Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017 SupplementalInformationfor: Oxygen-17DynamicNuclearPolarisationEnhanced Solid-StateNMRSpectroscopyat18.8T NickJ.Brownbill,1DavidGajan,2AnneLesage,2LyndonEmsley3and FrédéricBlanc*1,4 1 DepartmentofChemistry,UniversityofLiverpool, CrownStreet,Liverpool,L697ZD,UnitedKingdom; 2 CentredeRMNàTrèsHautsChamps,InstitutdeSciencesAnalytiques, UniversitédeLyon(CNRS/ENSLyon/UCBLyon1),69100Villeurbanne,France; 3 InstitutdesSciencesetIngénierieChimiques, EcolePolytechniqueFédéraledeLausanne(EPFL),1015Lausanne,Switzerland; 4 StephensonInstituteforRenewableEnergy,UniversityofLiverpool, CrownStreet,Liverpool,L697ZD,UnitedKingdom. *Towhomcorrespondenceshouldbeaddressed(F.B.). E-mail:[email protected]. S1 TableofContents S1.MaterialsandMethods S3 S2.OverallDNPsensitivityenhancementfactorΣ† S7 S3.AdditionalFigures S9 S4.Referencesforsupplementaryinformation S12 S2 S1.MaterialsandMethods Materials Mg(OH)2and17OenrichedMg(OH)2(Mg(17OH)2)werepreparedbyreactionofMgOwithH2Oand 17 O-enrichedH2O,respectively,asdescribedpreviously.1 ForDNPsampleswitha1,1,2,2-tetrachloroethane(TCE)matrix,40 µlstocksolutionof16mM TEKPol2or32mMBPDA(SigmaAldrich,complexed1:1withbenzene)radicalsinTCE(SigmaAldrich,≥98 %)wasaddedtoapre-weighedamountofpowderedsample(typically35mg)untilthepowderappeared slightlysaturatedwithTCEsolutionandwasthenmixedhomogeneously.Thesampleswerethenpacked directlyintothe3.2mmsapphirerotor,alongwithsomeKBr(SigmaAldrich)(~1mg)atthebottomand closed with a poly-tetrafluoroethane (PTFE) plug and Vespel cap. When stated, samples were “freeze/thawcycled”;thisprocessinvolvedthesamplebeinginsertedintotheprobeat115Ktofreeze thematrix,andthenejectedtothawthesolventandwasrepeated5times.3 ForDNPsampleswithano-terphenylmatrix,OTP(SigmaAldrich,99%)andOTP-d14(Cambridge Isotope Laboratories, 98 %, 98 %D) were mixed in predefined ratios (100:0, 50:50, 90:10 and 95:5, respectively)andradicaladdedtocomprise1.3wt%ofthemixtureforTEKPol(correspondingto17mM) or1.4wt%forBDPA(correspondingto34mM).AtypicalOTPmatrixcontainsamixtureofOTP/OTP-d14 (520mg)withBDPA(7.2mg),orOTP/OTP-d14(156mg)withTEKPol(2mg).Theradical/OTPmixtureswere thendissolvedinaminimumvolumeofCDCl3(SigmaAldrich,100%,≥99.96%D)(typically300µl)togive stockradicalsolutions.ThesamplesfortheDNPexperimentswerepreparedbytypicallyadding120µlof stockradicalsolutionapre-weighedamountofMg(OH)2orMg(17OH)2sample(typically35mg)followed by an additional 120 µl of CDCl3; the slurry was then thoroughly mixed before leaving the CDCl3 to evaporate.Theresidualsolidmixturewasthenfinelygroundandpackedintoasapphirerotorwithsome KBr at the bottom (around 1 mg), sealed