Acta Metallurgica Slovaca, 15, 2009, 2 (93 - 99) 93 OPTIMALIZATION SLAG COMPOSITION IN LADLE FURNACE CONSIDERING TO EFFECTIVE STEEL DESULFURIZATION Buľko B.1, Kijac J.1, Domovec M.2 1 Department of Ferrous Metallurgy and Foundry, Faculty of Metallurgy, Technical University Košice, Slovak republic 2 Železiarne Podbrezová, a.s., Slovak republic OPTIMALIZÁCIA ZLOŽENIA PANVOVEJ TROSKY VZHĽADOM K EFEKTÍVNEMU ODSÍRENIU OCELE Buľko B.1, Kijac J.1, Domovec M.2 1 Katedra metalurgie železa a zlievarenstva, Hutnícka fakulta, Technická univerzita Košice, Slovenská republika 2 Železiarne Podbrezová, a.s., Slovenská republika Abstrakt Svetový trend výroby ocele smeruje k ekonomickej výrobe ocele s neustále rastúcimi nárokmi na kvalitu produkovanej ocele, čo spôsobuje zvýšenie podielu výroby mikrolegovaných ocelí na úkor výroby ocelí bežných akostí [1]. Zároveň vychádzajú do popredia ekologické aspekty spojené s výrobou ocele. Tieto náročné požiadavky je možné plniť len za pomoci správne fungujúceho troskového systému v ktoromkoľvek agregáte. Voľbou vhodného troskového režimu je možné nielen zvýšiť čistotu ocele, znížiť náklady spojené s jej výrobou, ale i znížiť množstvo trosky vznikajúcej na 1 tonu vyrobenej ocele. Modifikáciou zloženia trosiek je možné meniť aj ich fyzikálne vlastnosti, vplývajúce najmä na priebeh reakcií na rozhraní troska - tekutý kov, opotrebenie výmurovky, ale aj na možnosti ich ďalšieho spracovania za účelom zníženia množstva haldovaných trosiek [2]. Odsírenie ocele v panvovej peci závisí na teplote, aktivite kyslíka v troske a oceli, ale najmä na chemickom zložení a fyzikálnych vlastnostiach trosky. Nevyhnutnou požiadavkou pre efektívne odsírenie ocele je minimálny obsah ľahko redukovateľných oxidov v troske. Existuje veľa vzťahov popisujúcich odsírovacie schopnosti trosky medzi ktorými existujú aj funkčné závislosti. V tomto článku sú prezentované grafické závislosti medzi jednotlivými parametrami pre približne 229 tavieb vybranej ocele. Na základe uvedeného sú zostavené parametre pre optimálne pracujúci troskový systém v panve. Jeden z významných faktorov je obsah MnO v troske. Napriek vyššiemu rozptylu získaných parametrov je rozdeľovací koeficient síry (Ls) jedným z hlavných ukazovateľov ktorý úzko súvisí s optickou bazicitou trosky. Abstract The world trend of steelmaking forwards to economical steel production with increasing demands on quality of produced steel. This causes increasing production of microalloyed steel at the expense of production of conventional steel [1]. At the same time outgoing in forefronts ecological aspects related with steelmaking. These serious demands can be possible fill only with the aid of properly functioning slag system in the every metallurgical device. Choice convenient slag system it can be possible not only increase purity of steel, lower costs arising with its production, but reduce amount of slag on 1 ton made steel [2]. 94 Acta Metallurgica Slovaca, 15, 2009, 2 (93 - 99) Desulphurization of steel at ladle furnace depends on temperature, amount of oxygen and sulphur in the steel, but mainly on chemical composition and physical properties of slag. Necessary requirement for effective desulphurization is also minimum amount of easy reducible oxides in the slag. There are many correlations for expression of slag desulphurization capability, where their functional dependency on each other can be found. This paper present graphical correlation between individual parameters using 3-D surface graphs from set of approximately 229 heats and based on these, the optimal parameters for slag desulphurization capability are expressed. One of the most significant parameters is content of MnO in slag. Despite the higher scatter of obtained values, the distribution coefficient of sulphur (Ls) is the one of wide range of parameters where exist the close dependence on optical basicity. Key words: steel desulfurization, ladle furnace, sulphur distribution coefficient Introduction Correct and optimal managing of slag mode in ladle furnace allows effective production of steel with required chemical composition and properties. During steel desulphurizing in ladle furnace is very significant influence of MnO in slag on desulphurizing capability of slag [3]. Analysis was based on parameters from electric steel plant where steel produced by electric