Quantitative Finance and Investments Advanced Formula Sheet Fall 2015/Spring 2016 Morning and afternoon exam booklets will include a formula package identical to the one attached to this study note. The exam committee believes that by providing many key formulas, candidates will be able to focus more of their exam preparation time on the application of the formulas and concepts to demonstrate their understanding of the syllabus material and less time on the memorization of the formulas. The formula sheet was developed sequentially by reviewing the syllabus material for each major syllabus topic. Candidates should be able to follow the flow of the formula package easily. We recommend that candidates use the formula package concurrently with the syllabus material. Not every formula in the syllabus is in the formula package. Candidates are responsible for all formulas on the syllabus, including those not on the formula sheet. Candidates should carefully observe the sometimes subtle differences in formulas and their application to slightly different situations. Candidates will be expected to recognize the correct formula to apply in a specific situation of an exam question. Candidates will note that the formula package does not generally provide names or definitions of the formula or symbols used in the formula. With the wide variety of references and authors of the syllabus, candidates should recognize that the letter conventions and use of symbols may vary from one part of the syllabus to another and thus from one formula to another. We trust that you will find the inclusion of the formula package to be a valuable study aide that will allow for more of your preparation time to be spent on mastering the learning objectives and learning outcomes. 1 Interest Rate Models - Theory and Practice, Brigo and Mercurio Chapter 3 Table 3.1 Summary of instantaneous short rate models Model V CIR D EV HW BK MM Dynamics drt = k[θ − rt ]dt + σdWt √ drt = k[θ − rt ]dt + σ rt dWt drt = art dt + σrt dWt drt = rt [η − a ln rt ]dt + σrt dWt drt = k[θt − rt ]dt + σdWt drth = rt [η t ]dt +iσrt dWt ³t − a ln r´ drt = rt ηt − λ − γ 1+γt ln rt dt + σrt dWt √ CIR++ rt = xt + ϕt , dxt = k[θ − xt ]dt + σ xt dWt EEV rt = xt + ϕt , dxt = xt [η − a ln xt ]dt + σxt dWt r>0 N Y Y Y N Y r∼ N NCχ2 LN LN N LN Y LN Y* Y* 2 SNCχ SLN AB AO Y Y Y Y Y N