S E C T I O N 5.2 The Definite Integral 571 Similarly, if f .x/ is monotone decreasing, 0 1 0 1 0 1 N !1 N !1 N X X X b ! a b ! a b ! a @LN D f .xk /A > @MN D f .xk" /A > @RN D f .xk /A N N N kD0 kD0 kD1 Thus, if f .x/ is monotonic, then MN always lies in between RN and LN . Now, as in Figure 6, consider the typical subinterval Œxi !1 ; xi ! and its midpoint xi" . We let A; B; C; D; E, and F be the areas as shown in Figure 6. Note that, by the fact that xi" is the midpoint of the interval, A D D C E and F D B C C . Let ER represent the right endpoint approximation error ( D A C B C D), let EL represent the left endpoint approximation error ( D C C F C E) and let EM represent the midpoint approximation error ( D jB ! Ej). # If B > E, then EM D B ! E. In this case, ER ! EM D A C B C D ! .B ! E/ D A C D C E > 0; so ER > EM , while EL ! EM D C C F C E ! .B ! E/ D C C .B C C / C E ! .B ! E/ D 2C C 2E > 0; # so EL > EM . Therefore, the midpoint approximation is more accurate than either the left or the right endpoint approximation. If B < E, then EM D E ! B. In this case, ER ! EM D A C B C D ! .E ! B/ D D C E C D ! .E ! B/ D 2D C B > 0; so that ER > EM while EL ! EM D C C F C E ! .E ! B/ D C C F C B > 0; # so EL > EM . Therefore, the midpoint approximation is more accurate than either the right or the left endpoint approximation. If B D E, the midpoint approximation is exactly equal to the area. Hence, for B < E, B > E, or B D E, the midpoint approximation is more accurate than either the left endpoint or the right endpoint approximation. 5.2 The Definite Integral Preliminary Questions 1. What is Z 5 dx [the function is f .x/ D 1]? 3 SOLUTION 2. Let I D Z Z 5 3 dx D 7 Z 5 1 " dx D 1.5 ! 3/ D 2. 3 f .x/ dx, where f .x/ is continuous. State whether true or false: 2 (a) I is the area between the graph and the x-axis over Œ2; 7!. (b) If f .x/ # 0, then I is the area between the graph and the x-axis over Œ2; 7!. (c) If f .x/ $ 0, then !I is the area between the graph of f .x/ and the x-axis over Œ2; 7!. SOLUTION (a) False. (b) True. (c) True. Rb a f .x/ dx is the signed area between the graph and the x-axis. 3. Explain graphically: Z ! 0 cos x dx D 0. ! SOLUTION Because cos." ! x/ D ! cos x, the “negative” area between the graph of y D cos x and the x-axis over Œ 2 ; "! exactly cancels the “positive” area between the graph and the x-axis over Œ0; !2 !. Z !5 Z !1 8 dx or 8 dx? 4. Which is negative, !1 SOLUTION !5 Because !5 ! .!1/ D !4, Z !5 !1 8 dx is negative. 572 CHAPTER 5 THE INTEGRAL Exercises In Exercises 1–10, draw a graph of the signed area represented by the integral and compute it using geometry. 1. Z 3 2x dx !3 The region bounded by the graph of y D 2x and the x-axis over the interval Œ!3; 3! consists of two right triangles. One has area D 9 below the axis, and the other has area 12 .3/.6/ D 9 above the axis. Hence, SOLUTION 1 2 .3/.6/ Z 3 !3 2x dx D 9 ! 9 D 0: y 6 4 2 −3 2. Z x −1 −2 −4 −6 −2 1 2 3 3 !2 .2x C 4/ dx SOLUTION The region bounded by the graph of y D 2x C 4 and the x-axis over the interval Œ!2; 3! consists of a single right triangle of area 12 .5/.10/ D 25 above the axis. Hence, Z 3 !2 .2x C 4/ dx D 25: y 10 8 6 4 2 −2 3. Z x −1 1 2 3 1 !2 .3x C 4/ dx SOLUTION The region bounded by the graph of y D 3x C 4 and the x-axis over the interval Œ!2; 1! consists of two right triangles. One has area 12 . 23 /.2/ D 32 below the axis, and the other has area 12 . 73 /.7/ D 49 6 above the axis. Hence, Z 1 !2 .3x C 4/ dx D 49 2 15 ! D : 6 3 2 y 8 6 4 2 −2 4. Z −1 x −2 1 1 4 dx !2 SOLUTION The region bounded by the graph of y D 4 and the x-axis over the interval Œ!2; 1! is a rectangle of area .3/.4/ D 12 above the axis. Hence, Z 1 4 dx D 12: !2 S E C T I O N 5.2 The Definite Integral 573 y 4 3 2 1 −2 5. Z x −1 1 8 .7 ! x/ dx 6 SOLUTION The region bounded by the graph of y D 7 ! x and the x-axis over the interval Œ6; 8! consists of two right triangles. One triangle has area 12 .1/.1/ D 12 above the axis, and the other has area 12 .1/.1/ D 12 below the axis. Hence, Z 8 .7 ! x/ dx D 6 1 1 ! D 0: 2 2 y 1 0.5 x 2 −0.5 4 6 8 −1 6. Z 3!=2 sin x dx !