256 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 89. f(x) = 5-x - 2 y 4 -2 91. s = rO s 26 0 .... r 11 95. Qua&ant III 93. Qua&ant III ~ 2.3636 radians Seclion 5.3 Solving Trigonometric Equations [] You should be able to identify and solve trigonometric equations. [] A trigonometric equation is a conditional equation. It is true for a specific set of values. [] To solve trigonometric equations, use algebraic techniques such as collecting like terms, taking square roots, factoring, squaring, converting to quadratic form, using formulas, and using inverse functions. Study the examples in this section. [] Use your graphing utility to calculate solutions and verify results. Solutions to Odd-Numbered Exercises 1. 2cosx- 1=0 3. 3tan22x- 1=0 (a) 3 tan \-~2] - 1 = 3 ~tn2-~- 1 (b) 2 cos--2-- 1 = 2 - 1 ---0 =3 -1 =0 (b) 3Itan (10~r/q2\’~’-]1 - 1 = 3 tan2~-~- 1 __ =0 257 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 5. 2cos2x+ 3cosx+ 1=0 2/’4"rr’~ -3 + 1 =0 (a) 2cos ~-~-) +3cos T + 1 = 2 (4"rr) (_~)2 (_~) (b) 2cos2"rr+ 3cos~+ 1 = 2(-1)2- 3 + 1 = 0 J 9. y = tan t--~--~ - 3 From the graph in the textbook we see that the curve has x-intercepts at x = +2. 7. y = sin-~-+ 1 From the graph in the textbook we see that the curve has x-intercepts at x = -1 and at 11. 2cosx + 1 = 0 2 cos x = -1 13. ~secx-2=0 .!g sec x = 2 1 2 2¢r X "-- ~ 3 4qr orx = ~ 3 COS X -- ---- sec x cos x -- 15. 3csc2x-4=O 4 3 CSC2 X ---- 2 ,/~ 2 sinx= ± ll~r x = =orx = ~ 6 6 X-- 2 "rr 2~" 4"rr 5~r 3’3’3’3 17. 2sin22x= 1 1 ./2 sin2x=+-~=± 2 2x =3"n"T,z =5"trT,2x =7"rr T, 9’rr 11o 13rr 15~" 2x=~---, 2x=---~---,2x- 4 , 2x= 4 ,rr 3,n" 5qr 7~r 9"rr ll,tr.13¢r 15"n" Thus, X -(8 solutions). 8’8’8’8’8’8’8’8 19. 4cos2x- 3 =0 3 4 COS2 X : -- COS X ---- i 2 ,rr 5"rr 7’rr ll~r 6’6’6’ 6 21. sin2 x = 3 cos2 x sin2x - 3(1 - sin2x) = 0 4 sin2 x = 3 sinx= ± X-- 2 "rr 2"rr 4~r 5"rr 3’3’3’3 258 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 23. (3 tan2 x - 1)(tan2 x - 3) =0 3tan2x- 1=0 or tan2 x - 3 = 0 1 tanx = +~r~ tan x = + V’~ ~r 7~ 6’6 5~r ll,rr orx= 6’ 6 X "-" ~ ~ or X -- COS3X "- COSX 25. "n" 4,rr 3’3 2"n" 5,rr 3’3 X ~- ~ ~ 27. COS3X -- COSX -- 0 cos x(cos~ x - 1) - 0 cosx=O or cos2x- 1 =0 qr 3~r COSX = +__1 x-2,2 3 tanax - tan x = 0 tan x(3 tanz x - 1) = 0 tanx=O or 3tan2x- 1=0 x = O, ,rr x=O, 29. 33. sec2x - secx - 2 = 0 (sec x - 2)(sec x + 1) = 0 sec x - 2 = 0 or sec x + 1 = 0 sec x = 2 SeC X -- -- 1 "n" 5,0" 3’3 31. 2sinx+cscx=O 2 sin x +1 ~ = 0 sin x 2sin2x+ 1=0 Since 2 sin2 x + 1 > O, there are no solutions. cscx+cotx= 1 1 cos x sin x sin x 1 +cosx=sinx (1 + cos x)2 = sin2 x 1 +2cosx+cosZx= 1-cos2x 2cos2x + 2cosx = 0 2 cos x(cos x + 1) = 0 cosx=O or cosx=-I qr 2’ 2 (3¢r/2 is extraneous.) (,r is extraneous.) x = ¢r/2 is the only solution. 35. cos - 2 x~ 24 37. + 2n~r x =~ +4nqr tan x = +~/3 3 ¢r 5~" 7"¢ 11~" x-6, 6, 6,6 1 + cos x -0 1 - cos x 1 + cos x = 0 cosx - -1 259 39. PART I: Solutions to Odd-Numbered Exercises and Practice Tests 2 secax + tanax - 3 = 0 2(tan2x + 1) + tan2x - 3 =0 3tan~x- 1-0 tan x = ~ 3 ¯r 5¢r 7~r 117r X-" 6’6’6’ 6 41. sec2x q- tan x = 3 43. y=9cosx- 1 x ~ 4.8237, 1.4595 ¯ (1 +tan~x)+tanx=3 tan2x + tanx -- 2 = 0 6.28 (tan x + 2)(tan x - 1) = 0 tanx=--2 or tanx= 1 45. y=4sin2x-2cosx- 1 -IO 47. 4 sin3 x + 2 sin2 x - 2 sin x - 1 = 0 Graph y = 4 sinax + 2 sin2x - 2 sin x - 1. x ~ 0.8614, 5.4218 4 o ~ 6.28 6 28 By altering the y-range to Ymin = -.5 and Ymax = .5, you see that there are 6 solutions: 0.7854, 2.3562, 3.6652, 3.9270, 5.4978, 5.7596’. 49. cos x cot x 1 - sin x Graph y = 51. xcosx- 1 =0 -3 COS X (1 - sin x) tan x -3. 