Math 109 Final Review 1. Sketch the graph of f HxL = 3 - 2-x-1 The graph of this function will look like the graph of y = 2 x except reflected over the x-axis, shifted up 3, reflected over the y-axis, and shifted left 1. (Note: The function needs to be rewritten as f HxL = 3 - 2-Hx+1L to find the horizontal shift.) The graph has a horizontal asymptote at y = 3. 4 2 -10 -5 5 log3 81 HbL 5log5 3 -4 5. Use a change of base in order to find the decimal approximation for log7 H10L . Give the result correct to four decimal places. lnH10L log7 H10L = ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅ º 1.1833 lnH7L Find the domain of the following logarithmic function. gHxL = log5 H4 - x2 L 4 - x2 ¥ 0 H2 - xL H2 + xL ¥ 0 + <---------------[------------------]--------------------> -2 2 check -3 check 0 check 3 +++ -+ 6. -6 -8 -10 2. Sketch the graph of the function f HxL = -3-x+2 + 1. Justify your answer. This will look like the graph of y = 3 x , except reflected over the x-axis, shifted up 1, reflected over the y-axis, and shifted right 2. (Note: The function needs to be rewritten as f HxL = -3-Hx-2L + 1 to find the horizontal shift.) The graph has a horizontal asymptote at y = 1. So the domain is @-2, 2D. 7. 4 2 Use the following graph of the logarithmic function f(x) to answer parts a and b. 2 -5 5 10 1 -2 1 3 5 7 9 11 13 15 17 19 21 23 25 -1 -4 3. log3 81 = log3 H34 L = 4 5log5 3 = 3 10 -2 -10 HaL Find the exponential function f HxL graphed below. -2 18 16 14 HaL 12 10 6 4 2 The graph passes through the points H0, 2L, H1, 6L, and H2, 18L. Notice 2, 6, and 18 are all divisible by 2. If we divide each by 2, we get 1, 3, and 9. These are all powers of 3. So we have the points H0, 2 ÿ 30 L, H1, 2 ÿ 31 L, and H2, 2 ÿ 32 L. So f HxL = 2 ÿ 3x . -2 4. -1 Simplify the following. Find b where f HxL = logb x. Since the point H5, 1L is on the graph, we can use this to find b. 1 = logb 5 8 1 2 Thus f HxL = log5 x. b1 = 5 b=5 HbL Find f -1 HxL. f -1 HxL 8. = 11. 5x Solve Solve equation. 4 H1 + 75 x L = 9. 4 H1 + 75 x L = 9 the 1 + 75 x = 5x = 7 6 = x2 + x 0 = x2 + x - 6 0 = Hx + 3L Hx - 2L x = -3, 2 Checking these we see that x = -3 is extraneous, so the only solution is x = 2. ÅÅÅÅ94 ÅÅÅÅ54 5 5 x ln7 = lnH ÅÅÅÅ L 4 12. lnI ÅÅÅÅ5 M Solve can use the definition of logarithms to 4 H1 + 75 x L = 9 do the 2 Hx-1L log3 H ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ L = 1 x 2 Hx-1L 31 = ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ x 3x= 2x-2 x = -2 But checking we see that x " -2, so this answer is extraneous and so there is no solution. 5 75 x = ÅÅÅÅ 4 log7 H ÅÅÅÅ54 L = 5 x log I ÅÅÅÅ5 M 13. x = ÅÅÅÅÅÅÅÅ75ÅÅÅÅÅ4ÅÅÅÅÅ Note: These are the same answer. You can use the change of base formula to justify this. Solve the equation log x+2 4 = 2 Rewrite the expression in a form with no logarithms of products, quotients, or powers. è!!!! è!!! x 3 lnI ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ M = lnIx 3 M - lnHx2 + x - 2L x2 +x-2 è!!! = ln x + ln 3 - lnHx + 2L Hx - 1L = ln x + ÅÅÅÅ12 ln3 - HlnHx + 2L + lnHx - 1LL = ln x + ÅÅÅÅ12 log2 Hx + 5L = 3 Solve for x. Use algebraic methods. HaL log2 Hx + 5L = 3 log x+2 4 = 2. Hx + 2L2 = 4 x + 2 = !2 x = -2 ! 2 x = -4, 0 Checking these we see that x = -4 is extraneous and so the only solution is x = 0. 10. equation. log3 Hx - 1L - log3 x + log3 2 = 1 log3 Hx - 1L - log3 x + log3 2 = 1 following. 9 1 + 75 x = ÅÅÅÅ 4 9. the x-1 log3 H ÅÅÅÅ ÅÅÅÅÅÅ L + log3 2 = 1 x 4 x = ÅÅÅÅÅÅÅÅ ÅÅÅÅÅ 5 ln7 you equation log6 x + log6 Hx + 1L = 1. log6 x + log6 Hx + 1L = 1 log6 HxHx + 1LL = 1 61 = xHx + 1L 5 lnH75 x L = lnH ÅÅÅÅ L 4 Or the ln3 - lnHx + 2L - lnHx - 1L HbL 23 = x + 5 8= x+5 x=3 log4 H2 xL + log4 Hx - 2L = log4 Hx + 3L log4 H2 xL + log4 Hx - 2L = log4 Hx + 3L log4 H2 xHx - 2LL = log4 Hx + 3L log4 H2 x2 - 4 xL = log4 Hx + 3L è!!!! lnI ÅÅÅÅÅÅÅÅ ÅÅÅÅ3ÅÅÅÅÅÅ M x2 +x-2 x 2 x2 - 4 x = x + 3 2 x2 - 5 x - 3 = 0 Hx - 3L H2 x + 1L = 0 x = 3, - ÅÅÅÅ12 1 Checking these we'll find that x = - ÅÅÅÅ is extraneous and so x = 3 is the solution. 