Name———————————————————————— Lesson 1.4 Date ————————————— Study Guide For use with the lesson “Solve ax 2 + bx + c = 0 by Factoring” example 1 Use factoring to solve equations of the form ax 2 1 bx 1 c 5 0. Lesson 1.4 goal Factor ax 2 1 bx 1 c where c < 0 Factor 2x 2 2 x 2 3. You want 2x 2 2 x 2 3 5 (kx 1 m)(lx 1 n) where k and l are factors of 2 and m and n are factors of 23. Because mn < 0, m and n have opposite signs. k, l 2, 1 2, 1 2, 1 2, 1 m, n 3, 21 21, 3 23, 1 1, 23 (kx 1 m)(lx 1 n) (2x 1 3)(x 2 1) (2x 2 1)(x 1 3) (2x 2 3)(x 1 1) (2x 1 1)(x 2 3) ax 2 1 bx 1 c 2x 2 1 x 2 3 2x 2 1 5x 2 3 2x 2 2 x 2 3 2x 2 2 5x 2 3 The correct factorization is (2x 2 3)(x 1 1). example 2 Factor with special patterns and monomials Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. Factor the expression. a. 6t 2 2 24 5 6(t 2 2 4) 5 6(t 1 2)(t 2 2) 2 b. 3m 2 18m 1 27 5 3(m 22 6m 1 9) 5 3(m 2 3)2 example 3 Factor out monomial. Difference of two squares Factor out monomial. Perfect square trinomial Solve a quadratic equation 4s 2 1 11s 1 8 5 3s 1 4 Original equation 4s 2 1 8s 1 4 5 0 Write in standard form. s 2 1 2s 1 1 5 0 Divide each side by 4. (s 1 1)2 5 0 s 1 1 5 0 s 5 21 Factor. Zero product property Solve for s. Exercises for Examples 1, 2, and 3 Factor the expression. If the expression cannot be factored, say so. 1. 2x 2 2 14x 1 12 2. 3x 2 1 24x 1 21 3. 6x 2 2 42x 1 72 4. 4x 2 1 4x 2 24 5. 5x 2 2 20x 2 25 6. 3x 2 2 12x 2 36 8. 3x 2 2 12x 1 12 5 0 9. 5x 2 2 15x 2 20 5 0 Solve the equation. 7. 25x 2 2 9 5 0 Algebra 2 Chapter Resource Book 1-49 Name———————————————————————— Lesson Lesson 1.4 1.4 Date ————————————— Study Guide continued For use with the lesson “Solve ax 2 + bx + c = 0 by Factoring” example 4 Use a quadratic equation as a model Paintings The area of a painting is 24 square inches and the length is 5 inches more than the width. Find the length of the painting. Solution Write a verbal model. Let x represent the width and write an equation. Area of painting 5 (square inches) 24 Width of painting p (inches) x 5 Length of painting (inches) p (x 1 5) 0 5 x 2 1 5x 2 24 Write in standard form. 0 5 (x 1 8)(x 2 3) Factor. x 1 8 5 0 or x 2 3 5 0 Zero product property x 5 28 or x 5 3 Solve for x. Reject the negative value, x 5 28. The length is x 5 3 1 5 inches or 8 inches. example 5 Solve a multi-step problem STEP 1 Define the variables. Let x represent the price increase and R(x) represent the weekly revenue. STEP 2 Write a verbal model. Then write and simplify a quadratic equation. Weekly sales 5 (dollars) R(x) 5 Number of bikes p sold (bikes) Price of bike (dollars/bike) p (100 1 10x) (18 2 3x) R(x) 5 230(x 2 6)(x 1 10) STEP 3 Identify the zeros and find their average. The zeros are 6 and 210. The average of the zeros is 22. To maximize revenue, the shop should charge 100 1 10(22) 5 $80. STEP 4 Find the maximum weekly revenue. R(22) 5 230(22 2 6)(22 1 10) 5 $1920. The shop should charge $80 per bike to maximize weekly revenue. The maximum weekly revenue is $1920. Exercises for Examples 4 and 5 10. Rework Example 4 where the length is 2 inches more than the width. 