3 x ~ 4.9172 The solutions are approximately x ~ 0.5236, x ~- 2.6180 260 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 53. secZx + 0.5 tanx - 1 = 0 Graph Yl - (cos x)2 + 0.5 tan x - 1. lO 0 6.28 -2 The x-intercepts occur at x = 0, x ~ 2.6779, x ~ 3.1416 and x ~ 5.8195. 55. 12sinzx- 13sinx+3 =0 Graph Yl = 12 sin:~ x - 13 sin x + 3. 40 -4 The x-intercepts occur at x ~ 0.3398, x ~ 0.8481, x ~" 2.2935, and x ~-- 2.8018. 57. 3tan2x+5tanx-4=0, -~, tan x = 59. 4cos2x-2sinx+l=0,[-~,~l 4(1 -sin2x)-2sinx+ 1 =0 - 5 + ./25 - 4(- 4)(3) 2(3) -4sinZx-2sinx+5=0 sin x = x ~ - 1.154, 0.535 2 + ,//4- 4(-4)(5) 2(- 4) 2 _+ ./g~ -8 -- -4 x ~ 1.110 x 0 1 2 f(x) Undef. 0.83 -1.36 61. (a) 3 4 -2.93 -4.46 5 6 -6.34 - 13.02 The zero is in the interval (1, 2) since f changes signs in the interval. (b) 2 The interval is the same as part (a). (c) 1.3065 ~3. (a) x 0 1 2 3 4 f(x) -1 1.39 1.65 -0.70 - 1.94 5 6 - 1.48 The zeros are in the intervals (0, 1) and (2, 3) sincefchanges signs in these intervals. 8 The intervals are the same as part (a). (c) 0.4271, 2.7145 65. (a) f(x) = sin x + cos x 2 (b) cosx-sinx=O cos x = sin x sin x 1cos X tan x = I ¢r 57r x-4,4 f =sin~+cos4- 2 2 22 Therefore, the maximum point in the interval [0, 2"n’)is (,n’/4, ~ and the minimum point is (5"n’/4, --,/~). 67. (a) f(x) = x sin 2x Maximum: (3.989, 3.958) Minimum: (5.543,-5.520) (b) 2x cos 2x + sin 2x = 0 y = 2x cos 2x + sin 2x lO 6 28 0 ~~~ 6.28 5 solutions: 0, 1.014, 2.457, 3.989, 5.543. The fourth and fifth correspond to the maximum and minimum found in part (a). 262 PART I: Solutions to Odd-Numbered Exercises and Practice Tekts 69. f(x) = tan 4 tan 0 = 0~ but 0 is not positive. By graphing y = tan-4- - x, you see that the smallest positive fixed point is x = 1. 1 71. f(x) = cosx (a) (b) (c) (d) (e) The domain off(x) is all real numbers except 0. The graph has y-axis symmetry and a horizontal asymptote at y = 1. As x ----> 0, f(x) oscillates between - 1 and 1. There are an infinite number of solutions in the interval [- 1, 1 ]. The greatest solution appears to occur at x -~- 0.6366. 1 y = -j~(cos 8t - 3 sin 8t) 73. 8t - 3 sin 8t) = 0 ~2(cos 75. D=31 sm(3--~t - 1,4) 40 cos 8t -- 3 sin 8t 1 - = tan 8t 3 8t = 0.32175 + n’nt = 0.04 + -8 o I~1365 -40 D > 20° for 123 < t < 223 days In the interval 0 < t _< 1, t = 0.04, 0.43, and 0.83. 77. Range = 1000 yards = 3000 feet vo = 1200 feet per second r = ~ Vo2 sin 20 79. Yl = 1.56e-°’22t COS 4.9t intersects Y2 = -- 1 at t ~ 1.96 3000 = (12oo)2 sin 20 sin 20 = 0.066667 20 ~-- 3.8226° 0 ~ 1.9113° The displacement does not exceed one inch from equilibrium after t= 1.96 seconds. Sl. f(x)= 3 sin(O.6x- 2) (a) Zero: sin(O.6x- 2) = 0 0.6x- 2 = 0 0.6x= 2 2 10 0.6 3 (c) -0.45xz + 5.52x - 13.70 = 0 X= - 5.52 + ./(5.52)2 - 4(-0.45)(- 13.70) 2(- 0.45) x = 3.46, 8.81 The zero of g on [0, 6] is 3.46. The zero is close to the zero ~ ~ 3.33 off. (b) g(x) = -0.45x2 + 5.52x - 13.70 5 For 3.5 < x < 6 the approximation appears to be good. PART I: Solutions to Odd-Numbered Exercises and Practice Tests 83. False. There might not be periodicity, as in the equation sin(x2) = 0 89. tan 30°- 14 x --~ x = 2.164 radians 14 14 = --~ = 24.249 tan 30° 3 0.007 radians 16 16 91. sin 40°= ~ ==~ x = x sin 40° 24.892 95, f(x) = ~cot y Section 5.4 Sum and Difference Formulas [] You should memorize the sum and difference formulas. sin(u + v) = sin u cos v + cos u sin v cos(u + v) = cos u cos v 7- sin u sin v tan u + tan v tan(u + v) = 17- tan u tan v [] You should be able to use these formulas to find the values of the trigonometric functions of angles whose sums or differences are special angles. [] You should be able to use these formulas to solve trigonometric equations. Solutions to Odd-Numbered Exercises 1, (a) cos + = cos -~ cos ~ - sin ~ sin ~- "rr ,rr ./~+1 (b) cos~+cos-~=T s -,J’~" + 1 2
© Copyright 2026 Paperzz