8-6 Double and Half Angle Formulas MATH 162 TRIG Example 1: 45 1−cos(45) 2 2 sin( ) = ±√ √ √2 1− 2 2 =√ 2−√2 2 2 at 45̊ the cosine is positive =√ 2−√2 1 2 Example 2: 2(1-cos2x) – cosx – 1 = 0 2-2cos2x – cosx – 1 = 0 0 = 2cos2x + cosx – 1 cos2x + cosx – 2 = 0 (cosx + 2)(cosx – 1)=0 divide by 2 cosx = -1 cosx = ½ 𝜋 x = 3 , 𝜋, 5𝜋 3 Example 3: 15- sin =(1-sin2) sin2 - sin + 14 = 0 No solution because it doesn’t factor ∙ =√ 2 2−√2 4 = √2−√2 2 TEAGUE Example 4: Quadrant III - 9 √145 -8 =2 ( a) sin(2) = 2sincos b) cos(2) = cos -sin = ( 2 c) sin(2) = √ 1− d) cos(2) = √ Example 5: =√ 2 1+ −9 √145 =√ 2 √ )( 145 √145 √ 2 √145−9 √145 1 √2 √2 𝜋 3𝜋 5𝜋 7𝜋 = 4, 4 , 4 , 4 −8 √145 2 ) = 17 145 =√ 145+9√145 1 =√ 145−9√145 1 145 cos(2) + 6sin2 = 3 1 - sin2 + 6sin2 = 3 4sin2 = 2 sin2 = ½ sin = ±√2 ∙ 144 ) = 145 145 ) −( √145+9 √145 2 −9 2 −9 2 −9 √145 −8 =± √2 2 145 ∙2=√ ∙2=√ 145+9√145 290 145−9√145 290 Example 6: -tan(2) + 2cos = 0 − sin2 + 2 cos cos2 multiply all by cos2 -sin2 + 2coscos2 convert all (2) -2sincos + 2cos(1-2 sin2) factor out -2cos -2cos(sin - 1 + 2sin2) = 0 rearrange to factor -2cos(2sin2 + sin - 1) = 0 factor the trinomial -2cos(2sin - 1)(sin + 1) = 0 set each equal to 0 -2cos = 0 2sin - 1 = 0 sin + 1 = 0 cos = 0 sin = ½ sin = -1 𝜋 𝜋 5𝜋 3𝜋 = 6,2, 6 , 2 Example 7: cos[2sin-1(-½)]= 0 using cos(2α) where α = sin-1(-½) convert cos(2α) to 1-2 sin2 α (1-2 sin2 α) = 0 then replace α with sin-1(-½) (1-2 sin2 (sin-1(-½)) = 0 (1-2(-½)2) = ½ Example 8: sin2(½cos-1(12⁄13))= 0 sin2α where α = ½cos-1(12⁄13) using formula cos(2α) = 1-2sin2 α 2sin2 α = 1 - cos(2α) sin2 α = 1−cos(2α) 2 1−cos(2(½cos−1 (12⁄13))) 2 1−(12⁄13) 2 1 = 26 replace α with ½cos-1(12⁄13) = 1−cos(cos−1 (12⁄13)) 2 Example 9: tan(2cos-1(4⁄5))= 0 tan2α where α = cos-1(4⁄5) then tanα = 3⁄4 using a triangle using formula tan(2α) = 2tanα 1−tan2 α 2(3⁄4) 1−(3⁄4) 2 = Example 10: √3cosx + 1 = -cos(2x) 24 7 convert cos(2x) to 2cos2x - 1 √3cosx + 1 = -(2cos2x – 1) distribute the negative get in factor form √3cosx + 1 = -2cos2x + 1 2cos2x + √3cosx = 0 factor out cosx cosx(2cosx + √3) = 0 set each equal to 0 cosx = 0 2cosx - √3 = 0 cosx = 0 cosx = 𝜋 3𝜋 5𝜋 7𝜋 = 2, 2 , 6 , 6 √3 2
© Copyright 2026 Paperzz