Chapter 7 Trigonometric Identities and Equations 7.1 Basic

Chapter 7 Trigonometric Identities and Equations
7.1 Basic Trigonometric Identities
Identity – a statement that is ____________ for all values of π‘₯, πœƒ, 𝑒𝑑𝑐..
ο‚· Ex:
Reciprocal Identities
Quotient Identities
Pythagorean Identities
Ex 1: Use Pythagorean Identities to find the trigonometric ratios algebraically.
5
3πœ‹
a. sin πœƒ = βˆ’ 9 , πœ‹ ≀ πœƒ ≀ 2 . Find cos πœƒ.
5
πœ‹
b. tan πœƒ = 3 , 0 ≀ πœƒ ≀ 2 . Find cos πœƒ.
Ex 2: Find the reference angle of each radian value
28πœ‹
a. 5
b.
c.
157πœ‹
3
17πœ‹
9
Ex 3: Express each value as a trigonometric function of an angle in Quadrant I.
28πœ‹
a. cos 9
b. cot
25πœ‹
c. sec
37πœ‹
6
5
Ex 4: Simplify the following trigonometric expressions
cot πœƒ
a. tan πœƒ
b. cos π‘₯ + sin π‘₯ tan π‘₯
c. 𝑠𝑖𝑛2 πœƒ π‘π‘œπ‘  2 πœƒ βˆ’ π‘π‘œπ‘  2 πœƒ
7.2 Verifying Trigonometric Identities
Verify Trig Identities
Hints:
Ex 1: Verify the following identities
cot 𝛼
a. cos 𝛼 = csc 𝛼
b. sin 𝛽 tan 𝛽 = sec 𝛽 βˆ’ cos 𝛽
c. (π‘‘π‘Žπ‘›2 π‘₯ + 1)(π‘π‘œπ‘  2 π‘₯ βˆ’ 1) = βˆ’π‘‘π‘Žπ‘›2 π‘₯
Ex 2: Find a numerical value of one trigonometric function of x.
1+tan π‘₯
a. 1+cot π‘₯ = 2
b. csc π‘₯ = sin π‘₯ tan π‘₯ + cos π‘₯
7.3 Sum and Difference Identities
Sum and Difference Identities
1.
2.
3.
Ex 1: Find the exact value of the following trigonometric functions
a. cos 195°
7πœ‹
b. tan 12
c. csc
11πœ‹
12
2
4
Ex 2: Find sin(𝛼 βˆ’ 𝛽) when cos 𝛼 = 3 , cos 𝛽 = 5 . 𝛼 and 𝛽 are angles in Quadrant I.
4
3
Ex 3: Find sec(π‘₯ + 𝑦) when sin π‘₯ = 7 , csc 𝑦 = 2. π‘₯ and 𝑦 are angles in Quadrant I.
Ex 4: Verify the following identities
a. cos(πœ‹ βˆ’ πœƒ) = βˆ’ cos πœƒ
b. cos(𝐴 + 𝐡) =
1βˆ’tan 𝐴 tan 𝐡
sec 𝐴 sec 𝐡
7.4 Double-Angle and Half-Angle Identities
Double-Angle Identities
1.
2.
3.
4.
5.
6.
5
Ex 1: Given cos 𝛼 = 7 ,
3πœ‹
2
≀ 𝛼 ≀ 2πœ‹. Find sin 2𝛼 , cos 2𝛼 , tan 2𝛼.
Half-Angle Identities
1.
2.
3.
Ex 2: Find the exact value of sin 22.5°
5πœ‹
Ex 3: Find the exact value of tan 12
Ex 4: Verify the following identities
cos 2π‘₯βˆ’1
a. cos π‘₯ βˆ’ 1 = 2(cos π‘₯+1)
b. 1 βˆ’ cos 2𝛼 sec 2 𝛼 = tan2 𝛼
2.1 Solving Systems of Equations in Two Variables
Definitions
ο‚· System of equations – a set of _________ or more equations
o Ex:
ο‚·
Solution – the ________________________ of the graphs represents the point at which the equations
have the same x – value and the same y – value
o 3 types:
Ex 1: Solve the system of equations by graphing
3π‘₯ βˆ’ 2𝑦 = βˆ’6
π‘₯ + 𝑦 = βˆ’2
Ex 2: Use elimination to solve the following system of equations
1.5π‘₯ + 2𝑦 = 20
2.5π‘₯ βˆ’ 5𝑦 = βˆ’25
Ex 3: Use substitution to solve the system of equations
a. 2π‘₯ + 3𝑦 = 8
π‘₯βˆ’π‘¦=2
b. π‘₯ βˆ’ 𝑦 = 2
2π‘₯ = 2𝑦 + 10
7.5 Solve Trigonometric Equations
Goal:
READ DIRECTIONS CAREFULLY!!!!!
Ex 1: Solve for principal values of x
a. βˆ’2 sin π‘₯ = √3
b. √3 tan π‘₯ = 1
Ex 2: Solve for x when 0 ≀ π‘₯ ≀ 2πœ‹.
a. cos π‘₯ tan π‘₯ = βˆ’
√3
2
b. 2 cos2 π‘₯ + 3 cos π‘₯ = 2
Ex 3: Solve for all values of x
a. sin2 2π‘₯ + cos 2 π‘₯ = 0
b. sin2 π‘₯ βˆ’ sin π‘₯ + 1 = cos2 π‘₯
7.6 Normal Form of a Line
Normal line – a line that is ____________________________ to another line, curve or surface
ο‚· Given a line in the xy-plane, there is a normal line that intersects the given line and passes through the
__________________.
ο‚· Ex:
Normal form of a line
Ex 1: Write the equation of a line in standard form when the length of the normal is 7 and πœ‘ =
Going from Standard Form to Normal Form
Ex 2: Rewrite 2π‘₯ + 4𝑦 + 8 = 0 into normal form
5πœ‹
6
3
1
Ex 3: Rewrite 𝑦 = 4 π‘₯ βˆ’ 5 into normal form
3
1
Ex 4: Find the length of normal and πœ‘ for the line 𝑦 = 4 π‘₯ βˆ’ 5
Ex 5: Find πœ‘ to the nearest hundredth given normal form 0 = βˆ’
√65
π‘₯
65
+
8√65
65
π‘¦βˆ’
72√65
65
7.7 Distance Between a Point and a Line
2
Ex 1: Find the exact distance between (7,6) and the line 𝑦 = βˆ’ 3 π‘₯ βˆ’ 𝑦 + 7
Ex 2: Find the distance between 𝑦 = 3π‘₯ βˆ’ 11 and 𝑦 = 3π‘₯ + 2