Fused-CoreTM Particle Columns provide UHPLC performance on any HPLC Major Contributors and Co-Authors D. Bell, W. Campbell, W. Way, K. Buckendahl Supelco – a Division of Sigma Aldrich Content • Influence on Resolution & Van Deemter Curve • HPLC Evolution of particle design • Fused-CoreTM particle Technology • Column performance - System compatibility (pressure requirements) - Comparison to Sub 2µm and 3µm materials 2 Fused-Core is a trademark of Advanced Materials Technology Inc. Ascentis is a trademark of the Sigma-Aldrich Corp. Resolution in HPLC Key Influence Factors 3.0 Efficiency Retention Selectivity α R= N . k’ . α-1 k’+1 α 4 N α - Increase column length - Decrease particle size (N ~ 1/dp) Resolution (R) 2.5 - Change stationary phase - Change mobile phase solvent - Change buffer pH k - Increase (weaker solvent) - Decrease (stronger solvent) 3 Zhao, J.H. and P.W. Carr. Analytical Chemistry, 1999. 71(14): p. 2623-2632 2.0 N 1.5 1.0 k’ 0.5 0.0 1.00 1.05 1.10 1.15 1.20 0 5000 10000 15000 20000 0 5 10 15 20 α 25000N 25 k’ 1.25 van Deemter-Kurve: H = A + B/u + Cu H B = 2γDm A = 2λdP 4 u C = (f1dP2+f2df2) Evolution of HPLC Column Particle Design Irregular Pellicular Totally Porous Fused-Coretm 5 Difficult to pack, easily clogged and not very rugged Thin porous layer showed low capacity Current HPLC workhorse The future of HPLC columns? Fused-Core is a trademark of Advanced Materials Technology, Inc. Pressure & Efficiency are reciprocal to the particle size– Influence of dP on P >> N 2x efficiency → 4x higher pressure Effiiciency 30,000 1 N ∝ dp 25,000 20,000 15,000 10,000 dP (µm) psi Bar N 5,000 1.8 5889 406 27,500 0 2.5 3089 213 20,000 3 2118 146 16,500 5 769 53 10,000 10 189 13 5,000 15 87 6 3,750 20 44 3 2,500 bar 0 5 10 400 350 300 250 200 150 100 50 0 15 20 1 P∝ 2 dp 10 cm column, 3 mm/s linear flow 0 6 Smaller particles are not the simplest solution and have draw backs. 5 10 dp (μm) 15 20 How much separation power do you have commonly on your HPLCSystem? Fused Core-Technology – Higher Efficiency 1 4 2 Agilent 1200 Ascentis Express C18, 15cm x 4.6mm, 2.7 µm 1.0mL/min, 254nm, RT, 10µL inj 3 4. Toluol N = 30,738 3. Benzol N = 31,696 2. Acetophenon N = 33,786 1. Uracil (dead time marker) Pressure = 183 bar (2690 psi) 0 7 1 2 3 4 min Ascentis Express Fused-Core Particle Technology • Fused-Core particle technology invented by Jack Kirkland • Porous silica layer fused to solid core 0.5 µm • Ascentis Express HPLC columns use this newly engineered particle • 2.7 micron Silica particle 2.7 µm 1.7 µm • 1.7 micron solid core • 0.5 micron porous shell • C18 and C8 phases available at launch (RP-Amide later in 2007) 8 Fused Core Technology • Reducing dispersion (increasing efficiency) • A solid core at the center of a particle, the potential diffusion path length of an analyte molecule is effectively shortened • A larger particle then can theoretically generate similar efficiency of a smaller totally porous particle without generating high backpressures 9 Fused-Core Vs. Totally Porous: Improved Peak Shape 0.5 µm 2.7 µm 10 Migration Path In Particle 1.7 µm Shorter diffusion path reduces axial dispersion and minimizes peak broadening 1.5 µm System Compatibility Comparison of Pressure for Different Particles ΔP = 1000FηL ΔP = to πr2dp2 16,000 16,000 35.00 14,000 30.00 12,000 Pressure (psi) HETP (μm) H = A + B/u + Cu 25.00 20.00 15.00 10.00 10,000 8,000 2.7 µm FC 6,000 3 µm 4,000 2.7 µm Ascentis Express 5.00 1 2 3 4 5 Mobile Phase