Pre-AP Pre-Calculus Summer Assignment 2015-2016 You must be able to complete this packet without the use of a calculator. ~~~ THERE WILL BE A TEST FRIDAY AUGUST 28th. ~~~ **You must show all work to receive any credit!** (Answers, examples & review of concepts are located at the end of this packet.) PART 1 Algebra Review I. Equations of Lines Write the equation of each line in slope-intercept form satisfying the given conditions. 1. Slope is 2 and y-intercept is -1. 3 2. A horizontal line through (5, -1) 3. Through (5, -3) and (-7, -1). 4. Perpendicular to the line 3x – 4y = 7 through the point (6, -1). 5. Undefined slope with the same x-intercept as the line 3x + 2y = -6. II. Solving Systems of Linear Equations Solve using the indicated method. 6. 2x + 5y = 8 (Elimination) 6x + y =10 8. 3x + 4y = 2 (Elimination) 2x + 5y = -1 7. 3x + y = 6 (Substitution) 6x – 5y = 12 9. 3x + 4y = 2 (Substitution) 2x + 5y = -1 III. Factoring Review 10. (x + 5)(2x – 3) 11. (2x – 5)2 12. (x2 – 2x + 1)(x + 3) Factor completely. (Remember to factor out Greatest Common Factors first!) 13. x2 – 6x + 8 14. 27x2 – 48 15. -15x2 – 5x 16. 4x2 + 12x + 9 17. 2x2 – 3x – 9 18. x3 – 4x2 + 2x – 8 19. 8x3 – 10x2 – 3x 20. x3 – 8 21. x4 - 81 IV. Solving Equations Solve for x. Use factoring to solve all quadratic equations 22. 3 x 1 x 5 10 23. 5x2 + 3x – 2 = 0 24. 3x2 – 48 = 0 25. 6x2 – 12 = 0 26. 2x3 – x2 – 18x + 9 = 0 27. x4 = 2x2 – 1 2 4 V. RATIONAL EXPRESSIONS Simplify. Leave answers in factored form. 28. x 3 x3 8 x 2 4 x 2 x 12 29. x 2 4 2x 2 3 x 2 2x 2 5 x 2 4x 2 1 30. 32. 34. 36. 31. x 3 x x 4 x 2 3 7 2xy 6x 2 4x x2 4 x3 1 x 2 5x 6 3 2 2 33. x 2 3x 2 3x 4 10x 2 8 3x 6 35. x2 15x 2 10 x 2 5x 6 x x2 x 2 4x 4 5 2 x x6 37. x2 9 x 3 3 x 3 8 2x 10 3x 15 Simplify. Remember to multiply top & bottom by the Common Denominator first & cancel any factors that can cancel. 1 38. y2 3 2 39. x 1 x 1 2 2 x 1 x 2 x y 1 x VI. RATIONAL EQUATIONS Solve each rational equation. 40. 6 8 3 x x 5 41. x 2 30 1 x 3 x2 9 x 3 42. x 3 2x 1 x2 1 x 1 PART 2 Characteristics of Functions (These are examples of the types of problems you might expect on the test, not every case for every type of problem. You can also look online for additional review.) Use the graph of the given function to answer the questions. y 1. 4 2 x -10 -8 -6 -4 -2 2 4 6 8 10 -2 -4 -6 a) Domain: ________________ b) Range: _________________ h) Where do the minimum value(s) occur, if any? _______________ c) What is f(-3)? ____________ i) What are the minimum value(s)? ______ d) Where is f(x) = -3? ____________ Give intervals where f(x) is: e) What is f(0)? ____________ j) Inc: ____________________ f) Where do the maximum values occur, if any? _____________ k) Dec: ___________________ g) Where is f(x) = 0? _______ m) Where is f(x) ≥0? _______________ l) Constant: _______________ 2. Be able to justify your answer to any of these questions. For example, justify your answer to d, and m 3. y a) Domain: ________________ 4 f(x) b) Range: _________________ 3 c) What is f(2)? ____________ d) Where is f(x) = -1? ____________ 2 e) What is f(-1)? ____________ 1 x -2 -1 1 -1 -2 2 3 4 5 f) Where is f(x) increasing? __________ g) Where is f(x) > 0? _______ h) Is f(x) one to one? ___________ i) What are the roots of f(x)? __________ Find the domain and intercepts for the following functions. 