2 HcL ‰ x x2 + 2 x ‰ x + ‰ x = 0 e x x2 + 2 x e x + e x = 0 ex Hx2 + 2 x + 1L = 0 ex Hx + 1L2 = 0 x = -1 14. The half-life of Strontium-90 is 28 years. How long will it take a 50mg sample to decay to a mass of 32mg? We'll use the model A = P ek t , to answer this question. Assuming that we start with 100% of the mass or P = 1 and end with 50% of the mass or A = .5, we get the following equation. .5 = 1 ekH28L lnH.5L = 28 k lnH.5L k = ÅÅÅÅÅÅÅÅ ÅÅÅÅÅ º -.0248 28 Now start with P = 50 mg and use the value for k above with A = 32 mg and get the following equation that can be solved for t. 32 = 50 e-.0248 t .64 = e-.0248 t lnH.64L = -.0248 t lnH.64L t = ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ º 18.03 years -.0248 14. The half-life of Strontium-90 is 28 years. How long will it take a 50mg sample to decay to a mass of 32mg? We'll use the model A = P ek t , to answer this question. Assuming that we start with 100% of the mass or P = 1 and end with 50% of the mass or A = .5, we get the following equation. .5 = 1 ekH28L lnH.5L = 28 k 17. Solve the equation graphically. x3 = ex+1 - 3 First plot y = x3 and y = ex+1 - 3 on your calculator. 2 1 -3 -2 -1 lnH.5L k = ÅÅÅÅÅÅÅÅ ÅÅÅÅÅ º -.0248 28 Now start with P = 50 mg and use the value for k above with A = 32 mg and get the following equation that can be solved for t. 32 = 50 e-.0248 t .64 = e-.0248 t lnH.64L = -.0248 t 15. $3000 is invested at an annual percentage rate of 8.5%. How long will it take the account to reach $5000 if the interest is compounded monthly? Use algebraic methods to solve. We'll use the formula A = PH1 + P = 3000, r = .085, A = 5000, and n = 12. .085 5000 = 3000 H1 + ÅÅÅÅ ÅÅÅÅÅÅ L 12 with -2 -3 -4 lnH.64L t = ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ º 18.03 years -.0248 ÅÅÅÅnr Ln t , Then use the intersection feature to find the indicated points. This gives the answers x º -1.31, .099. 18. The initial count in a bacteria culture was 241. After 5 hours, the count was 1000. HaL Assume the growth is exponential. Find a formula for the number of bacteria nHtL after t hours. We'll use the model nHtL = n0 ek t . 12 t 5 .085 ÅÅÅÅ = H1 + ÅÅÅÅ ÅÅÅÅÅÅ L 3 12 .085 lnH ÅÅÅÅ53 L = lnIH1 + ÅÅÅÅ ÅÅÅÅÅÅ L 12 12 t M .085 lnH ÅÅÅÅ53 L = 12 t lnH1 + ÅÅÅÅ ÅÅÅÅÅÅ L 12 lnI ÅÅÅÅ5 M 12 lnI1+ ÅÅÅÅ12 ÅÅÅÅÅÅÅÅ M 3 t = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅ º 6.03 years .085 16. $3000 is invested into an account paying 4% annual interest compounded bimonthly. How long will it take for the account to reach $3500? nt We'll use the formula A = PH1 + ÅÅÅÅnr L , with A = 3500, P = 3000, n = 6, r = .04, and then solve for t. .04 3500 = 3000 H1 + ÅÅÅÅ ÅÅÅÅ L 6 6t 7 lnH ÅÅÅÅ L 6 7 lnH ÅÅÅÅ L 6 = H1 + .04 6 t ÅÅÅÅ ÅÅÅÅ L 6 .04 = lnIH1 + ÅÅÅÅ ÅÅÅÅ L M 6 6t .04 = 6 tHlnH1 + ÅÅÅÅ ÅÅÅÅ LL 6 lnI ÅÅÅÅ7 M 6 lnI1+ ÅÅÅÅ6ÅÅÅÅÅ M 6 t = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ .04ÅÅÅÅÅ º 3.87 years 17. Solve the equation graphically. x3 = ex+1 - 3 First plot y = x3 and y = ex+1 - 3 on your calculator. 2 1 -3 -2 -1 1 -1 -2 -3 -4 Then use the intersection feature to find the indicated points. This gives the answers x º -1.31, .099. Then use n = 1000, n0 = 241, and t = 5 to find k. 1000 = 241 ekH5L 1000 ÅÅÅÅÅÅÅÅ ÅÅÅÅ 241 1000 lnH ÅÅÅÅÅÅÅÅ Å ÅÅ ÅL 241 1000 lnH ÅÅÅÅÅÅÅÅ Å ÅÅ ÅL 241 12 t ÅÅÅÅ76 1 -1 So nHtL = 241 e HbL .285 t = e5 k = lnHe5 k L =5k 1000 lnI ÅÅÅÅÅÅÅÅ ÅÅÅÅÅ M k = ÅÅÅÅÅÅÅÅÅ5241 ÅÅÅÅÅÅÅÅÅÅ º .285 . Predict the number of bacteria after 8 hours. nH8L = 241 e.285 H8L º 2349
© Copyright 2026 Paperzz