Math 118 Exam 4 Practice Problems Exam 4 will cover Chapters 3 and 4 (3.1-3.3 and 4.1-4.7) and will be on Friday, December 2. My office hours: Mon 9:15 - 10:45, Wed 12:15 - 1:45, Thur 12:30 - 3:00, Fri 9:15 - 10:45 in Old Main 404 Drop in tutoring: 6-8 pm on Sunday, Monday, Tuesday, and Thursday in Zurn 213 1. Match each of the graphs below to the appropriate trigonometric function (not all functions will be used). • 3 cos(x/2 + 1) • 3 cos(2x) • sec(x + π) • • − tan(x + π) • 2 cos(x − π/2) + 1 • 3 sin(x) • 3 sin(x/2) π 2 tan(x) • 3 sin(2x) −10 4 4 4 2 2 2 −5 5 −10 10 −5 −10 10 −2 −2 (a) 5 −4 (b) 2. Sketch a graph of one period of the functions: (a) 3 sin(4x) (c) 2 tan(−x + π) (b) cos(2x + π) (d) −2 cos((x/4)) − 1 3. Given sin(θ) = 3/5 and cos(θ) = 4/5, find tan(θ), csc(θ), sec(θ) and cot(θ) 5. Find a positive angle less that coterminal with the given angle θ: 5 10 −2 (c) −4 8. Expand as a sum of logarithms: ! x3 y (c) log4 (16/x) (a) ln ! 2 5z 64 s (d) log8 √ x−2 3x 3 (b) log4 y 9. Write as a single logarithm. 4. Find cos(θ) given that sin(θ) = 2/5. 360◦ −4 −5 or 2π that is (a) θ = 820◦ (c) θ = −π/5 (b) θ = 27π/4 (d) θ = −410◦ 6. Find the exact value of the following expressions (a) cos(3π/4) (c) tan(2π/3) (b) sin(5π/6) (d) cot(π/2) (a) log(x) + log(x2 + 1) − log(3x) (b) 4 ln(x − 2) − 5 ln(y) (c) 6(ln(x − 3) − ln(y)) 10. Find the exact value of the following expressions. (a) sin(sin−1 (0.3)) (b) tan−1 (tan(4π/3)) ! 1 −1 (c) sin − 2 (d) tan−1 (1) −1 (e) sin √ ! 3 2 7. Evaluate each expression. (a) log9 (81) (c) 6log6 (20) (b) log16 (4) (d) 5 ln(1) 11. Using a sketch of a right triangle, find the exact value of the following expressions. (a) sin(cos−1 (3/5)) (b) tan(cos−1 (−4/5)) Math 118 Exam 4 Practice Solutions (b) − tan(x + π) 1. (a) 3 sin(2x) −10 (c) 2 cos(x − π/2) 4 4 4 4 2 2 2 2 −5 10 −10 5 −5 −2 10 −10 −2 −4 2. (a) 5 −4 (c) 3. tan(θ) = 3/4, sec(θ) = 5/4, csc(θ) = 5/3, cot(θ) = 4/3 4. √ 21/5 5. (a) 100◦ (b) 3π/4 √ 6. (a) −1/ 2 7. (a) 2 (c) 9π/5 (b) 1/2 (b) 1/2 (c) (c) 20 √ 3 (d) 310◦ (d) 0 (d) 0 8. (a) 3 ln(x) + ln(y) − ln(5) − 2 ln(z) (b) 1 3 log4 (3) + 13 log4 (x) − 13 log4 (y) (c) 2 − log4 (x) (d) 2 − 21 log8 (x − 2) 9. (a) log x3 + x 3x 10. (a) 0.3 ! (b) 4π/3 (b) ln (x − 2)4 y5 (c) 5π/4 ! (c) ln (d) π/4 x−3 y !6 (e) π/3 11. (a) 4/5 (b) −3/4 Other facts you’ll want to know 1. How to convert between radian and degree measurements of angles 2. The value of all six trig functions at multiples of π/4, π/2, and π/6 3. The period, domain and range of the six trig functions 4. The value of ln(1) 5. The relationship between ex and ln(x) 5 10 −15 −10 −5 5 −2 −2 −4 (b) −5 (d) −4 10 15
© Copyright 2026 Paperzz