with a PTFE plug and Vespel cap. When stated, samples underwenta“freeze/meltprocess”modifiedfromtheliterature;4thepackedsamplewasmeltedat343 Kinawaterbathfor2minutes,followedbyflashfreezinginliquidnitrogenfortenseconds.Thisprocess wasrepeatedfivetimesbeforethemeltwasrapidlyinsertedintotheNMRprobeprecooledat115K.For S3 non-DNPexperiments,apre-weighedamountoffinelygroundsamplewaspackedintoa3.2mmzirconia rotor(18.8T)ora4mmzirconiarotor(9.4T)andsealedwithaVespelcap. NMRmethods AllhighfieldDNPsolid-stateNMRexperimentswereperformedonacommercial18.8TBruker AvanceIIIDNPsolid-stateNMRspectrometerequippedwitha527GHzgyrotronmicrowavesystem.NMR experiments were recorded with a 3.2 mm HXY triple-resonance MAS probe, with all cross effect experimentsbeingrecordedatν0(1H)=800.130MHzcorrespondingtothemaximumenhancement 1H position εHforTOTAPOLat ν0(e-)=527GHz,withtheXchanneltunedto13Catν0(13C)=201.193MHzand theYchanneltunedto 17Oatν0(17O)=108.469MHz.AllOverhausereffectexperimentswererecorded atν0(1H)=800.215MHz,correspondingtothemaximumenhancement1HpositionεHforBDPAatν0(e-) =527GHz,withtheXchanneltunedto 13Cat ν0(13C)=201.214MHzandtheYchanneltunedto 17Oat ν0(17O)=108.481MHz.Allexperimentswereperformedundermagicanglespinning(MAS)atνr=12.5 kHz. All DNP experiments were conducted at ~ 131 and 115 K with (µw on) and without (µw off) microwave,respectively. All 1HpulsesandSPINAL-64heteronucleardecouplingwereperformedataradio-frequency(rf) field amplitude of 100 kHz.5 All 1H-13C cross polarisation (CP) MAS experiments (Figure S1(b)) were obtainedwitha 13Crffieldof51kHz,whilethe 1Hrffieldamplitudewasrampedtoobtainmaximum signalata1Hrffieldofapproximately76kHz.All17Oselectivepulseswereobtainedwithanrffieldof6 kHz.All1H-17OCP-HahnechoMASexperiments(FigureS1(c))wereobtainedwitha17Orffieldof14kHz forHartmann–Hahncontact,whilethe1Hrffieldamplitudewasrampedtoobtainmaximumsignalata 1 Hrffieldofapproximately76kHz,atacontacttimeof1ms.All1H-17OPRESTO6MASexperimentswere obtainedwithsymmetry-basedR1817 1Hrecoupling7optimisedtoarffieldof110kHzandclosetothe expected value of 112.5 kHz at νr = 12.5 kHz, and optimised to a recoupling duration of 80 µs, correspondingto1rotorperiod.ThePRESTO-IIpulseprogram,consistingoftwoR1817recouplingblocks on 1Hchannel,withaπ/2pulseduringthesetwoblocksandaπ pulsedirectlyafteronthe 17Ochannel wasusedforallexperiments(FigureS1(d)). S4 Standard 298 K solid state NMR measurements at 18.8 T data were conducted on the same spectrometerasstatedabovewitha3.2mmHXYtriple-resonanceMASprobe,withallexperimentsbeing recordedatν0(1H)=800.130MHz,withtheXchanneltunedto 13Cat ν0(13C)=201.193MHzandtheY