Chin J Radiol 2004; 29: 323-330 323 1953 Schulman radiophotoluminescent glass dosimeter RPLGD [1, 2, 3] Schulman predose 1 mGy Asahi Techno Glass Corporation Karlsruhe Nuclear Research Center, FZK 1990 1990 0.01 mGy 1960 [4] [5, 6] 1960 1990 112 60% 155 [7] 1993 324 10 2002 9 2 照射發光原理 AgPO 4 excited state 600 silver-activated phosphate Ag Ag2+ 337.1 nm Ag 600 700 nm + Ag o Ag 2+ Ag + 400 700 nm 1 AgPO4 Ag + PO4 – PO4 – – PO4– PO 4 Ag Ag – + 2+ PO4 positive trap holes hPO 4 e– Ag+ Ag+ Ago + hPO 4 Ag 2+ o 2+ Ag Ag Ag o Ag electron trap hole trap 照射發光玻璃劑量計及計讀系統 SC-1 [5] 30 9 mm3 2 FD-7 ground state Ag + – hPO4 Ag Ag o o PO4 2+ Ag 337.1 nm Ag 2+ e – 32% [5] 51% 6.1% 16 16 1.5 mm3 X-ray -ray SC-1 FD-7 11% 0.17% FGD-202 FGD-202 SC-1 SC-1 FGD-202 Cs 6 mGy calibration glass dosimeter FGD-202 SC-1 Gy 137 Ag+ Ag+ 1 e– Ago electron trap hPO4 PO4 Ag2+ hole trap 40 15 g Sv 熱發光劑量計及計讀系統 Bicron o 325 Harshaw 7776 Harshaw 8814 0.0635 mm 10 mg / cm 7776 Bicron Bicron 8814 2 劑量線性度實驗 137 實驗方法 Cs mGy 0.2 mGy 0.6 mGy mGy 50 mGy 500 mGy 0.01 mGy 500 mGy reproducibility of readout value fading effect build-up effect dose linearity energy dependence angular dependence 137 60 Cs Co Pantak HF 420 X 能量依存度實驗 計讀值再現性實驗 M30 20 keV M60 25 keV S60 32 keV M150 67 keV H150 119 keV M250 137 60 142 keV M300 210 keV Cs 662 keV Co 137 1250 keV Cs 137 Cs Harshaw 6600 137 SC-1 0.6 mGy Cs 0.01 mGy 2 mGy 6 mGy 0.1 20 6 mGy 7776 6 mGy 20 mGy 角度依存度實驗 coefficient of variation 137 C.V. 137 Cs 6 mGy [8] 0 Cs 0 40 70 消光效應實驗 137 00 ~ Cs 0 0 60 80 0 800 6 mGy 22 2 0.5 5 1 2 4 6 1 計讀值再現性 照射發光玻璃劑量計增建效應實驗 reliability 137 0.6 mGy 6 1 6 mGy Cs 20 mGy 0.5 1 2 5 22 2 4 1 0.6 mGy 6 mGy 20 mGy 0 326 1 1.05 mGy 6 20 RPLGD* TLD* RPLGD* TLD* 0.67 2.53 0.48 1.38 0.70 1.99 0.41 1.38 0.43 3.27 0.86 1.23 0.65 2.32 0.38 1.31 0.66 2.11 0.33 1.36 0.59 2.45 0.46 1.68 0.49 1.14 0.62 2.15 0.93 1.21 0.46 1.96 0.65 2.40 0.62 2.40 0.97 1.18 0.48 2.35 0.61 1.54 0.32 2.24 0.55 1.13 0.48 2.46 0.33 1.73 0.51 2.46 0.61 2.35 0.33 2.32 0.59 1.19 0.53 1.59 0.63 1.90 0.48 1.88 * RPLGD* 0.53 0.97 0.46 0.48 0.45 0.52 0.32 0.50 0.54 0.30 0.63 0.39 0.29 1.01 0.26 0.51 coefficient of variation 1.00 TLD* 2.09 1.97 2.00 1.86 1.28 1.37 1.58 1.47 1.42 1.38 1.46 1.49 0.74 1.28 1.20 1.50 相對計讀值 0.6 0.95 0.90 0.85 TLD 經預熱程:C. V. <3% TLD 未經預熱程序:C. V. <3% GD:C. V.:1% 0.80 10 1 天照射後時間(天) 0.1 3 100 GD TLD 22 C.V. C.V. n C.V. = ∑ (Xi − X) 2 n −1 ∑X i=1 n i -1 =S/X S 1.1 X 1 0.48 1.90 0.51 1.88 經70℃一小時加熱處理後放射螢光訊號強度 1.50 0.9 相對計讀值 0.63 0.8 0.7 0.6 mGy 20 mGy C.V.: < 1% 0.6 0.6mGy 20mGy 6mGy 0.5 消光效應 0.1 1 天照射後時間(天) 4 10 100 70 22 C.V. precision 3 照射發光玻璃劑量計增建效應 70 22 30 1% 12% 18% 4 30 1% Burgkhardt [9] 99% 90% 100 100 327 500 99 500 [10] 100 劑量計讀值(mGy) 70 500 y = 1.0528x–0.2236 R2 = 1 400 y = 0.977x+0.1142 R2 = 1 300 200 100 劑量線性度 TLD: C.V. <3% GD: C.V.<1% 0 0 100 5 200 300 400 照射劑量(mGy) GD 500 TLD C.V. 10 Gy [5] 1.2 mGy mSv 500 mGy 500 mSv 500 500 2 0.8 0.6 5 r 1.0 相對關係 0.01 mGy 0.4 GD:C.V.<1% TLD:C.V.