3 4. f ( x ) x-intercept(s): 2x 2 7x 15 Domain: y-intercept: 5. g(x) = 3x 5 Domain: y-intercept: x-intercept(s): Answer the questions about the given function. 6. f(x) = x 4 a) Domain: ___________ b) What is f(x + 5)? _________ c) Where does f(x) = 5? _________ d) What are the intercepts of f? _________ Determine algebraically whether each of the following functions is even, odd, or neither. 3 7. a) f(x) = b) f(x) = 5 x 2 x x Determine from the graph whether each of the following functions is even, odd, or neither. 8. a) b) 10 y 10 y 8 8 6 6 4 4 2 2 x x -10 -8 -6 -4 -2 2 4 6 8 -10 -8 -6 -4 -2 2 4 6 8 10 10 -2 -2 -4 -4 -6 -6 -8 -8 -10 -10 Perform the following operations for the given functions. x x 9. f(x) = g(x) = x3 x 1 a) (f – g)(x) b) (g ◦ f)(x) Analyze the graph at the right. y 10. a) (f – g)(-1) = _________ f(x) 4 b) (f + g)(0) = _________ c) (f ◦ g)(3) = ________ 2 g(x) -4 -2 2 4 -2 d) (g ◦ f)(7) = ________ e) (f ◦ g)(-3) = ________ -4 -6 g) Where is (f – g)(x) = 0? f) (g ◦ f)(2) = ________ h) Where x is (f – g)(x) > 0? i) Where is (f – g)(x) ≤ 0? 6 8 10 x Graph the reflections of f(x). 11. y x 8 a) y y 8 6 6 4 4 2 -6 -4 y x y 2 x -8 x -2 2 4 6 8 x 10 -8 -6 -4 -2 2 -2 -2 -4 -4 -6 -6 -8 -8 -10 -10 f(x) 4 6 8 10 X-Axis y = ______ b) c) y x 8 y y 8 6 6 4 4 2 2 x x -8 -6 -4 -2 2 4 6 8 -8 10 2 -4 -4 -6 -6 -8 -8 -10 Y=X d) y x 8 6 4 2 x -4 -2 -2 -10 -6 -4 -2 Y-Axis y = _______ -8 -6 -2 2 -2 -4 -6 -8 -10 Origin 4 6 8 10 y 4 6 8 10 Graph the transformations of g(x). 12. y a) 10 x 8 10 y 4 g(x) 2 -6 -4 y 6 4 -8 x 8 6 -10 y -2 2 4 6 8 2 x x 10 -10 -8 -6 -4 -2 -2 2 4 6 8 10 -2 -4 -4 -6 -6 -8 -8 -10 -10 y = g(x−2) − 5 b) y 10 x y c) 10 8 8 6 6 4 4 y x 2 2 x x -10 -8 -6 -4 y -2 2 4 6 8 -10 10 -8 -6 -4 -2 2 -2 -2 -4 -4 -6 -6 -8 -8 -10 -10 y = 2g(2x) 4 6 8 10 y = −g(x+1) + 2 Describe each transformation and write an equation for the new graph in terms of f(x). 13. a) b) y y y 4 4 4 2 2 2 f(x) -2 2 4 6 x x x -4 -4 -2 2 4 6 -4 -2 2 -2 -2 -2 -4 -4 -4 -6 -6 -6 4 6 PART 3 Quadratic Functions GRAPHING QUADRATIC FUNCTIONS Describe and graph each transformation of f(x) = x2. 2 2 1. f(x) = 2x − 3 2. f(x) = (x – 2) − 7 Transformations: 10 1 3. f(x) = x 2 2 Transformations: 2 Transformations: y 10 y 10 8 8 8 6 6 6 4 4 4 2 2 2 x -10 -8 -6 -4 -2 2 4 6 8 x 10 -10 -8 -6 -4 -2 2 4 6 8 -10 -4 -4 -2 2 -2 -4 -4 -6 -6 -6 -8 -8 -8 -10 -10 -10 10 y 10 8 8 8 6 6 6 4 4 4 2 2 -2 2 4 6 8 10 6 8 10 6. f(x) = Transformations: y 4 1 2 x 2 Transformations: 5. f(x) = -3(x + 1)2 + 2 y 2 x -6 -6 -2 Transformations: -8 -8 -4 4. f(x) = -2(x − 1)2 +7 -10 x 10 -2 10 y x -10 -8 -6 -4 -2 2 4 6 8 10 x -10 -8 -6 -4 -2 2 -2 -2 -2 -4 -4 -4 -6 -6 -6 -8 -8 -8 -10 -10 -10 4 6 8 10 1 (x + 2)2 − 6 2 Transformations: 7. f(x) = (x + 3)2 + 6 Transformations: 10 9. f(x) = −x2 − 5 8. f(x) = y 10 Transformations: y 10 8 8 8 6 6 6 4 4 4 2 2 2 x -10 -8 -6 -4 -2 2 4 6 8 x 10 -10 -8 -6 -4 -2 2 4 6 8 x 10 -10 -8 -6 -4 -2 -2 -2 -4 -4 -4 -6 -6 -6 -8 -8 -8 -10 -10 -10 Write the equation for each transformation of f(x) = x2. 