channeltunedto17Oatν0(17O)=108.469MHz.Allotherexperimentalparametersremainedunchanged. StandardsolidstateNMRmeasurementsat9.4Twereperformedonacommercial9.4TBruker Avance III HD solid-state NMR spectrometer fitted with a 4 mm HXY triple-resonance MAS probe (in double-resonancemode),tunedtoν0(1H)=400.13MHzandXtoν0(13C)=100.03MHz.Experimentswere performedat298KunderMASatνr=12.5kHz.All 1HpulsesandSPINAL-64heteronucleardecoupling were performed at a radio-frequency (rf) field amplitude of 83 kHz.5 All 1H-17O CP-Hahn echo MAS experimentswereobtainedwitha 17Orffieldof17kHz,whilethe 1Hrffieldamplitudewasrampedto obtainmaximumsignalata 1Hrffieldofapproximately70kHzatacontacttimeof2ms. 17Oselective pulseswereobtainedwithanrffieldof10kHz. Recycle delays that produce optimal signal-to-noise per unit time were used (1.3 x build up).8 Chemicalshiftswereexternallyreferencedatroomtemperaturetowaterat0.0(for 17O)and4.8ppm (for1H),andto29.45ppmfortheCHofadamantane(for13C)9. NMR data were processed with TopSpin 3.2 and MatLab. The signal enhancement factor was determinedbycomparingtheintensityofthespectrawithmicrowaveirradiationturnedonandturned off(unlessexplicitlystatedtohavebeenacomparisonoftotalsignalintegrals). S5 PulseProgramSchemes (a) (b) mw on/off eπ/2 1 π/2 π/2 τVD H mw on/off e- 1 H N (c) mw on/off π/2 O CP τ SPINAL64 CP CP τr μw on/off e- π/2 N 17 C (d) e- H CP SPINAL64 N 13 1 π/2 τ 1 H π τR1 τR2 (R1817)0 (R1817)90 π π/2 τr 17 O SPINAL64 Τ Τ FigureS1:DNPpulseprogramdepictionsof(a)1Hsaturationrecoveryexperiment,whereτvdisavariable delay,tocalculateT1,RTwithµwoff,or τDNPwith µwonwhereτDNPistheDNPbuilduptimeandT1,RTis the1Hrelaxationtimeatroomtemperature.(b)Pre-saturatedCPpulseprogramused,whereτ =1.3xT1, RT with µwoff,or1.3x τDNP with µwon.(c)Pre-saturatedCPHahnEchopulseprogramused,whereτ= 1.3 x T1, RT with µw off, or 1.3 x τDNP with µw on, and τr = one rotor period. (d) PRESTO-II using R1817 recouplingsequences,whereτR1, τR2 andΤareallequaltoanintegerofrotorperiods.Inallexperiments N=100,witha1µsdelaybetweenpulses. S6 S2.OverallDNPsensitivityenhancementfactor Σ† TheoverallDNPsensitivityenhancementfactorΣ†10–14isameasureoftheenhancementofDNP, takingintoconsiderationthedifferingconditionsfromstandardsolidstateNMRatroomtemperature, andtimedifferencesbetweenthetwoexperiments. Σ† wasdeterminedusingthefollowingexperiments: (a) DNPNMRat131K,at18.8Twith µwatν0(e-)=527GHz, (b) DNPNMRat131K,at18.8Twithout µw, (c) RoomtemperatureNMRdata,ateither18.8Tor9.4T, (d) NMRdataat131K,at18.8Tinthesamematrixas(a)withoutradicaladded, andcalculatedusingthefollowingequation: Σ"= ΛRT ΛDNP TRT TDNP SDNP mRT SRT mDNP NSRT T%,'( θ NSDNP τDNP Eq.S1 where