=2 The region bounded by the graph of y D sin x and the x-axis over the interval Œ !2 ; 3! 2 ! consists of two parts of equal area, one above the axis and the other below the axis. Hence, Z 3!=2 sin x dx D 0: SOLUTION !=2 y 1 0.5 x 1 − 0.5 2 3 4 −1 7. Z 0 5p 25 ! x 2 dx p The region bounded by the graph of y D 25 ! x 2 and the x-axis over the interval Œ0; 5! is one-quarter of a circle of radius 5. Hence, Z 5p 1 25" 25 ! x 2 dx D ".5/2 D : 4 4 0 SOLUTION y 5 4 3 2 1 x 1 8. Z 2 3 4 5 3 !2 jxj dx SOLUTION The region bounded by the graph of y D jxj and the x-axis over the interval Œ!2; 3! consists of two right triangles, both above the axis. One triangle has area 12 .2/.2/ D 2, and the other has area 12 .3/.3/ D 92 . Hence, Z 3 !2 jxj dx D 13 9 C2 D : 2 2 574 CHAPTER 5 THE INTEGRAL y 3 2 1 −2 9. Z x −1 1 2 3 2 !2 .2 ! jxj/ dx SOLUTION The region bounded by the graph of y D 2 ! jxj and the x-axis over the interval Œ!2; 2! is a triangle above the axis with base 4 and height 2. Consequently, Z 2 1 .2 ! jxj/ dx D .2/.4/ D 4: 2 !2 y 2 1 −2 10. Z x −1 1 2 5 !2 .3 C x ! 2jxj/ dx SOLUTION The region bounded by the graph of y D 3 C x ! 2jxj and the x-axis over the interval Œ!2; 5! consists of a triangle below the axis with base 1 and height 3, a triangle above the axis of base 4 and height 3 and a triangle below the axis of base 2 and height 2. Consequently, Z 5 1 1 1 5 .3 C x ! 2jxj/ dx D ! .1/.3/ C .4/.3/ ! .2/.2/ D : 2 2 2 2 !2 y 3 2 1 −2 4 x 2 −1 −2 −3 11. Calculate Z 10 0 .8 ! x/ dx in two ways: (a) As the limit lim RN N !1 (b) By sketching the relevant signed area and using geometry R R Let f .x/ D 8 ! x over Œ0; 10!. Consider the integral 010 f .x/ dx D 010 .8 ! x/ dx. (a) Let N be a positive integer and set a D 0, b D 10, #x D .b ! a/ =N D 10=N . Also, let xk D a C k#x D 10k=N , k D 1; 2; : : : ; N be the right endpoints of the N subintervals of Œ0; 10!. Then 0 0 1 0 11 " N N ! N N X 10 X 10k 10 @ @ X A 10 @ X AA RN D #x f .xk / D 8! D 8 1 ! k N N N N SOLUTION kD1 D N2 N C 2 2 kD1 !! D 30 ! kD1 50 : N " 50 D 30. N N !1 N !1 (b) The region bounded by the graph of y D 8 ! x and the x-axis over the interval Œ0; 10! consists of two right triangles. One triangle has area 21 .8/.8/ D 32 above the axis, and the other has area 12 .2/.2/ D 2 below the axis. Hence, Hence lim RN D lim ! 10 10 8N ! N N kD1 30 ! Z 10 0 .8 ! x/ dx D 32 ! 2 D 30: S E C T I O N 5.2 The Definite Integral 575 y 8 6 4 2 10 2 12. Calculate Z # 6 x 8 4 !1 SOLUTION 4 .4x ! 8/ dx in two ways: As the limit lim RN and using geometry. N !1 Let f .x/ D 4x ! 8 over Œ!1; 4!. Consider the integral Z 4 !1 f .x/ dx D Z 4 !1 .4x ! 8/ dx. Let N be a positive integer and set a D !1, b D 4, #x D .b ! a/ =N D 5=N . Then xk D a C k#x D !1 C 5k=N , k D 1; 2; : : : ; N are the right endpoints of the N subintervals of Œ!1; 4!. Then 0 1 0 1 " N N ! N N X 5 X 20k 60 @ X A 100 @ X A RN D #x f .xk / D !4 C !8 D! 1 C 2 k N N N N kD1 D! kD1 kD1 N2 N C 2 2 60 100 .N / C 2 N N kD1 ! 50 50 D !10 C : N N ! " 50 Hence lim RN D lim !10 C D !10. N N !1 N !1 The region bounded by the graph of y D 4x ! 8 and the x-axis over the interval Œ!1; 4! consists of a triangle below the axis with base 3 and height 12 and a triangle above the axis with base 2 and height 8. Hence, Z 4 1 1 .4x ! 8/ dx D ! .3/.12/ C .2/.8/ D !10: 2 2 !1 D !60 C 50 C # y −1 5 x 1 −5 2 3 4 −10 In Exercises 13 and 14, refer to Figure 1. y y = f(x) 2 4 6 x FIGURE 1 The two parts of the graph are semicircles. 13. Evaluate: (a) Z 2 f .x/ dx 0 (b) Z 6 f .x/ dx 0 Let f .x/ be given by Figure 1. R (a) The definite integral 02 f .x/ dx is the signed area of a semicircle of radius 1 which lies below the x-axis. Therefore, SOLUTION Z 2 0 R6 " 1 f .x/ dx D ! " .1/2 D ! : 2 2 (b) The definite integral 0 f .x/ dx is the signed area of a semicircle of radius 1 which lies below the x-axis and a semicircle of radius 2 which lies above the x-axis. Therefore, Z 6 1 1 3" f .x/ dx D " .2/2 ! " .1/2 D : 2 2 2 0 576 CHAPTER 5 14. Evaluate: (a) Z THE INTEGRAL Z 4 (b) f .x/ dx 1 6 1 jf .x/j dx Let f .x/ be given by Figure 1. R (a) The definite integral 14 f .x/ dx is the signed area of one-quarter of a circle of radius 1 which lies below the x-axis and one-quarter of a circle of radius 2 which lies above the x-axis. Therefore, Z 4 1 1 3 f .x/ dx D " .2/2 ! " .1/2 D ": 4 4 4 1 R6 (b) The definite integral 1 jf .x/j dx is the signed area of one-quarter of a circle of radius 1 and a semicircle of radius 2, both of which lie above the x-axis. Therefore, Z 6 1 1 9" : jf .x/j dx D " .2/2 C " .1/2 D 2 4 4 1 SOLUTION In Exercises 15 and 16, refer to Figure 2. y y = g(t) 2 1 1 −1 2 3 4 5 t −2 FIGURE 2 15. Evaluate Z 3 g.t/ dt and 0 Z 5 g.t/ dt . 