Cypress College Math Review: Absolute Value Inequalities Absolute Value as Distance from the origin Inequalities of the form Ex 1) Ex 3) x 3 4  x2 CCMR Absolute Value Inequalities Page 1 of 5 X c Ex 2) x5 4 8 Ex 4) 3 x  2 1  7 Inequalities of the form Ex 5) Ex 7) X c x 6 Ex 6) x 3 6  8 2 3x  1  4  6 Ex 8) 4  2 x  12 CCMR Absolute Value Inequalities Page 2 of 5 Negative numbers and zero We have covered X  c and X  c where c is a positive number. Now, what if c is a negative number or zero? Ex 9) Ex 10) |X| < negative |X| < negative Ex 11) |X| < zero Ex 12) |X| > negative Ex 13) |X| > negative Ex 14) |X| > zero Extra practice problems 1. 2. 3. 4. 5. 6. x7 3 4 6  3x  7 2 x  4  6  10 x 1  5  2 x  5  4 x2 3 7 CCMR Absolute Value Inequalities Page 3 of 5 Answers to practice problems 1. 2. 3.  6,8  1 13   ,   3 3  , 0  4,   4. All real numbers 5. No solution 6.  , 2 6,   CCMR Absolute Value Inequalities Page 4 of 5 Extra Practice – Try these on your own, then check with the answers below. 1. 6 x  35 x  36 2 2. 5 x  21x  4 2 3. 20 x  56 x  15 2 4. 12 x  x  6 2 5. 12 x  16 x  3 2 Answers 1. 2. 3. 4. 5.  2 x  9  3x  4   x  4  5x  1  2 x  510 x  3  3x  2  4 x  3  2 x  3 6 x  1 CCMR Absolute Value Inequalities Page 5 of 5
© Copyright 2025 Paperzz