Λ,S,mandNSarethefullwidthofthelineshapeathalfmaximum(FWHM),thesignaltonoise ratios,themassofsampleusedandthenumberofscansrecorded,respectively.SubscriptDNPandRT indicate data taken from experiments (a) and (c), respectively. T1,RT is the 1H relaxation time at room temperature(spectrum(c))andτDNPistheDNPbuilduptime(spectrum(a))andare determinedthrough asaturationrecoveryexperiment(FigureS1a).Atlowtemperature,bothvaluesareoftensimilarbutnot alwaysasthesignalbuildupduringµwirradiationisdrivenpredominantlybyDNPpolarisationtransfer ratherthan1Hlongitudinalrelaxation.θisthebleachingfactordeterminedas: θ= 1 SDNP mLT ε SLT mDNP NSLT NSDNP Eq.S2 whereεistheDNPsignalenhancementbetween(a)and(b),respectively,andSLT,mLT andNSLTarethe signaltonoiseratio,themassandthenumberofscansrecordedin(d),respectively. Inthispaper,two Σ†valueswerecalculated:18.8TDNPvs18.8Troomtemperaturedatausing 3.2 mm rotors, and 18.8 T DNP vs 9.4 T room temperature data using 4 mm rotors (the latter being perhapsthemostcommonlyusedsolidstateNMRhardware). S7 TableS1. Σ†OCPCalculationParametersComparedto18.8Taand9.4TbRoomTemperatureSpectraFor Mg(17OH)2 Effect CrossEffect OverhauserEffect Radical 1.3wt%TEKPol 1.4wt%BDPA Matrix TCE OTP OTP/ OTP-d14 (50:50) OTP/ OTP-d14 (90:10) OTP/ OTP-d14 (95:5) TCE OTP OTP/ OTP-d14 (90:10) OTP/ OTP-d14 (95:5) ε 14 6 12 11 12 5 2 17 3 3700 3600 3600 3600 3600 3700 3600 3550 3700 860 182 120 337 534 291 48 173 30 0.016 0.019 0.011 0.019 0.021 0.018 0.003 0.006 0.004 NSDNP 16 8 8 8 8 16 8 8 8 θ 0.8 0.8c 0.8c 0.8c 0.8c 0.8 0.8c 0.8 0.8c τDNP(s) 11.2 2.6 7.9 8.3 9.8 30 19.2 31.2 27 Σ o (18.8T) 72 38 54 71 53 13 24 34 9 Σ †o (9.4T) 400 211 300 399 294 74 132 189 51 ΛDNP (Hz) SDNP (a.u.) mDNP (mg) † ΛRT=3500Hz,SRT=34a.u.,mRT=20mg,NSRT=128, τ2=3s,T1,RT=0.7s,TDNP=131K(calculatedthrough T1of 79BrinKBraddedtorotor15),TRT=298K. b ΛRT=7100Hz,SRT=56a.u.,mRT=70mg,NSRT=80,τ2= 8.5 s, T1,RT, = 6.5 s, TDNP = 131 K. TRT = 298 K.c Value assumed from the other calculated data that are constantatθ=0.8. a S8 S3.AdditionalFigures OE 18.8 T CE 9.4 T OE 9.4 T 80 450 70 400 60 350 300 50 250 40 200 30 150 20 100 10 50 0 0 Σ†O CP at 9.4T Σ†O CP at 18.8 T CE 18.8 T 0 10 20 30 40 50 60 70 80 90 100 % OTP-d14 FigureS2.Σ†OCPmeasuredontheMg(17OH)2sampleandOTPmatrixattheCEposition(square)with1.3 wt%TEKPolasthepolarisingagentandtheOEposition(triangle)with1.4wt%BDPAasthepolarising agent with positions as a function of the OTP-d14 component of the OTP matrix compared with room temperatureNMRspectraat(a)18.8Tand(b)9.4T. S9 FigureS3.Comparisonof17ONMRlineshapesofMg(17OH)2impregnatedwith16mMTEKPolinTCEand obtainedwith(a)aCPHahnechoand(b)aPRESTO6Hahnechosequence,plottedinabsoluteintensity, showing