PSfrag replacements O x y Higher Mathematics Vectors Paper 1 Section B 1. The point Q divides the line joining P(−1, −1, 0) to R(5, 2, −3) in the ratio 2 : 1. [SQA] 3 Find the coordinates of Q. Part Marks 3 Level C Calc. NC Content G25 •1 pd: find vector components •2 ss: use parallel vectors •3 pd: process vectors Answer (3, 1, −2) U3 OC1 2002 P1 Q2 6 − → •1 PR = 3 −3 −→ 2 − → 2 • PQ = 3 PR •3 Q = (3, 1, −2) PSfrag replacements O 2. VABCD is a pyramid with a rectangular base ABCD. x y Relative to some appropriate axes, [SQA] V −→ VA represents −7i − 13 j − 11k −→ AB represents 6i + 6 j − 6k D −→ AD represents 8i − 4 j + 4k . A K divides BC in the ratio 1 : 3. −→ Find VK in component form. Part Marks Level Calc. 3 C CN 3 C 1 K B 3 Content G25, G21, G20 Answer 1 −8 −16 U3 OC1 2000 P1 Q7 replacements −→ −→ −→ −→ •1 VK = VA + AB + BK or −→ −→ −→ VK = VB + BK 2 − → − → − → •2 BK = 14 BC or 14 AD or −1 or 1 −1 −7 −17 1 − → •3 VK = −8 −16 O x y c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes •1 ss: recognise crucial aspect •2 ic: interpret ratio •3 pd: process components hsn.uk.net Page 1 PSfrag replacements O x y Higher Mathematics 3. (a) Roadmakers look along the tops of a set of T-rods to ensure that straight sections of road are being created. Relative to suitable axes the top left corners of the T-rods are the points A(−8, −2), PSfrag −10, replacements B(−2, −1, 1) and C(6, 11, 5). OA Determine whether or not the section of x road ABC has been built in a straight line. y [SQA] C B 3 C (b) A further T-rod is placed such that D has coordinates (1, −4, 4). B Show that DB is perpendicular AB. PSfrag to replacements 3 O xA y Part (a) (b) Marks 3 3 •1 ic: •2 ic: •3 ic: Level C C Calc. CN CN Content G23 G27, G17 Answer the road ABC is straight proof −→ interpret vector (e.g. AB) interpret multiple of vector complete proof 6 −→ •1 e.g. AB = 9 3 −→ •4 ic: interpret vector (i.e. BD) •5 ss: state requirement for perpend. •6 ic: complete proof •2 e.g. •3 •4 •5 •6 −→ BC = 8 12 4 U3 OC1 2001 P1 Q3 = → 4− 3 AB or 2 2 − → −→ AB = 3 3 and BC = 4 3 1 1 a common direction exists and a common point exists, so A, B, C collinear 3 −→ BD = −3 3 −→ −→ AB.BD = 0 −→ −→ AB.BD = 18 − 27 + 9 = 0 or replacements O x y D hsn.uk.net Page 2 −→ −→ •5 AB.BD = 18 − 27 + 9 −→ −→ c SQA marked ‘[SQA]’ •6 AB.BDQuestions = 0 so AB is at right angles to c All others Higher Still Notes BD PSfrag replacements O x y Higher Mathematics 4. frag replacements [SQA] O x y frag replacements O x y [END OF PAPER 1 SECTION B] replacements O x y hsn.uk.net Page 3 c SQA Questions marked ‘[SQA]’ c Higher Still Notes All others PSfrag replacements O x y Higher Mathematics Paper 2 1. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 4 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 2. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 5 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 3. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 6 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 4. [SQA] frag replacements O x y frag replacements O x y frag replacements [SQA] 5. O x y frag replacements O x y replacements O x y hsn.uk.net Page 7 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 6. [SQA] frag replacements O x y frag replacements O x y 7. frag replacements [SQA] O x y frag replacements O x y replacements O x y hsn.uk.net Page 8 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 8. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 9 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 9. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 10 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 10. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 11 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 11. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 12 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 12. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 13 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 13. The vectors p , q and r are defined as follows: [SQA] p = 3i − 3 j + 2k , q = 4i − j + k , r = 4i − 2 j + 3k . (a) Find 2 p − q + r in terms of i , j and k . 1 (b) Find the value of |2 p − q + r |. 2 frag replacements O x y 14. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 14 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics frag replacements O 15.x y [SQA] frag replacements O x y frag replacements O 16.xy [SQA] frag replacements O x y frag replacements [SQA] 17. O x y frag replacements O x y replacements O x y hsn.uk.net Page 15 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 18. [SQA] frag replacements O x y frag replacements O x y frag replacements O x 19.y [SQA] frag replacements O x y replacements O x y hsn.uk.net Page 16 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 20. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 17 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics [SQA] 21. frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 18 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics [SQA] 22. A cuboid measuring 11 cm by 5 cm by 7 cm is placed centrally on top of another PSfrag replacements cuboid measuring 17 cm by 9 cm by 8 cm. Coordinates axes are taken as shown. z 7 5 11 C A x 17 8 9 B y O (a) The point A has coordinates (0, 9, 8) and C has coordinates (17, 0, 8). 