⃑ = ____________________
9. Convert the displacement vector into polar form and record with correct notation.
Name:
Regents Physics Lab #6
Date:
Due:
Questions:
1. How does the value of distance traveled compare with the magnitude of your displacement vector?
2. Explain the difference between distance traveled and displacement.
3. Compare your results, both polar and rectangular, from the tip-to-tail addition section and the
component addition section. Explain any divergence in these results.