3 SOLUTION The region bounded by the curve y D g.t/ and the t-axis over the interval Œ0; 3! is comprised of two right triangles, one with area 21 below the axis, and one with area 2 above the axis. The definite integral is therefore equal to 2 ! 21 D 32 . # The region bounded by the curve y D g.t/ and the t-axis over the interval Œ3; 5! is comprised of another two right triangles, one with area 1 above the axis and one with area 1 below the axis. The definite integral is therefore equal to 0. Z a Z c 16. Find a, b, and c such that g.t/ dt and g.t/ dt are as large as possible. # 0 b a g.t/ dt as large as possible, we want to include as much positive area as possible. This Z c happens when we take a D 4. Now, to make the value of g.t/ dt as large as possible, we want to make sure to include all of SOLUTION To make the value of Z 0 b the positive area and only the positive area. This happens when we take b D 1 and c D 4. 17. Describe the partition P and the set of sample points C for the Riemann sum shown in Figure 3. Compute the value of the Riemann sum. y 34.25 20 15 8 x 0.5 1 2 2.5 3 3.2 4.5 5 FIGURE 3 SOLUTION The partition P is defined by x0 D 0 < x1 D 1 < x2 D 2:5 < x3 D 3:2 < x4 D 5 The set of sample points is given by C D fc1 D 0:5; c2 D 2; c3 D 3; c4 D 4:5g. Finally, the value of the Riemann sum is 34:25.1 ! 0/ C 20.2:5 ! 1/ C 8.3:2 ! 2:5/ C 15.5 ! 3:2/ D 96:85: S E C T I O N 5.2 The Definite Integral 577 18. Compute R.f; P; C / for f .x/ D x 2 C x for the partition P and the set of sample points C in Figure 3. SOLUTION R.f; P; C / D f .0:5/.1 ! 0/ C f .2/.2:5 ! 1/ C f .3/.3:2 ! 2:5/ C f .4:5/.5 ! 3:2/ D 0:75.1/ C 6.1:5/ C 12.0:7/ C 24:75.1:8/ D 62:7 In Exercises 19–22, calculate the Riemann sum R.f; P; C / for the given function, partition, and choice of sample points. Also, sketch the graph of f and the rectangles corresponding to R.f; P; C /. 19. f .x/ D x, P D f1; 1:2; 1:5; 2g, SOLUTION C D f1:1; 1:4; 1:9g Let f .x/ D x. With and P D fx0 D 1; x1 D 1:2; x2 D 1:5; x3 D 2g C D fc1 D 1:1; c2 D 1:4; c3 D 1:9g; we get R.f; P; C / D #x1 f .c1 / C #x2 f .c2 / C #x3 f .c3 / D .1:2 ! 1/.1:1/ C .1:5 ! 1:2/.1:4/ C .2 ! 1:5/.1:9/ D 1:59: Here is a sketch of the graph of f and the rectangles. y 2 1.5 1 0.5 x 0.5 20. f .x/ D 2x C 3, SOLUTION P D f!4; !1; 1; 4; 8g, Let f .x/ D 2x C 3. With 1 1.5 2 2.5 C D f!3; 0; 2; 5g and P D fx0 D !4; x1 D !1; x2 D 1; x3 D 4; x4 D 8g C D fc1 D !3; c2 D 0; c3 D 2; c4 D 5g; we get R.f; P; C / D #x1 f .c1 / C #x2 f .c2 / C #x3 f .c3 / C #x4 f .c4 / D .!1 ! .!4//.!3/ C .1 ! .!1//.3/ C .4 ! 1/.7/ C .8 ! 4/.13/ D 70: Here is a sketch of the graph of f and the rectangles. y 20 15 10 −4 5 −2 x 2 −5 21. f .x/ D x 2 C x, P D f2; 3; 4:5; 5g, SOLUTION Let f .x/ D x2 C x. With 4 6 8 C D f2; 3:5; 5g and P D fx0 D 2; x1 D 3; x3 D 4:5; x4 D 5g C D fc1 D 2; c2 D 3:5; c3 D 5g; we get R.f; P; C / D #x1 f .c1 / C #x2 f .c2 / C #x3 f .c3 / D .3 ! 2/.6/ C .4:5 ! 3/.15:75/ C .5 ! 4:5/.30/ D 44:625: Here is a sketch of the graph of f and the rectangles. y 30 25 20 15 10 5 1 2 3 4 5 x 578 CHAPTER 5 THE INTEGRAL ˚ 22. f .x/ D sin x, P D 0; !6 ; SOLUTION we get ! ! 3; 2 # , C D f0:4; 0:7; 1:2g Let f .x/ D sin x. With n " " "o P D x0 D 0; x1 D ; x3 D ; x4 D 6 3 2 and C D fc1 D 0:4; c2 D 0:7; c3 D 1:2g; R.f; P; C / D #x1 f .c1 / C #x2 f .c2 / C #x3 f .c3 / $" % $" $" "% "% D ! 