1 Write down the coordinates of B. 6 (b) Calculate the size of angle ABC. Part (a) (b) Marks 1 6 •1 ic: •2 •3 •4 •5 •6 •7 ss: pd: pd: pd: pd: pd: Level C C Calc. CN CR Content G22 G28 interpret 3-d representation know to use scalar product process vectors process vectors process lengths process scalar product evaluate scalar product Answer B(3, 2, 15) 92·5◦ •1 •2 •3 •4 •5 •6 •7 U3 OC1 2000 P2 Q9 3 B= (3, 2, 15) treat 2 as bad form 15 −→ −→ BA . BC b = −→ −→ cos ABC |BA||BC| −3 −→ BA = 7 −7 14 −→ BC = −2 −7 √ √ −→ −→ |BA| = 107, |BC| = 249 −→ −→ BA.BC = −7 b = 92·5◦ ABC replacements O x y hsn.uk.net Page 19 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics frag replacements O 23.x y [SQA] frag replacements O x y 24. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 20 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 25. [SQA] frag replacements O x y frag replacements O x y frag replacements O 26.x y [SQA] frag replacements O x y frag replacements 27.O x y [SQA] frag replacements replacements O x y O x y hsn.uk.net Page 21 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 28. ABCD is a quadrilateral with vertices A(4, −1, 3), B(8, 3, −1), C(0, 4, 4) and D(−4, 0, 8). [SQA] (a) Find the coordinates of M, the midpoint of AB. 1 (b) Find the coordinates of the point T, which divides CM in the ratio 2 : 1. 3 (c) Show that B, T and D are collinear and find the ratio in which T divides BD. 4 frag replacements O x y replacements O x y hsn.uk.net Page 22 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 29. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 23 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 30. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 24 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 31. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 25 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 32. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 26 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 33. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 27 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 34. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 28 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 35. A box in the shape of a cuboid is designed with circles of different sizes on each face. [SQA] The diagram shows three of the circles, where the origin represents one of the corners of the cuboid. The centres of the circles are A(6, 0, 7), B(0, 5, 6) and C(4, 5, 0). z B Find the size of angle ABC. PSfrag replacements 7 A O y C x Part Marks 5 2 •1 ss: use •2 •3 •4 •5 •6 •7 ic: ic: pd: pd: pd: pd: Level C A/B Calc. CR CR Content G17, G16, G22 G26, G28 −→ −→ BA.BC −→ −→ |BA||BC| Answer 2001 P2 Q4 71·5◦ •1 use −→ state vector e.g. BA −→ state a consistent vector e.g. BC −→ process |BA| −→ process |BC| process scalar product find angle U3 OC1 •2 •3 •4 •5 •6 •7 −→ −→ BA.BC −→ −→ |BA||BC| stated or implied by •7 6 −→ BA = −5 1 4 −→ BC = 0 −6 √ −→ |BA| = 62 √ −→ |BC| = 52 −→ −→ BA.BC = 18 b = 71·5◦ ABC t 2 36. For what value of t are the vectors u = −2 and v = 10 perpendicular? 3 t [SQA] Part replacements O x y Marks 2 Level C Calc. CN Content G27 •1 ss: know to use scalar product •2 ic: interpret scalar product hsn.uk.net Page 29 Answer t=4 U3 OC1 2000 P2 Q7 •1 u.v = 2t − 20 + 3t •2 u.v = 0 ⇒ t = 4 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes 2 PSfrag replacements O x y Higher Mathematics 37. A(4, 4, 10), B(−2, −4, 12) and C(−8, 0, 10) are the vertices of a right-angled triangle. [SQA] Determine which angle of the triangle is the right angle. frag replacements O x y frag replacements [SQA] 38. O x y frag replacements O x y replacements O x y hsn.uk.net Page 30 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes 3 PSfrag replacements O x y Higher Mathematics 39. The diagram shows a square-based PSfrag replacements z pyramid of height 8 units. [SQA] D(3, 3, 8) Square OABC has a side length of 6 units. The coordinates of A and D are (6, 0, 0) and (3, 3, 8). y C C lies on the y-axis. (a) Write down the coordinates of B. −→ (b) Determine the components of DA −→ and DB. B O A(6, 0, 0) x 2 4 (c) Calculate the size of angle ADB. Part (a) Marks 1 (b) 2 Level C C Calc. CN CN Content G22 Answer (6, 6, 0) G17 −→ DA U3 OC1 3 −3, −8 = (c) 4 C CR 3 −→ DB = 3 −8 38·7◦ G28 •1 ic: interpret diagram •4 •5 •6 •7 use e.g. scalar product formula process lengths process scalar product process angle •2 ic: write down components of a vector 3 • ic: write down components of a vector ss: pd: pd: pd: 2002 P2 Q2 •1 B = (6, 6, 0) 3 − → •2 DA = −3 −8 3 −→ 3 • DB = 3 −8 .DB b = −DA •4 cos ADB → −→ |DA||DB| √ √ −→ −→ •5 |DA| = 82, |DB| = 82 −→ −→ •6 DA.DB = 64 b = 38·7◦ •7 ADB −→ −→ replacements O x y hsn.uk.net Page 31 1 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 40. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 32 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 41. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 33 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 42. [SQA] frag replacements O x y frag replacements O x y 43. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 34 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 44. [SQA] frag replacements O x y frag replacements O x y 45. [SQA] frag replacements O x y frag replacements O x y replacements O x y hsn.uk.net Page 35 c SQA Questions marked ‘[SQA]’ c All others Higher Still Notes PSfrag replacements O x y Higher Mathematics 46. [SQA] frag replacements O x y frag replacements O x y 47. PQRS is a parallelogram with vertices P(1, 3, 3), Q(4, −2, −2) and R(3, 1, 1). [SQA] 3 Find the coordinates of S. frag replacements O x y [END OF PAPER 2] replacements O x y hsn.uk.net Page 36 c SQA Questions marked ‘[SQA]’ c Higher Still Notes All others
© Copyright 2026 Paperzz