<3% 1 137 10 0.01 mGy 500 mGy 100 Cs 1000 光子能量(keV) 6 GD 10000 TLD C.V. y 1.0528x 0.977x 0.1142 TLD y Harshaw 8814 0.2236 能量依存度 32 keV 角度依存度 6 SC-1 32 keV SC-1 32 keV -2% 1.25 MeV 15.8% 7 20 keV 32 keV 1.25 MeV -8% 23% 1.25 MeV 328 FD-7 16 16 1.5 mm 3 60˚ 7 X 8 80˚ 16.5% 8 6% 80˚ 5% SC-1 1% 1. Ruihua Z, Boyand L, Z J, A new method for the UV excitaton in radiophotoluminescence dosimetry. Radiat. Prot. Dosim 1986; 17: 299-302 2. Piesch E, Burgkhardt B, Fischer M. Properties of radiophotoluminescencent glass dosemeter systems using pulsed laser UV excitation. Radiat Prot Dosim 1986; 17: 293-297 3. Becker K. High r-dose response of recent silver-activated phosphate glasses. Health Phys 1965; 11: 523-529 4. Piesch E, Burgkhardt B, Vilgis M. Photoluminescence dosimetry: progress and present state of art. Radiat. Prot. Dosim 1990; 33: 215-226 5. Corporation A. T. G. RPL glass dosemeter enviromental monitoring system technical guide. 2000 6. Corporation A. T. G. Technical information for RPL glass dosemeter type SC-1. 2000 329 7. Corporation, Chiyoda Technol, Personal monitoring system by glass badge. 2003 8. INER-T2719 2001 9. Burgkhardt B, Vgi S, Vilgis M, Piesch E. Experience with phosphate glass dosemeters in personal and area monitoring. Radiat. Prot. Dosim. 1996; 66: 83-88 10. Corporation A. T. G. RPL glass dosemeter environmental monitoring system basic characteristic data. 2000 11. Araki F, Ikegami T, Ishidoya T, Kubo HD. Measurements of Gamma-Knife helmet output factors using a radiophotoluminescent glass rod dosimeter and a diode detector. Med Phys 2003; 30: 1976-1981 12. Arakia F, Moribe N, Shimonobou T, Yamashita Y. Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and cyber-knife. Med Phys 2004; 31: 19801986 330 A Comparative Study on Characteristics of Radiation Detectors Between Radiophotoluminescent Glass Dosimeters and Thermoluminescent Dosimeters S HIH -M ING H SU 1 S HANN -H ORNG Y EH 2 M EEI -S HIOW L IN 3 W EI -L I C HEN 1 1 Department of Medical Radiation Technology , National yang-Ming University 2 Department of Radiological Technology , Tzu-Chi College of Technology 3 Institute of Nuclear Energy Research The radiophotoluminescent glass dosimeters (RPLGD) and the thermoluminescent dosimeters (TLD) are two systems can be used for measurement of radiation dose of Xrays and gamma rays. This study compared the physical characteristics of the RPLGD and the TLD. For RPLGD system, it used the flat silver activated phosphate glass. The RPL glass dosimeter material contains Na 11%, P 32%, O 51%, Al 6.1% and Ag 0.17% by weight. For TLD system, it used crystalline chips of 7LiF:Mg,Ti. Gamma sources of 60Co and 137 Cs as well as X-rays generator were borrowed from the National Radiation Standard Laboratory to irradiate the RPLGD and TLD. This study compared the physical characteristics of these two radiation measuring systems on reproducibility of readout value, fading effect, build-up effect, dose linearity, energy dependence and the angular dependence of irradiation. In comparison to TLD, the RPLGD system has better reproducibility of readout values (coefficient of variations equaled 0.48~0.63 vs 1.50~1.90), lesser fading effect (1% vs 12% per 30 days), lower energy dependence (between -2 to 15.8% vs -8 to 23% for 32 keV to 1250 keV), better dose linearity (y = 0.977x + 0.1142 vs y = 1.0528x – 0.2236 for 0.01 mGy to 500 mGy), and higher angular dependence (-80˚ ~80˚ within 16.5% vs 6%). According to the study on data reproducibility, fading effect, build-up effect, dose linearity, energy dependence and the angular dependence of irradiation, RPLGD is better than TLD for the dose range of X and gamma rays of personnel and environmental monitoring. Key words: Dosimetry; Radiation, measurement; Radiophotoluminescent glass dosimeter; Thermoluminescent dosimeter
© Copyright 2025 Paperzz