10. ____________________ 11. ____________________ y 10 8 8 6 6 4 4 2 y 2 x -10 -8 -6 -4 -2 2 4 6 8 10 x -10 -8 -6 -4 -2 2 -2 -2 -4 -4 -6 -6 -8 -8 -10 -10 12. ____________________ 10 4 6 8 10 8 10 13. ____________________ y 10 8 8 6 6 4 4 2 y 2 x -10 -8 2 -2 10 -6 -4 -2 2 4 6 y 8 10 x -10 -8 -6 -4 -2 2 -2 -2 -4 -4 -6 -6 -8 -8 -10 -10 4 6 4 6 8 10 WRITING QUADRATIC FUNCTIONS 1. Analyze the function f ( x) 2x 2 16x 30 . Then graph. 10 A. Domain: __________ B. vertex: __________ C. x-intercepts: _______________ D. y-intercept: __________ E. Range: __________ F. Intervals where f is increasing: _________ G. Intervals where f is decreasing: __________ y 8 6 4 2 x -10 -8 -6 -4 -2 2 4 6 8 10 -2 -4 -6 -8 Analyze the function algebraically. -10 2. f(x) = -4x2 + 32x − 48 a) Vertex __________ b) X-Intercepts ______________ c) Y-Intercept _____________ d) Does f(x) have a maximum or minimum? ______ e) Where does the max or min occur? ___________ f) What is the max or min? ________ g) Domain _________ h) Range __________ i) Axis of Symmetry ____________ Use the given information to write the equation of each quadratic function. 3. Its graph is a parabola with x-intercepts (2, 0) and (–1, 0) and y-intercept (0, 6). equation: _______________ 4. The function has zeros (5, 0) and (1, 0) and f(0) = 1. equation: ________________ 5. Its graph is a parabola with vertex (4, 8) and passes through the origin. equation: ________________ 6. The maximum value of g is g(-1) = 6, and g(-3) = 4. equation: _______________ 7. The vertex is (4, -1) and contains the point (2, 3). equation: _______________ 8. The intercepts of the parabola are (-1, 0), (5, 0), and (0, 15). equation: _______________ 9. Write the equation for #6 in all three forms. Standard _______________ Vertex _______________ Root _______________ ANSWERS - PAP PreCalculus Summer Assignment Answers to Part #I 1. 26. x = -3, ½, 3 2. y = -1 27. x = 1, -1 3. 28. 4. 29. 5. x = -2 6. (3/2, 1) 7. (2, 0) 30. 31. 8. (2, -1) 9. (2, -1) 32. 10. 2x2 + 7x – 15 33. 11. 4x2 – 20x +25 12. x3 + x2 – 5x + 3 13. (x – 2)(x – 4) 14. 3(3x + 4)(3x – 4) 15. -5x(3x + 1) 16. (2x + 3)2 17. (2x + 3)(x – 3) 18. (x – 4)(x2 + 2) x+3 34. 35. 36. 37. 38. 19. x(2x – 3)(4x + 1) 39. 20. (x – 2)(x2 + 2x + 4) 40. x = 3, -10/3 21. (x2 + 9)(x + 3)(x – 3) 41. x = -7 (3 is extraneous) 22. x = 7 42. x = -4/3 (1 is extraneous) 23. x = -1, 2/5 24. x = 25. x = Answers to Part #2 1. a) [-7, ), x ≠ 0 b) [-5, ) c) -2 d) 1, 5 e) Does Not Exist f) None g) -5, 6 h) x = 3 i) -5 j) (3, ) k) (-7, -4), (0, 3) l) (-4, 0) m) [-7, -5], [6, ) 2. d) f(x) = -3 at x = 1 and 5 because f(1) = -3 and f(5) = -3. m) f(x) ≥ 0 when the graph is above or touches the x-axis. 3. a) [-2, 4] b) [-2, 4] c) -2 d) .5, 3.5 e) 4 f) (-2, -1), (3, 4) g) [-2, 0), 4 h) No i) (0, 0) 10. a) -3 b) 1 c) -3 d) 2 e) -2 f) 0 g) -2 and 6 h) (-, -2), (6, ) i) [-2, 6] 11. a) 6. 