N N Y Y N N N N Y N Y N *rates are positive under suitable conditions for the deterministic function ϕ. (3.5) (3.6) (3.7) dr(t) = k[θ − r(t)]dt + σdW (t), r(0) = r0 ¡ ¢ Rt r(t) = r(s)e−k(t−s) + θ 1 − e−k(t−s) + σ s e−k(t−u) dW (u) ¡ ¢ E {r(t)|Fs } = r(s)e−k(t−s) + θ 1 − e−k(t−s) ¤ σ2 £ 1 − e−2k(t−s) 2k P (t, T ) = A(t, T )e−B(t,T )r(t) Var{r(t)|Fs } = (3.8) (3.9) (3.11) (3.12) (3.13) (3.14) (3.15) (3.16) (3.19) (3.20) (3.21) (3.22) dr(t) = [kθ − B(t, T )σ 2 − kr(t)]dt + σdW T (t) dr(t) = [kθ − (k + λσ)r(t)]dt + σdW 0 (t), r(0) = r0 dr(t) = [b − ar(t)]dt + σdW 0 (t) ¢ Rt b¡ r(t) = r(s)e−a(t−s) + 1 − e−a(t−s) + σ s e−a(t−u) dW 0 (u) a Pn Pn P n i=1 ri ri−1 − i=1 ri ni=1 ri−1 α̂ = P P 2 2 n ni=1 ri−1 − ( ni=1 ri−1 ) Pn [ri − α̂ri−1 ] β̂ = i=1 n(1 − α̂) i2 1 Pn h − α̂r − β̂(1 − α̂) r Vc2 = i i−1 n i=1 ³ ´ 2 E {r(t)|Fs } = r(s)ea(t−s) and Var{r(t)|Fs } = r2 (s)e2a(t−s) eσ (t−s) − 1 R∞ √ √ 2 p r̄p R ∞ r̄ sin(2 r̄ sinh y) f(z) sin(yz)dzdy + K (2 r̄) 2p 0 0 π2 Γ(2p) p r(0) = r0 dr(t) = k(θ − r(t))dt + σ r(t)dW (t), p dr(t) = [kθ − (k + λσ)r(t)]dt + σ r(t)dW 0 (t), r(0) = r0 P (t, T ) = 2 (3.23) ¡ ¢ E {r(t)|Fs } = r(s)e−k(t−s) + θ 1 − e−k(t−s) Var{r(t)|Fs } = r(s) (3.24) (3.25) ¢ ¢2 σ 2 ¡ −k(t−s) σ2 ¡ − e−2k(t−s) + θ e 1 − e−k(t−s) k 2k P (t, T ) = A(t, T )e−B(t,T )r(t) ∙ ¸2kθ/σ2 2h exp {(k + h)(T − t)/2} A(t, T ) = 2h + (k + h)(exp {(T − t)h} − 1) √ 2(exp{(T − t)h} − 1) , h = k2 + 2σ 2 2h + (k + h)(exp {(T − t)h} − 1) p dr(t) = [kθ − (k + B(t, T )σ 2 )r(t)]dt + σ r(t)dW T (t) B(t, T ) = (3.27) (3.28) pTr(t)|r(s) (x) = pχ2 (υ,δ(t,s))/q(t,s) (x) = q(t, s)pχ2 (υ,δ(t,s)) (q(t, s)x) q(t, s) = 2[ρ(t − s) + ψ + B(t, T )] and δ(t, s) = Page 68 (3.29) P (t, T ) = A(t, T )e−B(t,T )r(t) R(t, T ) = α(t, T ) + β(t, T )r(t), ∂B(t, T ) σ(t, r(t)) ∂T dr(t) = b(t, r(t))dt + σ(t, r(t))dW (t) σf (t, T ) = Page 69 Page 69/70 Page 70 4ρ(t − s)2 r(s)eh(t−s) q(t, s) b(t, x) = λ(t)x + η(t), σ 2 (t, x) = γ(t)x + δ(t) 1 ∂ B(t, T ) + λ(t)B(t, T ) − γ(t)B(t, T )2 + 1 = 0, B(T, T ) = 0 ∂t 2 ∂ 1 A(T, T ) = 1 [ln A(t, T )] − η(t)B(t, T ) + δ(t)B(t, T )2 = 0, ∂t 2 Vasicek λ(t) = −k, η(t) = kθ, γ(t) = 0, δ(t) = σ 2 CIR λ(t) = −k, η(t) = kθ, γ(t) = σ 2 , δ(t) = 0 σ 2 (x) = γx + δ µ ¶ θ σ2 lim E{r(t)|Fs } = exp + t→∞ a 4a ¶∙ µ 2¶ ¸ µ σ 2θ σ 2 + exp −1 lim Var{r(t)|Fs } = exp t→∞ a 2a 2a b(x) = λx + η, Page 71 (3.31) (3.32) dr(t) = [ϑ(t) − a(t)r(t)]dt + σ(t)dW (t) (3.33) dr(t) = [ϑ(t) − ar(t)]dt + σdW (t) (3.34) ϑ(t) = (3.35) (3.36) ∂f M (0, t) σ2 + af M (0, t) + (1 − e−2at ) ∂T 2a R t −a(t−u) Rt −a(t−s) + se ϑ(u)du + σ s e−a(t−u) dW (u) r(t) = r(s)e Rt = r(s)e−a(t−s) + α(t) − α(s)e−a(t−s) + σ s e−a(t−u) dW (u) where α(t) = f M (0, t) + σ2 (1 − e−at )2 2a2 3 (3.37) (3.38) Page 74 (3.47) (3.48) (3.49) E{r(t)|Fs } = r(s)e−a(t−s) + α(t) − α(s)e−a(t−s) ¤ σ2 £ 1 − e−2a(t−s) Var{r(t)|Fs } = 2a dx(t) = −ax(t)dt + σdW (t), x(0) = 0 R t −a(t−u) −a(t−s) +σ s e dW (u) x(t) = x(s)e E{x(ti+1 )|x(ti ) = xi,j } = xi,j e−a∆ti =: Mi,j ¤ σ2 £ 1 − e−2a∆ti =: Vi2 Var{x(ti+1 )|x(ti ) = xi,j } = 2a r √ 3 ∆xi = Vi−1 3 = σ [1 − e−2a∆ti−1 2a ¶ µ Mi,j k =round ∆xi+1 (3.64) 2 2 2 ηj,k ηj,k ηj,k 1 ηj,k 2 1 ηj,k √ + , p = , p = − √ + − + m d 2 2 2 6 6Vi 3 3Vi 6 6Vi 2 3Vi 2 3Vi α α α x dxt = μ(xt ; α)dt + σ(xt ; α)dWt (3.65) P x (t, T ) = Πx (t, T, xαt ; α) (3.66) t≥0 rt = xt + ϕ(t; α), i h R T P (t, T ) = exp − t ϕ(s; α)ds Πx (t, T, rt − ϕ(t; α); α) (3.50) (3.67) (3.68) (3.69) (3.70) (3.71) (3.74) Page 100 Page 101 (3.76) (3.77) pu = ϕ(t; α) = ϕ∗ (t; α) := f M (o, t) − f x (0, t; α) h R i T exp − t ϕ(s; α)ds = Φ∗ (t, T, x0 ; α) := P M (0, T ) Πx (0, t, x0 ; α) Πx (0, T, x0 ; α) P M (0, t) Π(t, T, rt ; α) = Φ∗ (t, T, x0 ; α)Π∗ (t, T, rt − ϕ∗ (t; α); α) V x (t, T, τ, K) = Ψx (t, T, τ, K, xαt ; α) ¸ ∙ dϕ(t; α) drt = kθ + kϕ(t; α) + − krt dt + σdWt dt k2 θ − σ 2 /2 σ 2 −kt − e (1 − e−kt ) − x0 e−kt k2 2k2 P M (0, T )A(0, t) exp{−B(0, t)x0 } P (t, T ) = M P (0, t)A(0, T ) exp{−B(0, T )x0 } ϕV AS (t; α) = f M (0, t) + (e−kt − 1) ×A(t, T ) exp{−B(t, T )[rt − ϕV AS (t; α)]} p x(0) = x0 , r(t) = x(t) + ϕ(t) dx(t) = k(θ − x(t))dt + σ x(t)dW (t), ϕCIR (t; α) = f M (0, t) − f CIR (0, t; α) f CIR (0, t; α) = h= √ k2 + 2σ 2 4h2 exp{th} 2kθ(exp{th} − 1) + x0 2h + (k + h)(exp{th} − 1) [2h + (k + h)(exp{th} − 1)]2 4 Chapter 4 (4.4) rt = x(t) + y(t) + ϕ(t), r(0) = r0 (4.5) dx(t) = −ax(t)dt + σdW1 (t), dy(t) = −by(t)dt + ηdW2 (t), −a(t−s) x(0) = 0 y(0) = 0 −b(t−s) + y(s)e + ϕ(t) E{r(t)|Fs } = x(s)e 2 £ 2 ¤ η £ ¤ ¤ σ ση £ Var{r(t)|Fs } = 1 − e−2a(t−s) + 1 − e−2b(t−s) + 2ρ 1 − e−(a+b)(t−s) 2a 2b a+b R t −a(t−u) R t −b(t−u) (4.7) r(t) = σ 0 e dW1 (u) + η 0 e dW2 (u) + ϕ(t) p f1 (t) + η 1 − ρ2 dW f2 (t) f1 (t) dy(t) = −by(t)dt + ηρdW (4.8) dx(t) = −ax(t)dt + σdW p f1 (t) and dW2 (t) = ρdW f1 (t) + 1 − ρ2 