Chemical Engineering 160/260 Polymer Science and Engineering Lecture 2 - Polymer Chain Configuration and Conformation January 12, 2001 Sperling, Ch 2 Outline ■ ■ Polymer Isomerism for All-carbon Backbones ◆ Constitutional ◆ Configurational ◆ Conformational Spatial Parameters for Polymer Chains ◆ End-to-end distance ◆ Radius of gyration ◆ Freely-jointed model chain Spatial Parameters for All-carbon Backbones 1.54 Å 109.5° 2.52 Å Contour length of the fully extended chain = nl n = number of repeat units l = length of repeat unit Constitutional Isomerism Head-to-head defects -CH2-C-CH2-C-CH2 Configuration of Pseudoasymmetric Carbon Stereoconfiguration !" #$ #%&' # !" #$ #%' Pseudoasymmetric Carbons: Meso Dyad & ( & ( + )# * # + $ +, Pseudoasymmetric Carbons: Racemic Dyad & ( & + )# * # + $ +, Configurational Isomerism %&'%&'%&'%&'%&'%&'%&'%&' %&'%&'%&'%&'%&'%&'%&'%&' %&'%&'%&'%&'%&'%&'%&'%&'-* Conformational Isomerism . #) %+' -$+ +* $ # $#$$$!$$ , /$!$$ 0 1, )&), 23 , Conformational Isomerism 4"*5 $, 6! ) $ +, 7 8** 7 7 7 Conformational Isomerism in Butane 9 +: # ,,7+9,;,9 * <<*=>, Meso (dd, ll) Rotational Dyad ) & ) )& )&)& ) )&) ))& )) Racemic (dl, ld) Rotational Dyad ) ) & )& )&)& )&) ) )) ))& Outline ■ ■ Polymer Isomerism for All-carbon Backbones ◆ Constitutional ◆ Configurational ◆ Conformational Spatial Parameters for Polymer Chains ◆ End-to-end distance ◆ Radius of gyration ◆ Freely-jointed model chain End-to-end Distance of a Random Coil ?) "" -* @# A), 〈r 〉 2 1/ 2 +;: 9 + θ πθ πθ θ φ > . #$ ) - , 4 * A $) %πθ' ) %φ'+*+ +, +;: 9 + : @#/ n r r r = ∑ li r 2 i =1 r r r r r r r r = r • r = ∑l • l = ∑l + 2 ∑l • l 2 i j i i 0 <i < j ≤ n i i, j j r r 〈 r 〉 = ∑ 〈li 〉 + 2 ∑ 〈li • l j 〉 2 2 Average over configurations. i r r 2 〈 r 〉 = nl + 2∑ 〈li • l j 〉 = nl 2 Vector 2 i< j 0 <i < j ≤ n There is no correlation. Freely Jointed Model Polymer Chain: Mean-squared End-to-end Distance Relationship to molecular weight 〈 r 〉 = nl ≈ M 2 2 Characteristic ratio 〈r 〉 o Cn = 2 nl 2 The subscript refers to the unperturbed reference state in which there are no external forces or solvent effects. Cn = 1 for a freely rotating model chain. Equivalent Chain One may account for fixed bond angles and hindered rotation by letting several real bonds be represented by a longer equivalent bond. Real chain: n, l Equivalent chain: n’, l’ n’ < n, l’ > l 〈 r2 〉 = nl 2 = n' (l' ) 2 n' (l' ) 2 C= nl 2 n' ∝ M 1/ 2 Mean-squared Radius of Gyration Ao A1 s1 s0 sn An n s = 2 2 m s ∑ ii 0 n ∑m i 0 A n-2 sn-2 Center of mass sn-1 A n-1 n m∑ si 2 n 1 2 0 s = = ∑ m(n + 1) n + 1 0 i 2 1/ 2 s 〈 〉 ≡ Rg Mean-squared Radius of Gyration The mean-squared radius of gyration is related to the mean-squared end-to-end distance by 2 nl n + 2 2 〈 s 〉o = 6 n + 1 Details of this calculation may be found in Statistical Mechanics of Chain Molecules, P.J. Flory, 1969, pp 16-17. In the limit as n→∞ 2 〈 〉o r 2 〈s 〉 = = Rg 2 6 Rg may be determined from light, x-ray, or neutron scattering.
© Copyright 2026 Paperzz