www.sakshieducation.com COMPOUND ANGLES SYNOPSIS 1. sin(A+B) = sinAcosB + cosAsinB sin(A-B) = sinAcosB - cosAsinB 2. cos(A+B) = cosAcosB - sinA sinB cos(A-B) = cosAcosB + sinAsinB 3. 4. 5. tan(A+B) = tan A + tan B 1 − tan A tan B tan(A-B) = tan A − tan B 1 + tan A tan B cot(A+B) = cot A cot B − 1 cot A + cot B cot(A-B) = cot A cot B + 1 cot B − cot A sin(A+B) sin(A-B) = sin2A-sin2B = cos2 B -cos2A cos(A+B) cos(A-B) = cos2A - sin2B = cos2 B - sin2 A 6. 3 4 If A ± B = 60 0 , then cos 2 A + cos 2 B − cos A cos B = , If A ± B = 60 0 , then sin 2 A + sin 2 B ± sin A sin B = 3 / 4 7. Sin 2 A + sin 2 B = 1 − cos(A + B) cos(A − B) Cos 2 A + cos 2 B = 1 + cos(A + B) cos(A − B) 8. sin 150 = 3 −1 3 +1 , cos 150 = , tan 150 = 2- 3 2 2 2 2 9. sin 750 = 3 +1 3 −1 , cos 750 = , tan 750 = 2+ 2 2 2 2 10. If A+B+C = 1800 , then i) tanA + tanB + tanC = tanA tanB tanC ii) tan2A + tan2B + tan2C = tan2A tan2B tan2C 3 iii) tan3A + tan3B + tan3C = tan 3A tan3B tan3C iv) tan A B B C C A tan + tan tan + tan tan = 1 2 2 2 2 2 2 www.sakshieducation.com www.sakshieducation.com v) cotA cotB + cotB cot C + cot C cotA = 1 vi) cot A B C + cot + cot = cot A / 2 cot B / 2 cot c / 2 2 2 2 11. If A = B+C, then tanA - tanB-tanC = tanA tanB tanC. 12. If A, B, C, D are the angles of cyclic quadrilateral, then cosA+cosB+cosC+cosD = 0 13. The range of the expression a cosθ + b sinθ is 14. The maximum value of a cosθ + b sinθ is [− a2 + b2 a2 + b2 , a2 + b2 ] and its minimum value is - 15. 3π c+s > 0 π Y 4 4 c-s<0 c+s<0 X1 c+s > 0 c-s<0 c-s>0 X Here c + s is cosθ + sin θ c+s < 0 c-s >0 −3π or 5π 4 16. (i) If −π Y1 4 4 or 7π 4 −π π < θ < . cosθ + sinθ > 0, cosθ - sinθ > 0 4 4 (ii) If π 3π <θ< cosθ + sinθ > 0, cosθ - sinθ < 0 4 4 (iii) If 3π 5π <θ< cosθ + sinθ < 0, cosθ - sinθ < 0 4 4 (iv) If 5π 7π <θ< cosθ + sinθ < 0, cosθ - sinθ > 0 4 4 m+ n m− n , tan2B = 1 − mn 1 + mn 17. If tan(A+B)=m, tan(A-B)=n, then tan2A = 18. cos θ + sin θ cos θ − sin θ = tan ( 45 0 + θ) , = tan ( 45 0 − θ) cos θ − sin θ cos θ + sin θ 19. a) 20. cot A + cot B sin( B + A) = . cot A − cot B sin( B − A) 21. a) sin(A+B+C) = cosAcosBcosC (tanA+tanB+tanC – tanA tan B tan C) tan A + tan B sin( A + B) = tan A − tan B sin( A − B) b) If p + q sin(α + β ) tan α p = then = tan β q p − q sin((α − β ) b) cos(A+B+C) = cosAcosBcosC (1-tanA tanB – tanB tanC – tanC tanA) c) tan ( A + B + C) = tan A + tan B + tan C − tan A tan B tan C 1 − tan A tan B − tan B tan C − tan C tan A www.sakshieducation.com a2 + b2 . www.sakshieducation.com 22. Tan (A1 + A 2 + A 3 + A 4 + − − − − ) = S1 − S3 + S5 − − − , where S n = sum of the products of 1 − S 2 + S 4 − S6 + − − the tangents taken 'n' at a time. 23. If, in triangle ABC, cotA + cotB + cotC = 3 , then the triangle is equilateral. 24. If A + B= , then π 4 i) (1 + tan A )(1 + tan B) = 2 ii) (1 − cot A )(1 − cot B) = 2 25. If A+B = 3π , then 4 i) (1 − tan A )(1 − tan B) = 2 ii) (1 + cot A )(1 + cot B) = 2 26. If A - B = 3π , then 4 i) (1 − tan A )(1 + tan B) = 2 ii) (1 + cot A )(1 − cot B) = 2 27. (a) cos2 A + cos2 (600 -A) + cos2 (600 + A) = 3/2 (b) sin2 A + sin2 (600 -A) + sin2 (60 + A) = 3/2 (c) cos2A + cos2 (1200 + A) + cos2(1200 - A)= 3/2 (d) sin2A+sin2(1200 +A) + sin2 (1200 - A) = 3/2 28. a) In a triangle ABC, the minimum value of tan2 A B C + tan 2 + tan 2 is unity. 2 2 2 b) In a triangle ABC, the minimum value of tanA + tanB + tanC is 3 3 29. If α, β are solutions of the equation a tanθ + b secθ = c 2ac c2 − b 2 2 2 then tanα + tan β = 2 2 , tanα tanβ = 2 and tan (α+β) = a − c 2 a −b a −b 2ac a 2 + b2 − 2 2 30. If cosx + cosy = a, sinx + siny=b, then cos(x-y) = 31. cot 60 0 + θ cot 60 0 − θ + cot θ cot 60 0 − θ -cot 60 0 + θ cot θ = 3 ( ) ( ) ( ) ( ) www.sakshieducation.com
© Copyright 2026 Paperzz