7. 9. 6 4 4 2 2 x -8 -6 -4 -2 2 4 6 8 x 10 -8 -6 -4 -2 -2 -2 -4 -4 -6 -6 -8 -8 -10 -10 y c) 2 4 6 8 2 4 6 8 10 y d) 8 8 6 6 4 4 2 2 x -8 -6 -4 -2 12. a) 2 4 6 8 x 10 -8 -6 -4 -2 -2 -2 -4 -4 -6 -6 -8 -8 -10 -10 10 y b) 8 10 y 6 4 4 2 2 x -8 -6 -4 -2 c) 2 4 6 8 10 -2 2 -4 -6 -8 -8 -10 -10 y 2 x -4 -4 -6 4 -6 -6 -4 6 -8 -8 -2 8 -10 x -10 -2 10 -2 10 8 6 4. x ≠ 5, 5. y 8 6 -10 3 1 None 0, 2 5 5 All Reals ,0 (0, 5) 3 a) [-4, ) b) x 9 c) 21 d) (-4, 0) (0, 2) a) Neither 8. a) Odd b) Even b) Even 4x a) ( x 3)( x 1) x b) 3 b) y 8 2 4 6 8 10 -2 -4 -6 -8 -10 13. a) x-axis reflection shift down 2 y = −f(x) – 2 b) y-axis reflection vertical stretch by 2 shift down 2 y = 2f(-x) – 2 4 6 8 10 Answers to Part #3 GRAPHING 10 1. y 2. 8 y 10 3. 8 -8 -6 -4 6 6 4 4 4 2 2 -2 2 2 x 6 8 10 -10 -8 -6 -4 -2 2 4 6 8 10 -8 -4 -8 -6 -6 -6 -8 -8 -8 -10 -10 -10 y 10 5. y 10 6. 8 6 6 4 4 4 2 2 2 4 6 8 10 -10 -8 -6 -4 -2 2 4 6 8 10 -8 -6 -4 -2 -4 -6 -6 -6 -8 -8 -8 -10 -10 -10 y 10 8. y 10 9. 8 6 6 4 4 4 2 2 10 4 6 8 2 4 6 8 10 y 2 x -10 -8 -6 -4 -2 2 4 6 8 10 x -10 -8 -6 -4 -2 -2 -2 -2 -4 -4 -4 -6 -6 -6 -8 -8 -8 -10 -10 -10 10. f(x) = (x + 6)2 – 4 2 8 6 8 y -2 -4 6 10 x -10 -4 4 8 2 -2 2 6 x -2 -2 4 8 6 8 -4 2 -4 10 -6 -2 -2 x -10 -4 -4 -2 7. -6 -2 8 -6 -8 -4 x -10 x -10 -2 10 4. 4 y 8 6 x -10 10 11. f(x) = -3(x – 5)2 + 9 12. f(x) = -x2 + 4 13. f(x) = 1 (x – 3)2 - 4 2 Answers to Part #3 WRITING QUADRATIC FUNCTIONS: 1a) All Reals b) (-4, 2) c) (-3, 0) (-5, 0) d) (0, -30) e) (-, 2] f) (-, -4) g) (-4, ) 2. a) (4, 16), b) (6, 0)(2, 0) c) (0, -48) d) Max e) max @ 4 f) max is 16 g) All Reals h) (-, 16] i) x = 4 3. f(x) = -3(x – 2)(x + 1) 4. f(x) = 1/5(X – 5)(X – 1) 5. f(x) = -½(x – 4)2 + 8 6. f(x) = -½(x + 1)2 + 6 7. f(x) = (x – 4)2 – 1 8. f(x) = -3(x + 1)(x – 5) 9. f(x) = x2 – 8x + 15 f(x) = (x-4)2 – 1 f(x) = (x – 3)(x – 5) 10 Algebra Review I. Lines Slope-Intercept Form y = mx +b Slope Formula m= Horizontal Lines Vertical Lines Parallel Lines Perpendicular Lines To find y-intercept… To find x-intercept… Slope = 0 (y = #) Slope is Undefined. (x = #) Slopes are the same. Slopes are opposite reciprocals. Set x = 0 & solve for y. Set y = 0 & solve for x. y 2 y1 x 2 x1 II. Solving Systems of Linear Equations EXAMPLES: Elimination x+y=7 2x + y = 5 Substitution x+y=7 2x + y = 5 Add the equations: -2(x + y = 7) 2x + y = 5 -2x – 2y = -14 2x + y = 5 -y = -9 y=9 Plug the value of x into one of the equations: x + (9) = 7 x = -2 Solution: (-2, 9) Solve one equation for a single variable: x+y=7 y = -x +7 Plug the expression for y into the other equation and solve for x. 2x + (-x +7) = 5 2x – x + 7 = 5 x+7=5 x = -2 Solution: (-2, 9) III. Factoring Review Multiplying Polynomials Perfect Square (a+b)2 = a2 + 2ab + b2 Trinomials (a-b)2 = a2 – 2ab + b2 (-2) + y = 7 y=9 FACTORING: Special Cases Perfect Square a2 – b2 = (a + b)(a – b) Binomials Sum of Two Cubes a3 + b3 = (a + b)(a2 – ab + b2) Difference of Cubes a3 – b3 = (a – b)(a2 + ab + b2) Factor