0 .sin 0:4/ C ! .sin 0:7/ C ! .sin 1:2/ D 1:029225: 6 3 6 2 3 Here is a sketch of the graph of f and the rectangles. y 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 x In Exercises 23–28, sketch the signed area represented by the integral. Indicate the regions of positive and negative area. Z 5 23. .4x ! x 2 / dx 0 SOLUTION Here is a sketch of the signed area represented by the integral y R5 0 .4x ! x 2 / dx. 4 2 5 1 −2 2 3 x 4 −4 24. Z !=4 tan x dx !!=4 SOLUTION Here is a sketch of the signed area represented by the integral y R !=4 !!=4 tan x dx. 1.0 0.5 −0.6 + −0.2 x 0.2 0.4 0.6 − −0.5 −1.0 25. Z 2! sin x dx ! SOLUTION Here is a sketch of the signed area represented by the integral y R 2! ! 0.4 x −0.4 −0.8 −1.2 26. Z 0 3! sin x dx 1 2 3 4 5 − 6 7 sin x dx. S E C T I O N 5.2 Here is a sketch of the signed area represented by the integral SOLUTION y R 3! 0 The Definite Integral 579 sin x dx. 1 + 0.5 + x 2 −0.5 4 6 − 8 10 −1 27. Z 2 ln x dx 1=2 Here is a sketch of the signed area represented by the integral SOLUTION R2 1=2 ln x dx. 0.6 0.4 + 0.2 0.5 –0.2 – 1 1.5 2 –0.4 –0.6 28. Z 1 !1 tan!1 x dx Here is a sketch of the signed area represented by the integral SOLUTION y 0.5 −1 !1 tan !1 x dx. + −0.5 − R1 0.5 1 x −0.5 In Exercises 29–32, determine the sign of the integral without calculating it. Draw a graph if necessary. Z 1 29. x 4 dx !2 The integrand is always positive. The integral must therefore be positive, since the signed area has only positive part. SOLUTION 30. Z 1 x 3 dx !2 SOLUTION By symmetry, the positive area from the interval Œ0; 1! is cancelled by the negative area from Œ!1; 0!. With the interval Œ!2; !1! contributing more negative area, the definite integral must be negative. Z 2! 31. x sin x dx 0 As you can see from the graph below, the area below the axis is greater than the area above the axis. Thus, the definite integral is negative. SOLUTION y 0.2 −0.2 −0.4 −0.6 32. Z 2! 0 sin x dx x + 1 2 x 3 4 5 − 6 7 580 THE INTEGRAL CHAPTER 5 SOLUTION From the plot below, you can see that the area above the axis is bigger than the area below the axis, hence the integral is positive. y 1 0.8 0.6 0.4 0.2 + 1 2 x 4 − 5 3 6 In Exercises 33–42, use properties of the integral and the formulas in the summary to calculate the integrals. Z 4 33. .6t ! 3/ dt 0 SOLUTION 34. Z 2 !3 Z 4 0 .6t ! 3/ dt D 6 Z 4 t dt ! 3 0 Z 0 4 1 .4/2 ! 3.4 ! 0/ D 36. 2 1 dt D 6 " .4x C 7/ dx SOLUTION Z 2 !3 .4x C 7/ dx D 4 Z 9 SOLUTION Z SOLUTION 37. 0 1 !3 D4 D4 Z ! 0 x dx C !3 2 x dx ! 0 Z 2 dx !3 Z 0 Z ! 2 x dx C 7.2 ! .!3// !3 0 ! x dx C 35 " 1 2 1 2 ! .!3/2 C 35 D 25: 2 2 Z 9 1 3 .9/ D 243: 3 x 2 dx D x 2 dx 2 Z By formula (5), 0 5 x dx C 7 x 2 dx 0 36. 2 Z D4 35. Z Z 5 2 x 2 dx D Z 5 0 x 2 dx ! Z 2 x 2 dx D 0 1 1 .5/3 ! .2/3 D 39. 3 3 .u2 ! 2u/ du SOLUTION Z 1 0 38. Z 0 1=2 .u2 ! 2u/ du D Z 1 0 u2 du ! 2 Z 1 0 u du D ! " 1 3 1 1 2 .1/ ! 2 .1/2 D ! 1 D ! : 3 2 3 3 .12y 2 C 6y/ dy SOLUTION Z 1=2 0 .12y 2 C 6y/ dy D 12 Z D 12 " D 1=2 0 1 3 y 2 dy C 6 Z 1=2 y dy 0 ! "3 ! " 1 1 1 2 C6" 2 2 2 1 3 5 C D : 2 4 4 The Definite Integral S E C T I O N 5.2 39. Z 1 !3 .7t 2 C t C 1/ dt SOLUTION First, write Z 1 !3 Z 2 .7t C t C 1/ dt D 0 !3 Z D! Z 2 .7t C t C 1/ dt C !3 0 1 0 .7t 2 C t C 1/ dt Z .7t 2 C t C 1/ dt C 1 0 .7t 2 C t C 1/ dt Then, ! " ! " 1 1 1 1 .7t 2 C t C 1/ dt D ! 7 " .!3/3 C .!3/2 ! 3 C 7 " 13 C 12 C 1 3 2 3 2 !3 ! " ! " 9 7 1 196 D ! !63 C ! 3 C C C1 D : 2 3 2 3 Z 40. Z 3 !3 1 .9x ! 4x 2 / dx SOLUTION First write Z 3 !3 .9x ! 4x 2 / dx D Z 0 .9x ! 4x 2 / dx C !3 D! Z !3 0 Z 3 0 .9x ! 4x 2 / dx C .9x ! 4x 2 / dx Z 3 0 .9x ! 4x 2 / dx: Then, ! " ! " 1 1 1 1 .9x ! 4x 2 / dx D ! 9 " .!3/2 ! 4 " .!3/3 C 9 " .3/2 ! 4 " .3/3 2 3 2 3 !3 ! " ! " 81 81 D! C 36 C ! 36 D !72: 2 2 Z 41. Z 1 !a 3 .x 2 C x/ dx SOLUTION First, Z 1 Rb !a 0 .x 2 C x/ dx D D 42. Z a2 Rb .x 2 C x/ dx D Z 0 !a ! x 2 dx C 0 Rb 0 x dx D 13 b 3 C 12 b 2 . Therefore .x 2 C x/ dx C Z 1 0 .x 2 C x/ dx D Z 0 1 .x 2 C x/ dx ! Z 0 !a .x 2 C x/ dx " ! " 1 3 1 2 1 1 1 1 5 "1 C "1 ! .!a/3 C .!a/2 D a3 ! a2 C : 3 2 3 2 3 2 6 x 2 dx a SOLUTION Z a2 a x 2 dx D Z a2 0 x 2 dx ! Z a 0 x 2 dx D In Exercises 43–47, calculate the integral, assuming that Z 5 f .x/ dx D 5; 0 43. Z 0 Z 0 5 0 g.x/ dx D 12 5 .f .x/ C g.x// dx SOLUTION 44. Z 1 $ 2 %3 1 1 1 a ! .a/3 D a6 ! a3 : 3 3 3 3 5! Z 5 0 .f .x/ C g.x// dx D " 1 2f .x/ ! g.x/ dx 3 Z 0 5 f .x/ dx C Z 5 0 g.x/ dx D 5 C 12 D 17. 