Must Know Derivative and Integral Rules! Table I: General Rules Derivative Rule Integration Rule Rule Sum/Difference Rule R Sum/Difference R R d 0 0 f (x) ± g(x) dx = f (x)dx ± g(x)dx f (x) ± g(x) = f (x) ± g (x) dx Constant Multiple Rule Constant Multiple R R Rule d 0 cf (x) = cf (x) cf (x)dx = c f (x)dx dx Product Rule Integration by Parts R 0 R d 0 0 f (x)g(x) = f (x)g(x) + f (x)g (x) f (x)g(x)dx = f (x)g(x) − f (x)g 0 (x)dx dx Rule (no simple rule corresponds) h Quotient i d dx d dx f (x) g(x) = f 0 (x)g(x)−f (x)g 0 (x) [g(x)]2 Chain Rule f (g(x)) = f 0 (g(x))g 0 (x) R U-Substitution R f (g(x))g 0 (x)dx = f (u)du where u = g(x) Table II: Rules for Specific Functions Derivative Rule Integration Rule Constant Rule RConstant Rule d [c] = 0 c dx = cx + C dx Power Rule R p Power1 Rule d p p−1 [x ] = px x dx = p+1 xp+1 + C dx for p 6= −1 R dx d ln |x| = x1 = ln |x| + C dx x d dx logb |x| = d x e dx d x b dx d dx d dx d dx 1 x ln b same as above R x e dx = ex + C = ex R = (ln b)bx R sin(x) = cos(x) d dx cos(x) = − sin(x) R d dx tan(x) = sec2 (x) R sec(x) = sec(x) tan(x) csc(x) = − csc(x) cot(x) d dx R cot(x) = − csc2 (x) d dx arctan(x) = d dx arcsin(x) = d dx R 1 1+x2 √ 1 1−x2 1 arccos(x) = − √1−x 2 bx dx = 1 x b ln b +C cos(x)dx = sin(x) + C sin(x)dx = − cos(x) + C sec2 (x)dx = tan(x) + C sec(x) tan(x)dx = sec(x) + C csc(x) cot(x)dx = − csc(x) + C R csc2 (x)dx = − cot(x) + C R dx = arctan (x) + C 1+x2 R dx √ = arcsin (x) + C 1−x2 same as above (NOTE: arccos(x) = π2 − arcsin(x)) 1 Table III: Additional Integrals R +C sin2 (x)dx = x2 − sin(2x) 4 R cos2 (x)dx = x2 + sin(2x) +C 4 R tan(x)dx = ln | sec(x)| + C R cot(x)dx = ln | sin(x)| + C R sec(x)dx = ln | sec(x) + tan(x)| + C R csc(x)dx = − ln | csc(x) + cot(x)| + C Table IV: Useful Integrals (these require Integration-by-Parts) R ln(x)dx = x ln(x) − x + C R logb (x)dx = ln1b (x ln(x) − x) + C R arctan(x)dx = x arctan(x) − 12 ln(1 + x2 ) + C √ R arcsin(x)dx = x arcsin(x) + 1 − x2 + C √ R arccos(x)dx = x arccos(x) − 1 − x2 + C 2
© Copyright 2026 Paperzz