Velocity (mm/sec) 11 1.7 µm 2,000 2 4 6 8 10 Mobile Phase Velocity (mm/sec) 12 van Deemter – Ascentis Express 2.7 µm Vs. 3 µm Small Molecule Study: Naphthalene: M.W. = 130 Naphthalene 8.00 7.00 Acentis C8 3 µm Ascentis Express C18 2.7 µm Ascentis Express C8 2.7 µm 5.00 h h = H / dp 6.00 4.00 3.00 2.00 1.00 0.00 Reduced plate hight to compare columns with diff. Particle sizes 12 0.00 1.00 2.00 3.00 4.00 v (mm/s) 5.00 6.00 Columns: 50 x 4.6 mm Mobile phase: 55/45 ACN/Water Sample: Naphthalene (20 µg/mL), dissolved in 55/45 ACN/water Injection: 5 µL Detection: 254 nm Temperature: 30 °C Instrument: Agilent 1100. 7.00 Smaller Particles Exponentially Increase Pressure bar Pressure Drop Vs. Particle Size 4 50 400 3 50 300 2 50 200 150 10 0 50 0 1.8 µm ~ 400 bar (6,000 psi) 3 µm ~ 150 bar (2,250 psi) 5 μm ~ 50 bar (750 psi) 0 5 10 dp (μm) 15 10 cm column, 3 mm/s linear velocity 13 20 25 Frit Requirements for HPLC columns Column Work horse Frit size (μm) 5 2 Higher Efficiency 3 0.5 UHPLC 1.6-2.0 0.2 Ascentis Express 14 Particle size (μm) 2.7 2 Ascentis Express 3µm Porus material • Ascentis Express’ narrow particle distribution allows for 2 μm-Frits • Like 5 μm-Columns Ascentis Express-Columns can efficiently be protected by 0.5 μm-Inline-Filter. High Definition (HD) Resolution Compared to 5µm porus particle column • Sub 2 µm columns can provide up to 1.55 x increase in resolution for an 8 fold increase in pressure • Ascentis Express Fused-Core (FC) columns can provide 1.55 x increase in resolution for only a 4 fold increase in pressure dp 5μm 3μm 2.7μm FC 1.8μm 15 N Rs factor* Pressure (psi) Pressure (bar) 10.000 1 750 50 14.000 1,18 2.250 150 24.000 1,55 2.800 190 24.000 1,55 6.000 400 10cm columns * RS normalised to 5µm column Twice the Efficiency at the System Limit 2.7 µm Fused-Core Vs. 3 µm Totally Porous Particles Ascentis Express C18 2.7 µm 65 % ACN N = 237,740 p/m or N = 35,661 p/col Psi (approx 4,000) Efficiency Comparison / Columns: 150 x 4.6 mm Mobile Phase: Acetonitrile / Water Flow: 1.5 mL/min Injection: 2.0 μL Detection: 220 nm Agilent 1100 HPLC System 2 1 4 1. 2. 3. 4. 3 0 2 Ascentis C18, 3 µm 72.5 % ACN N = 140,631p/m or N = 21,095 p/col Psi (approx 4,000) 0 16 p-hydroxy ethylbenzene Napthalene p-Xylene Biphenyl 4 2 4 1 3 2 4 NB: Ascentis C18 and Ascentis Express C18 have different Surface Chemistries TO11/IP6A Carbonyl-DNPH Mix 120 140 Almost Twice the Sensitivity 20 40 mAU 60 80 100 Ascentis Express C18, 2.7 µm Peak 8 N = 260,720 p/m N = 39,108 p/col 8 Column: 150 x 4.6 mm I.D. Mobile phase: Ascentis Express C18 2.7 µm: 25:75, water: acetonitrile Ascentis C18 3 µm: 30:70, water: acetonitrile Flow rate: 1.0 mL/min. Temp.: 30 °C Det.: UV at 365 nm Injection: 1 µL Sample: 47285-U TO11/IP6A Carbonyl-DNPH Mix as indicated below in 40:60, water: acetonitrile 0 Peak IDs 140 0 2 4 6 Time (min) 8 10 12 mAU 60 80 100 120 Sensitivity Gap 20 40 Ascentis C18, 3 µm Peak 8 N = 146,587p/m N = 21,988p/col Formaldehyde-2,4-DNPH (105 µg/mL) Acetaldehyde-2,4- DNPH (76.4 µg/mL) Acrolein-2,4- DNPH (63.2 µg/mL) Acetone-2,4- DNPH (61.5 µg/mL) Propionaldehyde-2,4- DNPH (61.5 µg/mL) Crotonaldehyde-2,4- DNPH (53.6 µg/mL) Butyraldehyde-2,4- DNPH (52.5 µg/mL) Benzaldehyde-2,4- DNPH (40.5 µg/mL) Isovaleraldehyde-2,4- DNPH (46.4 µg/mL) Valeraldehyde-2,4- DNPH (46.4 µg/mL) o-Tolualdehyde-2,4- DNPH (37.5 µg/mL) m-Tolualdehyde-2,4- DNPH (37.5 µg/mL) p-Tolualdehyde-2,4- DNPH (37.5 µg/mL) Hexaldehyde-2,4- DNPH (42 µg/mL) 2,5-Dimethylbenzaldehyde-2,4- DNPH (35 µg/mL) 8 0 17 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 0 2 4 6 8 Time (min) 10 12 NB: Ascentis C18 and Ascentis Express C18 have different Surface Chemistries Higher Sample Throughput on Traditional HPLC Systems* 0 2 4 6 Time (min) 0 0 2 4 6 Time (min) 0 2 Conventional C18 25 cm x 4.6 mm I.D., 5 μm 1.0 mL/min., N= 22147 Pressure: 128 bar (1880 psi) 4 6 Time (min) 10 0 2 4 6 Time (min) 20 0 2 4 6 Time (min) 30 2 4 6 8 0 2 4 Time (min) 6 4 6 Time (min) Method requirement was N >20.000 10 Ascentis Express C18 10 cm x 4.6 mm I.D., 2.7 μm 1.5 mL/min., N = 21297 Pressure: 248 bar (3645 psi) 18 2 40 Ascentis Express C18 10 cm x 4.6 mm I.D., 2.7 μm 1.0 mL/min., N = 22694 Pressure: 167 bar (2450 psi) 0 0 8 10 *Agilent 1100 HPLC System High Speed: Increased Flow Rate Ascentis Express Vs. sub-2 µm at System Pressure Limit Ascentis Express C18 0.3 mL/min 45 % acetone. 2130 psi N = 12,500 1 2 5 3 1.0 2.0 Time (min) 3.0 4.0 Ascentis Express C18 Sub-2 µm Column 2 0.3 mL/min 51 % acetone. 9500 psi N = 12,170 2 4 5 3 19 0.6 mL/min 45 % acetone. 4450 psi N = 8,500 1 1.0 Mobile Phase: water : acetonitrile; isoelutropic for β-Estradiol Columns: 100 x 2.1 mm Flow: variable Det: 200 nm Inj: 1µL Elution order: 1. Estriol 2. β-Estradiol 3. Contaminant 4. Estrone 5. Estrone degradant 4 2.0 Time (min) 3.0 4.0 1 2 4 3 1.0 Time (min) 5 2.0 All column efficiencies have been compromised by system dispersion, however the pressure associated with the Ascentis Express column when run at twice the flow rate. It is still at only half that of the sub 2 µm column. Twice the Efficiency at the System Limit: 4,000 – 6,000 psi System Ascentis Express C18 100 mm length 45 % acetonitrile 4500 psi N = 8,500 p/col 1 2 4 5 3 1.0 Time (min) 2.0 Mobile Phase: water : acetonitrile; isoelutropic for β-Estradiol Columns: 2.1 mm ID Flow: 0.6 mL/min Det: 200 nm Inj: 1µL Elution order: 1. Estriol 2. β-Estradiol 3. Contaminant 4. Estrone 5. Estrone degradant C18 Sub-2 µm Column 50 mm length 46 % acetonitrile 5200 psi N = 3,790 p/col 1 2 4 3 20 0.2 0.4 0.6 0.8 Time (min) Both column efficiencies have been compromised by system dispersion however N is double for the longer column as would have been predicted at the same pressure 5 1.0 1.2 21 Ascentis Express Achieve 100,000 Plates under 7,000 PSI Agilent 1200, 1.0mL/min, 254nm, ambient temp, 10uL 1 Column 15cm x 4.6mm 4. N Toluene = 30,738 3. N Benzene = 31,696 2. N Acetophenone = 33,786 Pressure = 183 bar (2690 psi) N Toluene = 63,212 N Benzene = 64,785 2 columns 30cm N Acetophenone = 67,390 Pressure = 350 bar (5145 psi) N Toluene = 91,311 3 columns 45cm 0 22 2 N Benzene = 94,979 2 N Acetophenone = 101,586 4 Pressure = 473 bar (6953 psi) 3 4 6 8 10 12 14 Ascentis Express separates… deuterated Isomeres Agilent 1200 55cm x 4.6mm (>100,000 N in 14 min) 60% Acetonitrile 1.1mL/min, 254nm, 50°C, 10uL B B Toluene N = 104,235 4 columns Benzene N = 106,096 DB Acetophenone N = 117,475 Pressure = 473 bar (7,000 psi) DB Toluol N 1 =0 105,657 0 2 4 6 8 Time (min) 10 12 14 Benzol N = 106,260 D6 Benzol N = 105,235 Acetophenon N = 118,567 Pressure 1 =0 473 bar (7,000 psi) 0 23 2 4 6 8 Time (min) 10 12 14 Deuterated Analogues of Toluene and Benzene H H H H H D D H H D D D D H D H CD3 CH3 CD3 CH3 H H H H D D D D H H H H D D D D H 24 D D H D D High-Efficiency Separations: Deuterated Analogues of Toluene and Benzene Length: 45 cm Pressure: 10500 psi N (acetophenone) = 73400 0 1.8 µm, C18 10 20 Time (min) 2.7 µm, Fused