581 582 Z SOLUTION 45. Z 0 Z SOLUTION Z 5! 0 " Z 5 Z 1 1 5 1 2f .x/ ! g.x/ dx D 2 f .x/ dx ! g.x/ dx D 2.5/ ! .12/ D 6. 3 3 0 3 0 g.x/ dx 5 46. THE INTEGRAL CHAPTER 5 5 0 g.x/ dx D ! 5 Z 5 g.x/ dx D !12. 0 .f .x/ ! x/ dx 0 Z SOLUTION 5 .f .x/ ! x/ dx D 0 Z 47. Is it possible to calculate 5 Z 5 0 f .x/ dx ! 5 0 1 15 x dx D 5 ! .5/2 D ! . 2 2 g.x/f .x/ dx from the information given? 0 It is not possible to calculate SOLUTION Z R5 0 g.x/f .x/ dx from the information given. 48. Prove by computing the limit of right-endpoint approximations: Z b 0 x 3 dx D b4 4 Let f .x/ D x 3 , a D 0 and #x D .b ! a/=N D b=N . Then 0 1 ! N N N 3 X b X b4 @ X 3A b4 3 b D #x f .xk / D k " 3 D 4 k D 4 N N N N 9 SOLUTION RN kD1 Hence Z b 0 kD1 kD1 b4 b4 b4 C C 4 2N 4N 2 3 x dx D lim RN D lim N !1 N !1 ! D N4 N3 N2 C C 4 2 4 ! D b4 b4 b4 C C : 4 2N 4N 2 b4 . 4 In Exercises 49–54, evaluate the integral using the formulas in the summary and Eq. (9). Z 3 49. x 3 dx 0 SOLUTION 50. Z 3 0 1 34 81 D . 4 4 Z 3 1 x 3 dx D Z 3 x 3 dx ! 0 Z 1 0 x 3 dx D 1 4 1 4 .3/ ! .1/ D 20. 4 4 3 SOLUTION 52. x 3 dx D .x ! x / dx 0 Z 3 x 3 dx SOLUTION 51. Z 0 3 1 Z By Eq. (9), Z 3 0 .x ! x 3 / dx D Z 3 0 x dx ! Z 3 0 x 3 dx D 1 2 1 4 63 3 ! 3 D! . 2 4 4 .2x 3 ! x C 4/ dx SOLUTION Applying the linearity of the definite integral, Eq. (9), the formula from Example 4 and the formula for the definite integral of a constant: Z 1 Z 1 Z 1 Z 1 1 1 .2x 3 ! x C 4/ dx D 2 x 3 dx ! x dx C 4 dx D 2 " .1/4 ! .1/2 C 4 D 4: 4 2 0 0 0 0 Z 1 53. .12x 3 C 24x 2 ! 8x/ dx 0 SOLUTION Z 1 0 .12x 3 C 24x 2 ! 8x/ dx D 12 Z 1 0 x 3 dx C 24 Z 1 0 x2 ! 8 1 1 1 D 12 " 14 C 24 " 13 ! 8 " 12 4 3 2 D 3C8!4D 7 Z 0 1 x dx The Definite Integral S E C T I O N 5.2 54. Z 2 !2 .2x 3 ! 3x 2 / dx SOLUTION Z 2 !2 3 2 .2x ! 3x / dx D D Z 0 3 .2x ! 3x / dx C !2 Z 2 0 D2 Z 2 .2x 3 ! 3x 2 / dx ! 2 0 x 3 dx ! 3 Z 2 0 Z Z 2 0 .2x 3 ! 3x 2 / dx !2 0 .2x 3 ! 3x 2 / dx x 2 dx ! 2 Z !2 0 x 3 dx C 3 Z !2 x 2 dx 0 1 1 1 1 D 2 " .2/4 ! 3 " .2/3 ! 2 " .!2/4 C 3 " .!2/3 4 3 4 3 D 8 ! 8 ! 8 ! 8 D !16: In Exercises 55–58, calculate the integral, assuming that Z 1 Z f .x/ dx D 1; 0 55. Z 2 SOLUTION Z 1 SOLUTION Z Z f .x/ dx D Z f .x/ dx D Z 4 0 f .x/ dx C Z f .x/ dx ! Z 1 0 4 f .x/ dx D 1 C 7 D 8. 1 Z 2 1 2 0 1 f .x/ dx D 4 ! 1 D 3. 0 f .x/ dx 4 58. f .x/ dx D 7 1 f .x/ dx 1 57. 4 f .x/ dx SOLUTION Z 0 f .x/ dx D 4; 4 0 56. Z 2 4 Z Z 1 4 f .x/ dx D ! 4 f .x/ dx D !7. 1 f .x/ dx 2 SOLUTION R4 From Exercise 55, 0 f .x/ dx D 8. Accordingly, Z 4 2 f .x/ dx D Z 4 0 f .x/ dx ! Z 2 0 f .x/ dx D 8 ! 4 D 4: In Exercises 59–62, express each integral as a single integral. Z 3 Z 7 59. f .x/ dx C f .x/ dx 0 SOLUTION 60. Z 9 SOLUTION 61. 2 3 3 0 f .x/ dx C f .x/ dx ! 2 Z Z Z 2 Z 3 f .x/ dx D Z 7 f .x/ dx. 0 f .x/ dx Z f .x/ dx D Z f .x/ dx D Z 9 4 f .x/ dx C Z f .x/ dx C Z 4 2 9 4 ! Z ! Z f .x/ dx ! f .x/ dx D Z f .x/ dx D Z 9 4 4 f .x/ dx: 2 5 f .x/ dx 2 9 2 7 4 f .x/ dx ! f .x/ dx ! SOLUTION 9 9 9 Z Z Z f .x/ dx ! Z 5 2 5 2 9 5 f .x/ dx ! 5 2 9 5 f .x/ dx: 583 584 62. THE INTEGRAL CHAPTER 5 Z 3 f .x/ dx C 7 SOLUTION Z Z 9 f .x/ dx 3 3 f .x/ dx C 7 Z Z 9 f .x/ dx D ! 3 7 f .x/ dx C 3 Z 7 3 f .x/ dx C In Exercises 63–66, calculate the integral, assuming that f is integrable and 63. Z 5 SOLUTION 65. 6 SOLUTION 66. Z 9 f .x/ dx: 7 f .x/ dx D 1 ! b !1 for all b > 0. Z 5 4 . 5 f .x/ dx D 1 ! 5!1 D 1 Z 5 f .x/ dx D 3 Z 5 1 f .x/ dx ! Z 3 1 ! " ! " 1 1 2 f .x/ dx D 1 ! ! 1! D . 5 3 15 .3f .x/ ! 4/ dx 1 Z 7 D f .x/ dx 3 Z 1 f .x/ dx ! f .x/ dx SOLUTION Z b 9 5 1 64. Z Z 1 Z 6 1 .3f .x/ ! 4/ dx D 3 Z 6 1 f .x/ dx ! 4 Z 6 1 1 dx D 3.1 ! 6!1 / ! 4.6 ! 1/ D ! 35 . 2 f .x/ dx 1=2 ! "!1 ! 1 SOLUTION f .x/ dx D ! f .x/ dx D ! 1 ! D 1. 