Trigonometric Integral Examples… Sine or Cosine to odd powers… 5 ∫ cos xdx 2 ∫ (1− sin x ) cos xdx = ∫ (1− u ) du = ∫ (1−2u + u )du 2 = 2 2 2 4 = u − 23 u3 + 15 u5 + C = sin x − 23 sin3 x + 15 sin5 x + C € Sine or Cosine to even powers… 4 ∫ sin xdx 2 2 1 2 1 2 1 4 1 2 1 4 1 4 1 2 1 1 4 2 3 8 1 2 1 8 3 8 2 ∫ (sin x ) dx = ∫ ( − cos(2x )) dx = ∫ ( − cos(2x ) + cos (2x ))dx = ∫ ( − cos(2x ) + ( + cos(4x )))dx = ∫ ( − cos(2x ) + cos(4x ))dx = x − sin(2x ) + sin(4x ) + C = 1 4 2 1 2 1 32 € Tangent to powers… 5 ∫ tan xdx ∫ (sec x − 1) tan xdx = ∫ (tan x sec x )dx − ∫ tan xdx = ∫ u du − ∫ (sec x − 1) tan xdx = ∫ u du − ∫ tan x sec xdx + ∫ tan xdx = ∫ u du − ∫ udu + ∫ tan xdx 2 = 3 3 3 3 2 3 2 2 3 = 14 u4 − 12 u2 − lncos x + C € = 14 tan4 x − 12 tan2 x − ln cos x + C 4 ∫ tan ∫ (sec x − 1) tan xdx = ∫ tan x sec xdx − ∫ tan = ∫ u du − ∫ (sec x − 1)dx xdx 2 = 2 2 2 2 2 xdx 2 = 13 u3 − tan x + x + C = 13 tan3 x − tan x + x + C € Secant to even powers… ∫ sec 6 2 ∫ (1+ tan x ) sec xdx = ∫ (1+2tan x + tan x ) sec xdx = ∫ (sec x +2tan x sec x + tan x sec x )dx = tan x + ∫ (2u + u )du xdx 2 = 2 2 4 2 2 2 2 2 4 2 4 = tan x + 23 u3 + 15 u5 + C = tan x + 23 tan3 x + 15 tan5 x + C € Secant to odd powers is an ugly (I mean beautiful) integration by parts process. ∫ sec3 xdx First we use integration by parts with u = sec x and dv = sec2 xdx ∫ sec 3 xdx € ∫ sec x €tan xdx = sec x tan x − ∫ sec x (sec x − 1)dx = sec x tan x − ∫ sec xdx + ∫ sec xdx = sec x tan x + ln sec x + tan x − ∫ sec 2 3 xdx Which gives: € 3 2 = sec x tan x − 2 sec3 xdx = sec x tan x + ln sec x + tan x ∫ € ⇒ ∫ sec3 xdx = 12 sec x tan x + 12 ln sec x + tan x + C
© Copyright 2025 Paperzz