dW f2 (t) where dW1 (t) = ddW (4.6) (4.9) (4.10) (4.11) (4.12) (4.13) 1 − e−b(T −t) 1 − e−a(T −t) x(t) + y(t) a b ∙ ¸ 2 −a(T −t) 1 −2a(T −t) 3 σ2 − e − V (t, T ) = 2 T − t + e a a 2a 2a ∙ ¸ 2 1 3 η2 + 2 T − t + e−b(T −t) − e−2b(T −t) − b b 2b 2b ∙ ¸ e−a(T −t) − 1 e−b(T −t) − 1 e−(a+b)(T −t) − 1 ση T −t+ + − +2ρ ab a b a+b ½ ¾ −a(T −t) RT 1−e 1 − e−b(T −t) 1 P (t, T ) = exp − t ϕ(u)du − x(t) − y(t) + V (t, T ) a b 2 2 ¡ 2 ¢2 ¢2 σ η ¡ ση ϕ(t) = f M (0, T ) + 2 1 − e−aT + 2 1 − e−bT + ρ (1 − e−aT )(1 − e−bT ) 2a 2b ab ½ ¾ n R o P M (0, T ) 1 T exp − t ϕ(u)du = M exp − [V (0, T ) − V (0, t)] P (0, t) 2 M(t, T ) = P M (0, T ) exp {A(t, T )} P M (0, t) (4.14) P (t, T ) = (4.15) 1 − e−a(T −t) 1 − e−b(T −t) 1 x(t) − y(t) A(t, T ) := [V (t, T ) − V (0, T ) + V (0, t)] − 2 a b P (t, T ) = A(t, T ) exp{−B(a, t, T )x(t) − B(b, t, T )y(t)} p σf (t, T ) = σ 2 e−2a(T −t) + η2 e−2b(T −t) + 2ρσηe−(a+b)(T −t) (4.16) 5 Page 152 Cov(df(t, T1 ), df (t, T2 )) dt ∂B ∂B ∂B ∂B (a, t, T1 ) (a, t, T2 ) + η2 (b, t, T1 ) (b, t, T2 ) = σ2 ∂T ∂T ∂T ∂T ¸ ∙ ∂B ∂B ∂B ∂B (a, t, T1 ) (b, t, T2 ) + (a, t, T2 ) (b, t, T1 ) +ρση ∂T ∂T ∂T ∂T = σ 2 e−a(T1 +T2 −2t) + η2 e−b(T1 +T2 −2t) £ ¤ +ρση e−aT1 −bT2 +(a+b)t + e−aT2 −bT1 +(a+b)t σ 2 e−a(T1 +T2 −2t) + η2 e−b(T1 +T2 −2t) σf (t, T1 )σf (t, T2 ) ¤ £ −aT −bT +(a+b)t + e−aT2 −bT1 +(a+b)t ρση e 1 2 + σf (t, T1 )σf (t, T2 ) Corr(df (t, T1 ), df(t, T2 )) = Page 153 ln P (t, T1 ) − ln P (t, T2 ) T2 − T1 B(a, t, T2 ) − B(a, t, T1 ) df (t, T1 , T2 ) = ...dt + σdW1 (t) T2 − T1 B(b, t, T2 ) − B(b, t, T1 ) + ηdW2 (t) T2 − T1 p σf (t, T1 , T2 ) = σ 2 β(a, t, T1 , T2 )2 + η2 β(b, t, T1 , T2 )2 + 2ρσηβ(a, t, T1 , T2 )β(b, t, T1 , T2 ) f(t, T1 T2 ) = B(z, t, T2 ) − B(z, t, T1 ) T2 − T1 Cov(df(t, T1 , T2 ), df (t, T3 , T4 )) dt B(a, t, T2 ) − B(a, t, T1 ) B(a, t, T4 ) − B(a, t, T3 ) σ2 T2 − T1 T4 − T3 B(b, t, T2 ) − B(b, t, T1 ) B(b, t, T4 ) − B(b, t, T3 ) +η2 T2 − T1 T4 − T3 ∙ B(a, t, T2 ) − B(a, t, T1 ) B(b, t, T4 ) − B(b, t, T3 ) +ρση T2 − T1 T4 − T3 ¸ B(a, t, T4 ) − B(a, t, T3 ) B(b, t, T2 ) − B(b, t, T1 ) + T4 − T3 T2 − T1 s σ22 σ1 σ2 + 2ρ̄ Page 160 σ3 = σ12 + 2 b̄ − ā (ā − b̄) σ2 σ1 dZ1 (t) − dZ2 (t) σ2 ā − b̄ dZ3 (t) = , σ4 = σ3 ā − b̄ σ1 ρ̄ − σ4 Page 161 a = ā, b = b̄, σ = σ3 , η = σ4 , ρ = σ3 where β(z, t, T1 , T2 ) = 6 ϕ(t) = r0 e−āt + ā = a, b̄ = b, Rt θ(v)e−ā(t−v) dv p σ1 = σ 2 + η2 + 2ρση, 0 σρ + η ρ̄ = p , σ 2 + η2 + 2ρση θ(t) = σ2 = η(a − b) dϕ(t) + aϕ(t) dt Managing Credit Risk: The Great Challenge for Global Financial Markets, Caouette, et. al. Chapter 20 (20.2) Rp = N P Xi EAR i=1 (20.3) Vp = N N P P Xi Xj σi σj ρij i=1 j=1 (20.5) UALp = N N P P Xi Xj σi σj ρij 1 i=1 j=1 Page 403 µ µ √ −1 ¶ ¶ ρΦ (CL) + Φ−1 (P D) √ CV aR(CL) = EAD • LGD • Φ − PD 1−ρ 1 + (M − 2.5) • b(P D) × 1 − 1.5b(P D) Liquidity Risk Measurement and Management: A Practioner’s Guide to Global Best Practices, Matz and Neu Chapter 2 Page 33 Page 33 log V (t) = α + βt + σεt √ log Vq (t) = α + βt − σΦ−1 (q) t Bond-CDS Basis Handbook: Measuring, Trading and Analysing Basis Trades, Elizalde, Doctor, and Saltuk Page 13, Equation 1 Page 15, Equation 2 Page 18, Equation 3 Page 25, Equation 4 Page 25, Equation 5 Page 43, Equation 7 S = P D × (1 − R) U − AI + FC FR = RA P V [c + p] − BP SS = RF A BT P 1 = CN ×(100−R−U −CP −F C)+BN ×(R+CR−BP −F C) BT P 2 = BN × (100 + CR − BP − F C) − CN × (U + CP + F C) BP − R × BN CN = 100 − R − U 7 A Survey of Behavioral Finance, Barberis and Thaler (1) (2) (x, p : y, q) = π(p)v(x) + π(q)v(y) P xα if x ≥ 0 πi v(xi ) where v = and πi = w(Pi ) − w(Pi∗ ), α −λ(−x) if x < 0 i Pγ w(P ) = (P γ + (1 − P )γ )1/γ (3) (4) (5) (6) (7) Dt+1 = egD +σD εt+1 Dt Ct+1 = egC +σC ηt+1 Ct ¶ µµ ¶ µ ¶¶ µ 0 1 w εt ˜N , , i.i.d.over time ηt 0 w 1 Ct1−γ ρ E0 1−γ t=0 "µ # ¶−γ Ct+1 Rt+1 1 = ρEt Ct ∞ P t Dt+1 + Pt+1 1 + Pt+1 /Dt+1 Dt+1 = Pt Pt /Dt Dt (8) Rt+1 = (9) rt+1 = ∆dt+1 +const.≡ dt+1 − dt +const. (10) (11) (13) (14) Eπ v[(1 − w)Rf,t+1 + wRt+1 − 1] ∙ ¸ 1−γ ∞ P −γ t Ct E0 ρ + b0 C t v̂(Xt+1 ) 1−γ t=0 Pt+1 + Dt+1 Rt+1 = Pt ∞ ∞ P P pt − dt = Et ρt ∆dt+1+j − Et ρt rt+1+j + Et lim ρj (pt+j − dt+j )+const. j=0 (15) (16) (17) (18) (19) (20) j→∞ j=0 ∙ ¸ 1−γ −γ t Ct E0 ρ + b0 C t ṽ(Xt+1 , zt ) 1−γ t=0 ∞ P ri − rf = βi.1 (F 1 − rf ) + . . . + βi,K (F K − rf ) ri,t − rf,t = αi + βi,1 (F1,t − rf,t ) + . . . + βi,K (FK,t − rf,t ) + εi,t 1 2 2 Rf = eγgC +0.5γ σC ρ 1 + f gD −γGC +0.5(σ2 +γ 2 σ2 −2γσC σD w) D C 1=ρ e f Dt+1 + Pt+1 1 + Pt+1 /Dt+1 Dt+1 1 + f gD +σD εt+1 Rt+1 = = = e Pt Pt /Dt Dt f 8 CAIA Level II: Advanced Core Topics in Alternative Investments, Black, Chambers, Kazemi Chapter 16 (16.1) (16.2) (16.3) (16.4) (16.5) (16.6) (16.7) (16.8) (16.9) (16.10) true true Ptreported = α + β0 Pttrue + β1 Pt−1 + β2 Pt−2 + ··· true true Ptreported = αPttrue + α(1 − α)Pt−1 + α(1 − α)2 Pt−2 +··· reported Pttrue = (1/α) × Ptreported − [(1 − α)/α] × Pt−1 reported reported Pttrue = Pt−1 + [(1/α) × (Ptreported − Pt−1 )] Rt,reported ≈ β0 Rt,true + β1 Rt−1,true + β2 Rt−2,true + · · · reported Ptreported = (1 − ρ)Pttrue + ρPt−1 reported ∆Ptreported = (1 − ρ)∆Pttrue + ρ∆Pt−1 Rt,reported ≈ (1 − ρ)Rt,true + ρRt−1,reported Rt,true = (Rt,reported − ρRt−1,reported )/(1 − ρ) ρ̂ = corr(Rt,reported − Rt−1,reported ) (16.11) ρi,j = σij /(σi σj ) (16.12) reported reported reported Rtreported = α + β1 Rt−1 + β2 Rt−2 + · · · + βk Rt−k + εt Chapter 21 Page 262 Y = S × I × E × H where Y = yield, S = total solar radiation over the area per period, I = fraction of solar radiation captured by the crop canopy, E = photosynthetic efficiency of the crop (total plant dry matter per unit of solar radiation), H = harvest index (fraction of total dry matter that is harvestable) Managing Investment Portfolio: A Dynamic Process, Maginn, Tuttle, Pinto, McLeavey Chapter 8 Page 523 T RCI = CR + RR + SR Page 553 RRn,t = (Rt + Rt−1 + Rt−2 + . . . + Rt−n )/n r Pn ∗ 2 i=1 [min(ri − r , 0)] DD = n−1 ARR − rf Sharpe Ratio = SD ARR − rf Sortino Ratio = DD Page 554 Page 555 Page 556 9 The Secular and Cyclic Determinants of Capitalization Rates: The Role of Property Fundamentals, Macroeconic Factors, and "Structural Changes," Chervachidze, Costello, Wheaton (1) Log(Cj,t ) = a0 + a1 log(Cj,t−1 ) + a2 log(Cj,t−4 ) + a3 log(RRIj,t ) + a4 RT Bt + a7 Q2t +a8 Q3t + a9 Q4t + a10 Dj (1.1) (2) RRIj,t−s = RRj,t /MRRj Log(Cj,t ) = a0 + a1 log(Cj,t−1 ) + a2 log(Cj,t−4 ) + a3 log(RRIj,t−s ) + a4 RT Bt +a5 SP READt + a6 DEBT F LOWt + a7 Q2t + a8 Q3t + a9 Q4t + a10 Dj (2.1) (3) DEBT F LOWt = T NBLt /GDPt Log(Cj,t ) = a0 + a1 log(Cj,t−1 ) + a2 log(Cj,t−4 ) + a3 log(RRIj,t−s ) + a4 RT Bt +a5 SP READt + a6 DEBT F LOWt + a7 Q2t + a8 Q3t + a9 Q4t (4) Log(Cj,t ) = a0 + a1 yearq + a2 log(Cj,t−1 ) + a3 log(Cj,t−4 ) + a4 log(RRIj,t−s ) + a5 RT Bt +a6 SP READt + a7 DEBT F LOWt + a7 Q2t + a8 Q3t + a9 Q4t + a10 Dj Analysis of Financial Time Series, Tsay Chapter 9 (9.1) rit = αi + βi1 f1t + · · · + βim fmt + (9.2) rt = α + βf t + t , t = 1, . . . , T (9.3) Ri = αi 1T + Fβ 0i + Ei (9.4) R = Gξ 0 + E (9.5) rit = αi + βi rmt + (9.11) (9.12) (9.13) Var(yi ) = Cov(yi , yj ) = k P k P λi = k P Var(yi ) i=1 T T 1 P 1 P (rt − r̄)(rt − r̄)0 , r̄ = rt T − 1 t=1 T t=1 (9.15) ρ̂r = Ŝ−1 Σ̂r Ŝ−1 (9.16) rt − μ = βf t + (9.20) i, j = 1, . . . , k i=1 Σ̂r ≡ [σ̂ij,r ] = (9.19) i = 1, . . . , k Var(ri ) = tr(Σr ) = (9.14) (9.18) t = 1, . . . , T, i = 1, . . . , k i = 1, . . . , k t = 1, . . . , T wi0 Σr wj , i=1 (9.17) it , wi0 Σr wi , it , t Σr = Cov(rt ) = E[(rt − μ)(rt − μ)0 ] = E[(βf t + t )(βf t + t )0 ] = ββ 0 + D Cov(rt , ft ) = E[(rt − μ)ft0 ] = βE(ft ft0 ) + E( t ft0 ) = β hp i p p β̂ ≡ [β̂ij ] = λ̂1 ê1 | λ̂2 ê2 | · · · | λ̂m êm ∙ ¸³ ´ 0 1 2 LR(m) = − T − 1 − (2k + 5) − m ln |Σ̂r | − ln |β̂ β̂ + D̂| 6 3 10 Handbook of Fixed Income Securities, Fabozzi Chapter 69 P P (ws − wsB ) · RsB (69 − 4) Asset Allocation (69 − 5) Security Selection (69 − 12) s αkP fkP Chapter 70 (70 − 1) (70 − 2) (70 − 3) (70 − 4) (70 − 5) (70 − 6) (70 − 7) (70 − 8) (70 − 9) (70 − 10) (70 − 11) − αkB fkB = P s wsP · (RsP − RsB ) s P P αk,s fk,s − P P s B B αk,s fk,s µ ¶ P wsP wsB Asset Allocation w · − B · (T RsB − T RB ) P w w s P P P Sector Management ws · (T Rs − T RsB ) P s Top-Level Exposure (wP − wB ) · T RB µ ¶ P wsP wsB P Asset Allocation w · − B · (ERsB − ERB ) wP w s P P ws · (ERsP − ERsB ) Sector Management s Top-Level Exposure (wP − wB ) · ERB ¡ P ¢ B Outperformance from average carry yavg − yavg · ∆t ¢ ¡ ¢¢ P¡ P ¡ P B ωj yj − yavg − ωjB yj − yavg · ∆t Key rate contributions j ¡ ¢ Outperformance from avg. parallel shifts − OADP − OADB · ∆yavg ¢ P¡ Outperformance from reshaping − KRDjP − KRDjB · (∆yj − ∆yavg ) j Asset Allocation µ P ¶ P B B ¡ ¢ P OASD OASD w w s s s s B B · ∆OAS − − ∆OAS −OASDP · s OASDP OASDB s ¡ ¢ P (70 − 12) Security Selection − wsP OASDsP · ∆OASsP − ∆OASsB s (70 − 13) (70 − 14) (70 − 15) Spread Duration Mismatch −(OASDP − OASDB ) · ∆OAS B ¢ P¡ P Asset Allocation − ws OASDsP − wsB OASDsB · ∆OASsB s ¢ ¡ P Security Selection − wsP OASDsP · ∆OASsP − ∆OASsB s 11 Chapter 71 Page 1737 RP − RB = P t βt (RtP − RtB ) (RP − RB )/T (1 + RP )1/T − (1 + RB )1/T P RP − RB − A Tt=1 (RtP − RtB ) C= PT P B 2 t=1 (Rt − Rt ) A= βt = A + C(RtP − RtB ) Introduction to Credit Risk Modeling, 2nd ed., Bluhm, Overbeck, Wagner Chapter 6 Page 237 Mn = M1n Guarantees and Target Volatility Funds, Morrison and Tadrowski Page 4 wtequity µ ¶ σtarget = min , 100% σ̂tequity ¶¶2 µ µ ¡ equity ¢2 ¡ equity ¢2 St 1 σ̂t ln = λ σ̂t−∆t + (1 − λ) ∆t St−∆t 12
© Copyright 2025 Paperzz