2 1=2 1 Z b Z 67. Explain the difference in graphical interpretation between f .x/ dx and Z 1 Z 1=2 a b a jf .x/j dx. Rb When f .x/ takes on both positive and negative values on Œa; b!, a f .x/ dx represents the signed area between f .x/ Rb and the x-axis, whereas a jf .x/j dx represents the total (unsigned) area between f .x/ and the x-axis. Any negatively signed Rb Rb areas that were part of a f .x/ dx are regarded as positive areas in a jf .x/j dx. Here is a graphical example of this phenomenon. SOLUTION Graph of | f (x)| Graph of f (x) 10 −4 −2 −10 30 2 4 x 20 10 −20 −30 68. −4 −2 2 4 x Use the graphical interpretation of the definite integral to explain the inequality ˇZ ˇ Z ˇ b ˇ b ˇ ˇ f .x/ dx ˇ $ jf .x/j dx ˇ ˇ a ˇ a where f .x/ is continuous. Explain also why equality holds if and only if either f .x/ # 0 for all x or f .x/ $ 0 for all x. SOLUTION Let AC denote the unsigned area under the graph of y D f .x/ over the interval Œa; b! where f .x/ # 0. Similarly, let A! denote the unsigned area when f .x/ < 0. Then Z b a f .x/ dx D AC ! A! : Moreover, ˇZ ˇ Z b ˇ b ˇ ˇ ˇ f .x/ dx ˇ $ AC C A! D jf .x/j dx: ˇ ˇ a ˇ a Equality holds if and only if one of the unsigned areas is equal to zero; in other words, if and only if either f .x/ # 0 for all x or f .x/ $ 0 for all x. S E C T I O N 5.2 69. SOLUTION Let f .x/ D x. Find an interval Œa; b! such that ˇZ ˇ ˇ b ˇ 1 ˇ ˇ f .x/ dx ˇ D ˇ ˇ a ˇ 2 Z and b a jf .x/j dx D The Definite Integral 585 3 2 If a > 0, then f .x/ # 0 for all x 2 Œa; b!, so ˇZ ˇ Z ˇ b ˇ b ˇ ˇ f .x/ dx ˇ D jf .x/j dx ˇ ˇ a ˇ a by the previous exercise. We find a similar result if b < 0. Thus, we must have a < 0 and b > 0. Now, Z b jf .x/j dx D a 1 2 1 2 a C b : 2 2 Because Z b a f .x/ dx D 1 2 1 2 b ! a ; 2 2 then ˇZ ˇ ˇ b ˇ 1 ˇ ˇ f .x/ dx ˇ D jb 2 ! a2 j: ˇ ˇ a ˇ 2 If b 2 > a2 , then 1 2 1 2 3 a C b D 2 2 2 yield a D !1 and b D 1 2 1 .b ! a2 / D 2 2 and 1 2 1 .a ! b 2 / D 2 2 p 2. On the other hand, if b 2 < a2 , then 1 2 1 2 3 a C b D 2 2 2 p yield a D ! 2 and b D 1. Z 70. Evaluate I D that I C J D 2". and 2! 0 sin2 x dx and J D Z 2! 0 cos2 x dx as follows. First show with a graph that I D J . Then prove The graphs of f .x/ D sin2 x and g.x/ D cos2 x are shown below at the left and right, respectively. It is clear that the shaded areas in the two graphs are equal, thus Z 2! Z 2! I D sin2 x dx D cos2 x dx D J: SOLUTION 0 0 Now, using the fundamental trigonometric identity, we find Z 2! Z 2 2 I CJ D .sin x C cos x/ dx D 0 2! 0 1 " dx D 2": Combining this last result with I D J yields I D J D ". y y 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 x 1 In Exercises 71–74, calculate the integral. Z 6 71. j3 ! xj dx 0 2 3 4 5 6 x 1 2 3 4 5 6 586 THE INTEGRAL CHAPTER 5 SOLUTION Over the interval, the region between the curve and the interval Œ0; 6! consists of two triangles above the x axis, each of which has height 3 and width 3, and so area 92 . The total area, hence the definite integral, is 9. y 3 2 1 x 1 2 3 4 5 6 Alternately, Z 6 0 j3 ! xj dx D Z 72. Z .3 ! x/ dx C 0 D3 Z 3 Z Z 3 dx ! 0 6 .x ! 3/ dx 3 Z 3 0 x dx C 6 x dx ! 0 Z 3 0 ! x dx ! 3 Z 6 dx 3 1 1 1 D 9 ! 32 C 62 ! 32 ! 9 D 9: 2 2 2 3 j2x ! 4j dx 1 SOLUTION The area between j2x ! 4j and the x axis consists of two triangles above the x-axis, each with width 1 and height 2, and hence with area 1. The total area, and hence the definite integral, is 2. y 2 1.5 1 0.5 x 0.5 1 1.5 2 2.5 3 Alternately, Z 3 j2x ! 4j dx D 1 Z 73. .4 ! 2x/ dx C 1 D4 Z 2 Z 1 D4!2 1 !1 Z 2 dx ! 2 ! Z 3 2 .2x ! 4/ dx 2 0 x dx ! Z 1 ! Z x dx C 2 0 3 0 x dx ! " ! " 1 2 1 2 1 2 1 2 2 ! 1 C2 3 ! 2 ! 4 D 2: 2 2 2 2 Z 2 0 ! x dx ! 4 Z 3 dx 2 jx 3 j dx SOLUTION 3 ( x 3 dx D Z jx j D x3 !x 3 x#0 x < 0: Therefore, 74. Z 0 Z 1 !1 2 jx 3 j dx D Z 0 !1 !x 3 dx C Z 1 0 !1 0 x 3 dx C Z 0 1 x 3 dx D 2 jx ! 1j dx SOLUTION 2 jx ! 1j D ( x2 ! 1 !.x 2 ! 1/ 1$x$2 0 $ x < 1: Therefore, Z 0 2 jx 2 ! 1j dx D Z 1 0 .1 ! x 2 / dx C Z 2 1 .x 2 ! 1/ dx 1 1 1 .!1/4 C .1/4 D : 4 4 2 The Definite Integral S E C T I O N 5.2 D Z 1 0 dx ! Z 1 75. Use the Comparison Theorem to show that Z 1 Z x 5 dx $ 0 SOLUTION x dx C 0 1 D 1 ! .1/ C 3 1 Z 2 ! x dx ! 0 Z x 4 dx; 2 1 On the interval Œ0; 1!, x 5 $ x 4 , so, by Theorem 5, 1 0 2 x 5 dx $ Z 1 x 4 dx $ Z 1 0 " 1 1 .8/ ! .1/ ! 1 D 2: 3 3 0 Z 2 Z 2 2 ! x dx ! Z 587 2 1 dx 1 x 5 dx 1 x 4 dx: 0 On the other hand, x 4 $ x 5 for x 2 Œ1; 2!, so, by the same Theorem, Z 2 Z 2 x 4 dx $ x 5 dx: 76. Prove that SOLUTION 1 $ 3 Z 1 6 1 1 1 dx $ . x 2 4 On the interval Œ4; 6!, 1 6 $ 1 x, so, by Theorem 5, Z 1 D 3 On the other hand, 1 x 1 4 $ 1 dx $ 6 4 Z 6 4 1 dx: x on the interval Œ4; 6!, so Z 6 4 R6 1 dx $ x Z 6 4 1 1 1 dx D .6 ! 