arc furnace was in next step utilized in ladle furnace and finally casted on continuous casting machine. Experimental methods and used materials For interpretation of MnO influence on slag desulfurization capabilities was chosen steel with basic chemical composition shown in Table 1. Table 1 Basic composition of investigated steel Element C Mn Si Min. content [%] 0.17 1.15 0.15 Max. content [%] 0.2 1.3 0.35 P S 0.025 0.02 Al 0.02 0.03 Slag was investigated by many parameters and their mutual relations. Based on molecular theory is basicity expressed by ratio of basic to acid oxides B1 or B2 (1) [4]: B1 = (CaO ) (SiO 2 ) or B2 = (CaO ) + (MgO ) (SiO 2 ) + ( Al 2 O3 ) (1) Other criterion of examination of slag is sulphidical factor SF, also known as Mannesmann’s coefficient (2): SF = (CaO ) : ( Al O ) (SiO2 ) 2 3 (2) In polycomponent system is optical basicity OB specified by formula [5] (3): n OB = ∑ λi xi i =1 (3) Acta Metallurgica Slovaca, 15, 2009, 2 (93 - 99) Where: 95 xi is ionic fraction of element “i“ λi is optical basicity of given oxide For complex and effective evaluation properties of slag, can be used also other criteria as (4), (5), and (6) [6]: Summary of easily reducible oxides SO: SO= (FeO)+(Fe2O3)+ (MnO)+(Cr2O3)+ (V2O5)+(P2O5) (4) Desulphurizing potential DP of slag based on sulphur distribution coefficient: ∑ (S ) * DP = S 1 3 Al (5) 2 Calcium – aluminate ratio CA: CA = (CaO ) ( Al 2O3 ) (6) For practical calculations can be used sulphidical capacity Cs depending on temperature and optical basicity of slag: log C s = 22690 − 54640 * OB + 43,6 * OB − 25,2 T (7) A very useful criterion is desulphurisation level R: R= S start − S end S start (8) For valuation refining possibilities of slag is useful to use most of shown here criteria, because between many of them exist functional relations. For given parameters also exist interval of optimal values, where refining capabilities of slag is on high level. Results and their analysis In Table 2 is shown average chemical composition of slag from 229 analysed charges and slag parameters based on mentioned criteria. In parenthesis is shown average optimal parameters of selected 16 charges with the best desulphurizing. Table 2 Statistical analysis samples of slag from ladle furnace for examined steel grade Value Element of slag Average content [%] Slag parameter [-] CaO 59.64 (60.19) 0.61(0.77) R Al2O3 20.19 (20) 0.83 (0.83) OB MgO 8.23 (8.45) 2.97 (3.03) CA MnO 0.68 (0.33) 26.18 (37.48) Ls FeO 0.81 (0.70) 1.53 (1.09) [%] SO SiO2 10.38 (9.99) 5.99 (6.17) B1 (S) slag 0.31 (0.35) 2.23 (2.30) B2 2.88 (4.32) DP 0.06 (0.07) Cs 0.297 (0.31) SF 96 Acta Metallurgica Slovaca, 15, 2009, 2 (93 - 99) The highest slag sulphidical capacity cs was gained at higher temperatures of steel and higher value of basicity B2 as shown in Figure 1. Area with highest sulphidical capacity Fig.1 Relation of slag sulphidical capacity on steel temperature and slag basicity B2 In the Figure 2. and Figure 3. is shown relation of sulphur distribution coefficient on summary of easily reducible oxides and on MnO content in slag. 70 R = -0,4820 60 50 40 Ls 30 20 10 0 0 1 2 3 4 5 6 SO [%] Fig.2 Relation of sulphur distribution coefficient on summary of easily reducible oxides SO Fig.3 Relation of sulphur distribution coefficient on MnO content in slag Based on shown figures and calculated relations was formatted the order of individual factors effect on sulphur distribution coefficient Ls, Table 3. Most important is influence of MnO in slag with value R2=32.41%, which confirms Figure 4. One of the problems with desulphurising of steel comes from electric arc furnace in the ladle furnace is higher spread of incoming sulphur, as shown in Figure 4. This spread is caused by unstable sulphur content in steel scrap and it is necessary to eliminate it with higher amount of slag in ladle furnace, aimed to specified sulphur content in final product [7]. Acta Metallurgica Slovaca, 15, 2009, 2 (93 - 99) 97 Table 3 The order of individual factors effect on sulphur distribution coefficient Ls Order Factor R2 [%] 1 MnO 32.41 2 Al2O3 7.15 3 P2O5 5.24 4 TiO2 4.71 5 SiO2 3.4 6 Cr2O3 2.79 7 FeO 2.47 8 Temperature 2.15 9 MgO 0.09 Fig.4 Histogram of incoming sulphur content in the ladle furnace The first step to solve this problem is selection of steel scrap according