Calculus Quiz 15 1. (5 pts) a. ˆ Use the Trapezoidal Rule with n = 10 to approximate 20 cos(πx)dx. Compare your result to the actual value. 0 Can you explain the discrepancy? b. Let f be a polynomial with deg f = 3 or lower, which defined on [a, b]. Show that the Simpson’s Rule gives the ˆ b exact value of f (x)dx [Hint: it suffice to show the result a when there are two subintervals (n = 2), since for a larger even number of subintervals the sum of exact estimates is exact.] Sol. 20 − 0 a. Let f (x) = cos(πx), and ∆x = = 2. The by Trape10 zoidal Rule, 2 T10 = f (0) + 2 f (2) + f (4) + · · · + f (18) + f (20) 2 = cos 0 + 2 cos 2π + cos 4π + · · · + cos 18π + cos 20π = 1 + 2 · 18 + 1 = 20 The actual value of the integral is ˆ ˆ 20 1 20π cos udu, by letting u=πx⇒du=πdx cos(πx)dx = π 0 0 u=20π 1 1 = sin u = sin 20π − sin 0 = 0 π π u=0 The discrepancy is due to the fact that the function is sampled only at points of the form 2n, where its value f (2n) = cos 2nπ = 1. b−a . b. Let f (x) = Ax3 + Bx2 + Cx + D and let ∆x = h = 2 Then we set x0 = a, x1 = a + h, x2 = b. Without loss of generality, we may shift our graph of f to the left such that x1 = 0, that is, by letting y = x − a − h and g(y) = f (x − a − h), then ˆ h ˆ b g(y)dy = f (x)dx −h a By Simpson’s Rule, we have that h g(−h) + 4g(0) + g(h) 3 h = − Ah3 + Bh2 − Ch + D + 4D + Ah3 + Bh2 + Ch + D 3 2 3 = Bh + 2Dh 3 S2 = The exact value of integral is ˆ ˆ b ˆ h f (x)dx = −h a = h Ay 3 + By 2 + Cy + D dy g(y)dy = −h h 2 B 3 C 2 y + y + y + Dy = Bh3 + 2Dh 4 3 2 3 −h A 4 which is coincide with S2 , the prove is complete. 2. (5 pts) The extension of factorial to non-integer values. ˆ ∞ By the fact that the improper integral tx−1 e−t dt is conver0 gent for x > 0. We define it as a function of x, called the Gamma function Γ(x). a. Show that Γ(x + 1) = xΓ(x) for x > 0, in particular Γ(n + 1) = n! when n is ˆpositive integer. √ 3 ∞ π −x2 e dx = b. Have known that . Find Γ . 2 2 0 Sol. a. For x ≥ 1, then x − 1 ≥ 0 and thus ˆ ˆ ∞ b t e dt = lim tx e−t dt b→∞ 0 0 b ˆ b h i = lim − tx e−t + xtx−1 e−t dt , b→∞ 0 0 ˆ b x −b = − lim b e + x lim tx−1 e−t dt Γ(x + 1) = x −t b→∞ = xΓ(x) b→∞ 0 by letting u=tx , dv=e−t dt du=xtx−1 dt, v=−e−t where the limit lim bx e−b = 0 is due L’Hospital’s Rule. In b→∞ fact, x −b lim b e b→∞ = lim xb x−1 −b b→∞ e [x] Y = · · · = lim (x − i) bx−[x]−1 e−b b→∞ i=0 x(x − 1) · · · (x − [x]) = lim =0 b→∞ b1+[x]−x eb For 0 < x < 1, then x − 1 < 0 and hence tx−1 e−t is singular at t = 0. Thus, similar to above argument, ˆ b ˆ b b h i x −t x −t x−1 −t Γ(x + 1) = lim lim t e dt = lim lim − t e + x t e dt a→0 b→∞ a a→0 b→∞ a a ˆ ∞ x −a x −b = lim lim a e − b e +x tx−1 e−t dt a→0 b→∞ x −a = lim a e a→0 0 x −b − lim b e b→∞ + xΓ(x) = xΓ(x) In particular, for n ∈ N \ {0}, Γ(n + 1) = nΓ(n) = n(n − 1)Γ(n − 1) = · · · ˆ ∞ = n(n − 1) · · · 3 · 2 · Γ(1) = n! e−t dt 0 ˆ b e−t dt = n! lim 1 − e−b = n!. = n! lim b→∞ 0 b→∞ b. ˆ ∞ 3 ˆ ∞ 3 1 −1 −t = t 2 e dt = t 2 e−t dt Γ 2 0 0 ˆ ∞ 2 1 1 dt =2 s2 e−s ds, by letting s=t 2 ⇒ds= 12 t− 2 dt= 2s ⇒2sds=dt 0 b 1 ˆ b i h 1 2 2 u=s, dv=se−s ds −s2 e−s ds , by letting = 2 lim − se + 2 du=ds, v=− 12 e−s b→∞ 2 2 0 0 ˆ b ˆ ∞ b 2 −b2 −s2 e ds = − lim b2 + = − lim be + lim e−s ds b→∞ b→∞ 0 b→∞ e 0 √ √ 1 π π = − lim = 2 + b→∞ 2beb 2 2
© Copyright 2025 Paperzz