Core Length: 60 cm Pressure: 10550 psi N (acetophenone) = 113810 0 10 20 Time (min) 25 Further examples of high resolution using Ascentis Express 26 Increased resolution over 3 µm particles Ascentis Express C18 (2.7μm) Efficiency (N) Peak 9: 13160 2990 psi 6 0 2 4 Time (min) C18 3 µm 6 0 27 2 4 Time (min) 6 Efficiency (N) Peak 9: 8290 1750 psi 6 columns: 10 cm x 2.1 mm I.D. mobile phase A: 100 mM ammonium acetate (pH 7.0; titrated with ammonium hydroxide) mobile phase B: water mobile phase C: methanol online mixing: Ascentis Express C18: A:B:C = 10:28:62 3 µm, C18: A:B:C = 10:25:65 (isoelutropic for peaks 6 & 9) flow rate: 0.3 mL/min. temp.: 55 °C det.: UV at 250 nm injection: 1 µL Peak ID 1. Uracil 2. Nordoxepin (50 mg/L) 3. Desipramine (50 mg/L) 4. Nortiptyline (50 mg/L) 5. Doxepin (50 mg/L) 6. Norclomipramine (50 mg/L) 7. Imipramine (50 mg/L) 8. Amitriptyline (50 mg/L) 9. Clomipramine (50 mg/L) Carbonic Anhydrase Tryptic Digest on Ascentis Express C18 40μL Injection 1.0mL/min flow @ 35ºC 215nm Detection Response time >0.010min Gradient: MP A → 5% ACN w/0.1% TFA MP B → 80% ACN w/0.095% TFA 2 min hold @ 0% B 58 min gradient from 0% B to 50% B 20 min gradient from 50% B to 85% B Ascentis Express 15x4.6mm 2.7μm 0 10 28 20 30 40 50 60 C18 15x4.6mm 3μm 70 80 0 10 20 30 40 50 60 70 80 Greater peak resolution with Ascentis Express Magnified regions: each pair is at the same scale 12 14 12 16 14 18 16 18 20 20 22 24 22 26 24 26 28 28 C18 3μm Ascentis Express C18 28 2829 30 30 32 32 34 36 38 40 34 36 38 40 HILIC on Ascentis Express Erythromycin and Related Compounds by O 3 erythromycins.esp H3C 1 CH3 OH CH3HO OH 2 4 O CH3 H3C OH H3C H3C N O O O O CH3 CH3 O O 0 30 5 10 Column Name Length Diameter Particle Size Mobile Phase A pH Mobile Phase A Mobile Phase B Gradient Temperature Injection Volume 15 Retention Time (min) Ascentis Express Si 15 cm 0.05 cm 2.7 um H2O; 100mM ammonium formate 3 acetonitrile 90B 35 °C 5 uL H3C CH3 CH3 OH CH3 Comparison of Ascentis Express HILIC and porous particle based silica phases Ascentis Express HILIC 1 Ascentis Silica 1. Norephedrine 4 4 2. Ephedrine 1 3. Pseudoephedrine 4. Synephrine 2 2 3 0 2 4 6 Time (min) Column 31 8 10 0 2 4 Plates/Column Synephrine Ascentis Express HILIC 18500 Ascentis Silica 12878 Other HILIC 10013 3 6 8 10 Time (min) 4 1 12 14 Other porous HILIC 2 0 2 4 3 6 8 10 Time (min) 12 14 Ascentis Express Stability A Customers Experience 32 Summary • Ascentis Express columns with 2.7 µm Fused-Core Particles offer the chromatographer a real ‘Speed Advantage’ - Greater resolving power per unit pressure on any system • Almost double the efficiency of 3 µm columns with totally porous particles • Close to half the back pressure of sub 2 µm particles → possible use of 2x longer columns - Increase the speed of analysis while maintaining resolution • Use a column of half the length or smaller while maintaining the same or better resolving power than 5 µm & 3 µm columns • Get the same speed as sub 2 µm columns but at half the pressure • Or increase flow and double the speed (or better) at the same pressure - Benefit from the ruggedness and durability of traditional HPLC columns 33 Acknowledgements • Dr. Hillel Brandes • Dr David Bell • Hugh Cramer • Dr. Richard A. Henry • Dr. Wayne Way • Dr. Russel Gant • Dr. Paul Ross • Dr. William Campbell • Dr. A. Daniel Jones, MSU 34 Thank you! • C18 • C8 • HILIC • RP-Amide (coming soon) 35 Seminar Offer 25% off for a Test Column
© Copyright 2026 Paperzz