to lowest spread of sulphur content. In the mass production of steel it is probably most difficult practically realizable step in terms of technological and economical aspects. The next important step is providing primary steel desulphurizing in the electric arc furnace, what is determined by technology and slag mode. In as much as today prevalent technology of modern electric arc furnace with only oxidation cycle is not effectively of steel desulphurizing on sufficient level according to oxygen activity in steel. Required sulphur content in high deoxygenated steel is reached by ladle furnace slag. In respect of wider spread of incoming sulphur content and unstable penetration of electric arc furnace slag into the ladle slag is necessary to calculate with some anomalies from optimal slag chemical composition for given steel, however it is possible to adjust slag chemical composition near to optimal values. Significant influence for steel desulphurization has content of easily reducible oxides in slag. The one of easily reducible oxides is MnO, which has interesting influence on sulphur distribution coefficient. MnO makes itself felt as indicator of steel and slag oxygenation [8]. Also between MnO and FeO content in slag exists dependence. In the Figure 5. is shown distribution of manganese between steel and slag as a function of FeO content in slag. Distribution coefficient of manganese is increasing with FeO content in slag. When increasing content of FeO in slag, declines manganese content in the steel. 98 Acta Metallurgica Slovaca, 15, 2009, 2 (93 - 99) Fig.5 Distribution of Mn between slag and steel as the function of FeO content in the steel Fig.6 Distribution of Mn between slag and steel as the function of the sulphur distribution coefficient Function of manganese distribution between slag and steel can be presented as a significant controller of steel oxygenation. This can be shown as a function between MnO/Mn and sulphur distribution coefficient in the Figure 6. High influence of manganese distribution is in the ratio (MnO)/[Mn]<1. Conclusion Based on shown data and utilizing statistic methods was formatted optimal values of slag parameters for given steel, according to the best desulphurization in the ladle furnace at Table 4. For optimal steel desulphurizing is very important to control the content of the easily reducible oxides in slag, mainly content of MnO which must be less than 0.8%. Also was found optimal Calcium-aluminate ratio 3:1 and Optical basicity of slag in range 0.83 – 0.86. It can be very complicated to respect this parameters in practical steelmaking, but it is possible to approach them. Table 4 The optimal values of desulphurizing slag for given steel Parameter Basicity B1 Basicity B2 Sulphidical factor SF Calcium–aluminate ratio CA Summary of easily reducible oxides SO Sulphur distribution coefficient Ls Sulphidical capacity Cs MnO content Desulphuration potential DP Desulphurization level R Optical basicity OB Value 6.17 2.3 0.31 3.03 < 2% 38 0.07 <0.8% 4.32 0.77 0.83 – 0.86 Literature [1] World Steel in Figures 2006, Brussels: International Iron and Steel Institute, 2006. [2] Buľko B., Kijac J., Brižek M.: The influence of ladle well filler on degradation of tundish slag properties and wearing of working lining. Acta Metallurgica Slovaca, 13, 2007, (237240) Acta Metallurgica Slovaca, 15, 2009, 2 (93 - 99) 99 [3] Buľko B.: Optimalizácia úźitkových vlastností metalurgických trosiek, dizertaćná práca, HF – TU Košice 2009 [4] Mihalič V.: Oceliarstvo I, Bratislava, ALFA, 1982 [5] Krayzel M., Macoszek M.: Možnosti provozního využití parametru optická bazicita strusky při mimopecním zpracováni ocelí. Iron and Steelmaking X. International Scientific conference - Szczyrk. Katowice: Polytechnika Šlaska, 2000. [6] Krayzel M.: Studium podmínek hluboké rafinace ocelových tavenin v metalurgickém reaktoru kesonového typu, dizertační práce, VŠB – TU Ostrava 2000 [7] Buľko B., Kijac J., Demeter J.: Influence of slag parameters in ladle furnace on steel desulfurization, Iron and Steelmaking 2008. International Scientific conference Malenovice 2008 [8] Sung-Mo Jung. Equilibria of Manganese and Sulfur between Liquid Iron and CaO–SiO2– FetO–MgO–MnO Slags Saturated with 2CaO·SiO2 and MgO, ISIJ International, Vol. 43 (2003), No. 2, pp. 216–223
© Copyright 2026 Paperzz