by Grouping Example: X3 + 2x2 + 3x + 6 = x2(x + 2) + 3(x + 2) = (x + 2)(x2 + 3) IV. Solving Equations Remember: Multiplying everything by the common denominator & cancelling will get rid of any pesky fractions! V. RATIONAL EXPRESSIONS RATIONAL EXPRESSIONS Factor any thing that can factor. Simplify as much as possible. Each successive step must be equal to the step before. Reduce if possible. Leave your answer in factored form. VI. RATIONAL EQUATIONS RATIONAL EQUATIONS Note domain restrictions on x. Multiply both sides of the equation by the Least Common Denominator (LCD) to cancel all denominators. Solve. Each successive step is an equivalent equation. Check for extraneous solutions. #1 Functions Function: A correspondence which Domain: Set of all possible assigns each x-value to exactly x-values for a given function. one y-value. Possible restrictions to the domain: a 1) f(x) , b 0 One-to-One Function: A function b which assigns each y-value to exactly one x-value. 2) f(x) a, a 0 Even Function: A function that has 3) f(x) = logb a, a > 0 y-axis symmetry. f(x) = f(-x) Odd Function: A function that has origin symmetry. f(-x) = −f(x) 4) real-world situations (e.g., distance cannot be negative, number of people must be whole numbers, etc.) Range: Set of all possible function Intercepts: Points where the graph values (y-values). crosses the axes. Usually best to determine from a graph of the function. X-Intercepts: Point(s) where y = 0. Other names: roots, zeros Y-Intercept: Point where x = 0. #2 Reflections Y-Axis Reflection X-Axis Reflection y = f(-x) x changes sign y = –f(x) y changes sign Origin Reflection Y = X Reflection f(-x) = –f(x) x and y change sign x = f(y) x and y are switched Absolute Value Reflections f(x) f(x) if f(x) ≥ 0 –f(x) if f(x) < 0 f x f(x) if x ≥ 0 f(-x) if x < 0 The part of the graph below the x-axis is reflected up. The part of the graph left of the y-axis is a reflection of the right side. #3 Transformations y a f b(x h) k Changes to y: Changes to x: a - Vertical Stretch or Shrink multiply y-values by a a < 0 x-axis reflection a > 1 vertical stretch 0 < a < 1 vertical shrink b - Horizontal Shrink or Stretch k - Vertical Shift add k to y-values k > 0 shift up k < 0 shift down h - Horizontal Shift (x – h) add h to x-values divide x-values by b b < 0 y-axis reflection b > 1 horizontal shrink 0< b (x + < 1 horizontal stretch shift right h) subtract h from x-values shift left #4 Linear Function f(x) = x 6 y 4 2 x -6 -4 -2 2 -2 4 6 x -4 -2 0 2 4 y -4 -2 0 2 4 -4 -6 Domain: (-, ) Origin Symmetry Range: (-, ) Odd Function One-To-One #5 Quadratic Function f(x) = x2 6 y x -3 -2 -1 0 1 2 3 4 2 x -6 -4 -2 2 4 6 -2 -4 -6 y 9 4 1 0 1 4 9 Domain: (-, ) Y-Axis Symmetry Range: [0, ) Even Function Three Forms of the Quadratic Function Standard Form: f(x) = ax2 + bx + c Vertex Form: f(x) = a(x − h)2 +k Vertex: b b 2a , f 2a Vertex: (h, k) r r r r Root Form: f(x) = a(x − r1)(x − r2) Vertex: 1 2 , f 1 2 2 2 Height of a Projectile (feet) h(t) = -16t2 + v0t + s0
© Copyright 2026 Paperzz