11. Rework Example 5 where for each increase of $10, the shop sells 9 less bikes per week. 1-50 Algebra 2 Chapter Resource Book Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. Bicycles A bicycle shop sells about 18 bikes per week when it charges $100 per bike. For each increase of $10, the shop sells 3 less bikes per week. How much should the shop charge to maximize sales? 24; they are the same. 19x; they are the same. 6. The trinomial and product of binomials in Question 1 are different. The trinomial and product of binomials in Question 5 are equivalent. Practice Level A 1. (2x 1 1)(x 1 2) 2. (2x 1 1)(x 1 1) 3. (3x 2 1)(x 1 2) 4. (2x 2 1)(x 2 1) 5. 2(2x 2 1)(x 1 1) 6. (3x 1 1)(2x 2 3) 7. (5x 2 4)(x 1 1) 8. 3(3x 1 2)(x 2 1) 9. (4x 1 1)(x 1 3) 10. 2(3x 2 2)(x 1 1) 11. (2x 1 3)(2x 2 3) 12. 4(x 2 1)(x 1 1) 13. 2(x 2 2)(x 2 3) 14. 3(x 1 1)(x 2 4) 15. 3(3x 2 1)(3x 1 1) 16. 4(2x 1 1)(x 2 3) 17. 2(2x 1 3)(2x 1 3) 18. 5(3x 1 2)(2x 2 1) 3 1 1 1 2 19. } 2 , 1 20. 2 }2 , 21 21. } 2 , } 3 22. 2 }3 , 3 3 5 1 3 23. } , 1 24. 2 } , } 25. 22, 3 26. 2 } , 3 2 2 2 4 2 27. 21, } 3 28. 1, 2 29. 23, 1 30. 24, 2 5 3 1 1 3 31. } 32. 2 } , } 33. 2 } , 2 } 3 3 2 2 2 34. 3 35. 2 36. B 37. 1.5 ft Practice Level B 1. (3x 2 2)(x 1 4) 2. (2x 2 1)(x 1 3) Practice Level C 1. (4x 2 3)(x 2 3) 2. (3x 1 4)(2x 2 7) 3. (5x 1 2)(2x 1 5) 4. (3x 1 4)(3x 1 4) 5. 23(2x 2 3)(2x 1 3) 6. 4(3x 1 2)(x 2 4) 7. 23(5x 1 4)(x 2 1) 8. x(3x 2 1)(2x 2 1) 9. cannot factor 10. x 2(2x 1 3)(2x 1 3) 11. 3x 2(4x 2 3)(2x 1 3) 12. 4x(6x 2 5)(3x 2 7) 13. (x 2 1 9)(x 2 3)(x 1 3) 14. (2x 2 1 3)(x 2 1 1) 15. 3(2x 2 2 1)(x 2 1)(x 1 1) 3 3 5 1 1 16. } 3 , 3 17. 1, } 2 18. 2 }4 , } 4 19. 21, } 6 3 7 3 5 4 3 4 7 20. 2 } , } 21. 2 } , } 22. 2 } , } 23. 2 }4 , } 7 3 2 2 9 3 4 2 2 3 2 7 24. 2 } , 4 25. 1, 2 26. 2 } , 2 27. } , } 28. } 2 5 3 3 5 29. 10 30. 99x 2 1 2900x 2 38,900 5 0; 100 ft Study Guide 1. 2(x 2 6)(x 2 1) 2. 3(x 1 1)(x 1 7) 3. 6(x 2 3)(x 2 4) 4. 4(x 2 2)(x 1 3) 5. 5(x 1 1)(x 2 5) 6. 3(x 2 6)(x 1 2) 3 7. x 56 } 8. x 5 2 9. x 5 21, x 5 4 5 10. The length is 6 in. 11. The shop should charge $60/bike to maximize weekly revenue of $3240. Interdisciplinary Application 3. (2x 1 1)(2x 1 1) 4. cannot factor 1. about 210 yd 2. about 60 yd 5. (4x 2 3)(x 1 2) 6. (2x 1 5)(x 1 3) 3. about 287 yd 4. about 361 yd 7. (3x 1 2)(3x 1 2) 8. 3(2x 2 3)(2x 2 1) Challenge Practice 9. 2(3x 2 1)(3x 1 1) 10. (4x 1 3)(3x 1 2) 1. Sample answer: c 5 23, (2x 2 1)(x 1 3); c 5 212, (2x 2 3)(x 1 4) 2. Sample answer: c 5 28, (3x 1 2)(x 2 4); c 5 225, (3x 1 5)(x 2 5) 11. (5x 2 4)(3x 1 4) 12. cannot factor 13. 3(4x 2 1)(x 2 3) 14. (6x 2 7)(3x 1 2) 15. 2(5x 2 6)(2x 2 3) 16. 7(3x 1 1)(2x 1 1) 17. (212x 1 11)(x 1 1) 18. 4(5x 1 3)(4x 1 1) 3 2 2 1 1 3 19. 22, } 2 20. 2 }2 , 3 21. } 2 , } 2 22. 2 }3 , } 3 5 4 2 1 3 1 1 23. } 4 , } 2 24. 2 }3 25. 2 }3 , 2 }3 26. 2 }2 , } 2 3 5 2 3 3 3 27. 0, } 7 28. } 8 , } 4 29. 2 }3 , 0 30. 2 }2 , } 6 6 4 8 31. 2, 3 32. 2 } , } 33. 2 } , 1 34. none 5 5 11 A8 3 35. 2 36. } 2 37. 0.375 ft Algebra 2 Chapter Resource Book 1 2 4 11 3. (22, 23), } 3 , } 3 3 4. 2} 2 , 24 , (3, 23) 1 2 5. (2n 2 2)(2n)(2n 1 2); An even integer is one that is a multiple of 2. Because n is an integer, 2n is an even integer. You can add and subtract 2 from 2n to obtain a set of three consecutive even integers. 6. 5 7. 24 club members Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved. Lesson 1.4 Solve ax 2 + bx + c = 0 by Factoring, continued
© Copyright 2026 Paperzz