difference in line shape and intensity between CP and PRESTO polarisation transfer steps. Asterisks(*)denotespinningsidebands.SeeFigure1forallotherinformation. Figure S4. Comparison of 17O CP Hahn Echo (a, b) and 1H one pulse (c, d) NMR spectra of Mg(17OH)2with16mMTEKPolinTCEandrecordedatν0(1H)=800.130MHzwithµwatν0(e-)= 527 GHz (green) at T = 131 K and without µw (red) at T = 115 K. (b, d) are freshly prepared materialafter5freeze-thawcyclesand(a,c)arethesamesampleafter20hat253Kand5 freeze-thawcycles.Asterisks(*)denotespinningsidebands. S10 FigureS5.Comparisonof17OCPHahnEcho(a)and1Honepulse(b)NMRspectraofMg(17OH)2 with32mMBDPAinTCErecordedat ν0(1H)=800.215MHzwithµwatν0(e-)=527GHz(green) atT=131Kandwithoutµw(red)atT=115Kafter5freeze-thawcycles.Asterisks(*)denote spinningsidebands. FigureS6.Comparisonof13CCP(a,b)and1Honepulse(c,d)NMRspectraofMg(17OH)2with1.4 wt%.BDPAinOTP/OTP-d14(90:10)andrecordedatν0(1H)=800.215MHzwithµwatν0(e-)=527 GHz(green)atT=131Kandwithoutµw(red)atT=115K.(b,d)arematerialspackedandrun withnofreeze/meltcycling(a,c)arethesamesampleafter5freeze-meltcycles.Asterisks(*) denotespinningsidebands. S11 5.Referencesforsupplementaryinformation 1 F.Blanc,L.Sperrin,D.A.Jefferson,S.Pawsey,M.RosayandC.P.Grey,J.Am.Chem.Soc.,2013, 135,2975. 2 A.Zagdoun,G.Casano,O.Ouari,M.Schwarzwälder,A.J.Rossini,F.Aussenac,M.Yulikov,G. Jeschke,C.Copéret,A.Lesage,P.TordoandL.Emsley,J.Am.Chem.Soc.,2013,135,12790. 3 D.J.Kubicki,A.J.Rossini,A.Purea,A.Zagdoun,O.Ouari,P.Tordo,F.Engelke,A.LesageandL. Emsley,J.Am.Chem.Soc.,2014,136,15711. 4 M.Lelli,S.R.Chaudhari,D.Gajan,G.Casano,A.J.Rossini,O.Ouari,P.Tordo,A.LesageandL. Emsley,J.Am.Chem.Soc.,2015,137,14558. 5 B.M.Fung,A.K.KhitrinandK.Ermolaev,J.Magn.Reson.,2000,142,97. 6 X.Zhao,W.Hoffbauer,J.SchmedtaufderGünneandM.H.Levitt,SolidStateNucl.Magn. Reson.,2004,26,57. 7 X.Zhao,J.L.Sudmeier,W.W.BachovchinandM.H.Levitt,J.Am.Chem.Soc.,2001,123,11097. 8 PrinciplesofNuclearMagneticResonanceinOneandTwoDimensions,eds.R.B.Bernstein,R. Breslow,M.L.H.Green,J.HalpernandJ.L.Rowlinson,OxfordUniversityPress,1987,p.155. 9 C.R.MorcombeandK.W.Zilm,J.Magn.Reson.,2003,162,479. 10 K.R.Thurber,W.-M.YauandR.Tycko,J.Magn.Reson.,2010,204,303. 11 A.J.Rossini,A.Zagdoun,M.Lelli,D.Gajan,F.Rascón,M.Rosay,W.E.Maas,C.Copéret,A. LesageandL.Emsley,Chem.Sci.,2012,3,108. 12 A.J.Rossini,A.Zagdoun,F.Hegner,M.Schwarzwälder,D.Gajan,C.Copéret,A.LesageandL. Emsley,J.Am.Chem.Soc.,2012,134,16899. 13 H.Takahashi,D.Lee,L.Dubois,M.Bardet,S.HedigerandG.DePaëpe,Angew.Chem.Int.Ed., 2012,51,11766. 14 D.Lee,S.HedigerandG.DePaëpe,SolidStateNucl.Magn.Reson.,2015,66–67,6. 15 K.R.ThurberandR.Tycko,J.Magn.Reson.,2009,196,84. S12
© Copyright 2026 Paperzz