4/ D : 4 4 2 dx $ 12 , as desired. R 0:3 77. Prove that 0:0198 $ 0:2 sin x dx $ 0:0296. Hint: Show that 0:198 $ sin x $ 0:296 for x in Œ0:2; 0:3!. Therefore 1 3 6 $ 1 4 x SOLUTION For 0 $ x $ 0:2 $ x $ 0:3, we have ! 6 % 0:52, we have d dx .sin x/ D cos x > 0. Hence sin x is increasing on Œ0:2; 0:3!. Accordingly, for m D 0:198 $ 0:19867 % sin 0:2 $ sin x $ sin 0:3 % 0:29552 $ 0:296 D M Therefore, by the Comparison Theorem, we have Z 0:3 Z 0:0198 D m.0:3 ! 0:2/ D m dx $ 0:2 78. Prove that 0:277 $ SOLUTION Z 0:3 0:2 sin x dx $ !=4 !=8 Z 0:3 0:2 M dx D M.0:3 ! 0:2/ D 0:0296: cos x dx $ 0:363. cos x is decreasing on the interval Œ"=8; "=4!. Hence, for "=8 $ x $ "=4, Since cos."=4/ D p cos."=4/ $ cos x $ cos."=8/: 2=2, p Z !=4 p Z !=4 " 2 2 0:277 $ " D dx $ cos x dx: 8 2 2 !=8 !=8 Since cos."=8/ $ 0:924, Z !=4 !=8 Therefore 0:277 $ R !=4 !=8 cos x $ 0:363: cos x dx $ Z !=4 !=8 0:924 dx D " .0:924/ $ 0:363: 8 588 THE INTEGRAL CHAPTER 5 79. Prove that 0 $ SOLUTION Z !=2 !=4 p sin x 2 dx $ . x 2 Let f .x/ D sin x : x As we can seepin the sketch below, f .x/ is decreasing on the interval Œ"=4; "=2!. Therefore f .x/ $ f ."=4/ for all x in Œ"=4; "=2!. 2 2 ! , f ."=4/ D so: Z !=2 !=4 sin x dx $ x Z !=2 !=4 p p p 2 2 "2 2 2 dx D D : " 4 " 2 y y = sin x 2 2/ x 2/ x /4 80. Find upper and lower bounds for SOLUTION Z 1 0 Let /2 dx p . 5x 3 C 4 f .x/ D p 1 5x 3 C 4 : f .x/ is decreasing for x on the interval Œ0; 1!, so f .1/ $ f .x/ $ f .0/ for all x in Œ0; 1!. f .0/ D Z 1 0 1 dx $ 3 1 $ 3 Z Z 1 0 1 0 f .x/ dx $ Z 1 0 1 2 and f .1/ D 13 , so 1 dx 2 1 f .x/ dx $ : 2 81. Suppose that f .x/ $ g.x/ on Œa; b!. By the Comparison Theorem, f 0 .x/ $ g 0 .x/ for x 2 Œa; b!? If not, give a counterexample. Rb a f .x/ dx $ Rb a g.x/ dx. Is it also true that The assertion f 0 .x/ $ g 0 .x/ is false. Consider a D 0, b D 1, f .x/ D x, g.x/ D 2. f .x/ $ g.x/ for all x in the interval Œ0; 1!, but f 0 .x/ D 1 while g 0 .x/ D 0 for all x. SOLUTION 82. State whether true or false. If false, sketch the graph of a counterexample. Z b (a) If f .x/ > 0, then f .x/ dx > 0. (b) If Z a b f .x/ dx > 0, then f .x/ > 0. a SOLUTION Rb (a) It is true that if f .x/ > 0 for x 2 Œa; b!, then a f .x/ dx > 0. Rb R1 (b) It is false that if a f .x/ dx > 0, then f .x/ > 0 for x 2 Œa; b!. Indeed, in Exercise 3, we saw that !2 .3x C 4/ dx D 7:5 > 0, yet f .!2/ D !2 < 0. Here is the graph from that exercise. y 6 4 2 −2 −1 x −2 1 The Definite Integral S E C T I O N 5.2 589 Further Insights and Challenges 83. ZExplain graphically: If f .x/ is an odd function, then a !a f .x/ dx D 0. SOLUTION If f is an odd function, then f .!x/ D !f .x/ for all x. Accordingly, for every positively signed area in the right half-plane where f is above the x-axis, there is a corresponding negatively signed area in the left half-plane where f is below the x-axis. Similarly, for every negatively signed area in the right half-plane where f is below the x-axis, there is a corresponding positively signed area in the left half-plane where f is above the x-axis. We conclude that the net area between the graph of f and the x-axis over Œ!a; a! is 0, since the positively signed areas and negatively signed areas cancel each other out exactly. y 4 −1 −2 2 1 −2 2 x −4 84. Compute Z 1 !1 SOLUTION sin.sin.x//.sin2 .x/ C 1/ dx. Let f .x/ D sin.sin.x//.sin2 .x/ C 1//. sin x is an odd function, while sin2 x is an even function, so: f .!x/ D sin.sin.!x//.sin2 .!x/ C 1/ D sin.! sin.x//.sin2 .x/ C 1/ D ! sin.sin.x//.sin2 .x/ C 1/ D !f .x/: Therefore, f .x/ is an odd function. The function is odd and the interval is symmetric around the origin so, by the previous exercise, the integral must be zero. 85. Let k and b be positive. Show, by comparing the right-endpoint approximations, that Z b 0 k x dx D b kC1 Z 1 x k dx 0 Rb Let k and b be any positive numbers. Let f .x/ D x k on Œ0; b!. Since f is continuous, both 0 f .x/ dx and 0 f .x/ dx exist. Let N be a positive integer and set #x D .b ! 0/ =N D b=N . Let xj D a C j#x D bj=N , j D 1; 2; : : : ; N Rb Rb be the right endpoints of the N subintervals of Œ0; b!. Then the right-endpoint approximation to 0 f .x/ dx D 0 x k dx is 0 1 " N N ! N X b X bj k 1 X kA kC1 @ RN D #x f .xj / D Db j : N N N kC1 j D1 j D1 j D1 SOLUTION R1 In particular, if b D 1 above, then the right-endpoint approximation to SN D #x N X f .xj / D j D1 R1 0 f .x/ dx D R1 0 x k dx is " N ! N X 1 X j k 1 1 D jk D R kC1 kC1 N N N N b j D1 j D1 In other words, RN D b kC1 SN . Therefore, Z b 0 x k dx D lim RN D lim b kC1 SN D b kC1 lim SN D b kC1 N !1 N !1 86. Verify for 0 $ b $ 1 by interpreting in terms of area: Z 0 b N !1 Z 1 x k dx: 0 p 1 p 1 1 ! x 2 dx D b 1 ! b 2 C sin!1 b 2 2 p The function f .x/ D 1 ! x 2 is the quarter circle of radius 1 in the first quadrant. For 0 $ b $ 1, the area p Rbp represented by the integral 0 1 ! x 2 dx can be divided into two parts. The area of the triangular part is 12 .b/ 1 ! b 2 using the Pythagorean Theorem. The area of the sector with angle $ where sin $ D b, is given by 12 .1/2 .$/. Thus SOLUTION Z b 0 p 1 p 1 1 p 1 1 ! x 2 dx D b 1 ! b 2 C $ D b 1 ! b 2 C sin!1 b: 2 2 2 2 590 CHAPTER 5 THE INTEGRAL y 1 θ x 1 b 87. Suppose that f and g are continuous functions such that, for all a, Z a !a f .x/ dx D Z a g.x/ dx !a Give an intuitive argument showing that f .0/ D g.0/. Explain your idea with a graph. Ra Ra SOLUTION Let !a f .x/ dx D !a g .x/ dx. Consider what happens as a decreases in size, becoming very close to zero. Intuitively, the areas of the functions become .a ! .!a//.f .0// D 2a.f .0// and .a ! .!a//.g.0// D 2a.g.0//. Because we know these areas must be the same, we have 2a.f .0// D 2a.g.0// and therefore f .0/ D g.0/. 88. Theorem 4 remains true without the assumption a $ b $ c. Verify this for the cases b < a < c and c < a < b. Rc Rb Rc SOLUTION The additivity property of definite integrals states for a $ b $ c, we have a f .x/ dx D a f .x/ dx C b f .x/ dx. Rc Ra Rc # Suppose that we have b < a < c. By the additivity property, we have b f .x/ dx D b f .x/ dx C a f .x/ dx. Therefore, Rc Rc Ra Rb Rc a f .x/ dx D b f .x/ dx ! b f .x/ dx D a f .x/ dx C b f .x/ dx. Rb Ra Rb # Now suppose that we have c < a < b. By the additivity property, we have c f .x/ dx D c f .x/ dx C a f .x/ dx. Rc Ra Rb Rb Rb Rc Therefore, a f .x/ dx D ! c f .x/ dx D a f .x/ dx ! c f .x/ dx D a f .x/ dx C b f .x/ dx. # Hence the additivity property holds for all real numbers a, b, and c, regardless of their relationship amongst each other. 5.3 The Fundamental Theorem of Calculus, Part I Preliminary Questions 1. Suppose that F 0 .x/ D f .x/ and F .0/ D 3, F .2/ D 7. (a) What is the area under y D f .x/ over Œ0; 2! if f .x/ # 0? (b) What is the graphical interpretation of F .2/ ! F .0/ if f .x/ takes on both positive and negative values? SOLUTION (a) If f .x/ # 0 over Œ0; 2!, then the area under y D f .x/ is F .2/ ! F .0/ D 7 ! 3 D 4. (b) If f .x/ takes on both positive and negative values, then F .2/ ! F .0/ gives the signed area between y D f .x/ and the x-axis. 2. Suppose that f .x/ is a negative function with antiderivative F such that F .1/ D 7 and F .3/ D 4. What is the area (a positive number) between the x-axis and the graph of f .x/ over Œ1; 3!? Z 3 SOLUTION f .x/ dx represents the signed area bounded by the curve and the interval Œ1; 3!. Since f .x/ is negative on Œ1; 3!, 1 Z 3 f .x/ dx is the negative of the area. Therefore, if A is the area between the x-axis and the graph of f .x/, we have: 1 AD! 3. (a) (b) (c) Z 3 1 f .x/ dx D ! .F .3/ ! F .1// D !.4 ! 7/ D !.!3/ D 3: Are the following statements true or false? Explain. FTC I is valid only for positive functions. To use FTC I, you have to choose the right antiderivative. If you cannot find an antiderivative of f .x/, then the definite integral does not exist. SOLUTION (a) False. The FTC I is valid for continuous functions. (b) False. The FTC I works for any antiderivative of the integrand. (c) False. If you cannot find an antiderivative of the integrand, you cannot use the FTC I to evaluate the definite integral, but the definite integral may still exist.
© Copyright 2026 Paperzz