1953 Schulman radiophotoluminescent glass dosimeter RPLGD

Chin J Radiol 2004; 29: 323-330
323
1953
Schulman
radiophotoluminescent glass dosimeter RPLGD
[1, 2, 3] Schulman
predose
1 mGy
Asahi
Techno Glass Corporation
Karlsruhe Nuclear Research Center, FZK
1990
1990
0.01 mGy
1960
[4]
[5, 6]
1960
1990
112
60%
155
[7]
1993
324
10
2002
9
2
照射發光原理
AgPO 4
excited state
600
silver-activated phosphate
Ag
Ag2+
337.1 nm
Ag
600
700 nm
+
Ag
o
Ag
2+
Ag
+
400
700 nm
1
AgPO4
Ag
+
PO4
–
PO4
–
–
PO4–
PO 4
Ag
Ag
–
+
2+
PO4
positive trap holes hPO 4
e–
Ag+
Ag+
Ago
+
hPO 4 Ag
2+
o
2+
Ag
Ag
Ag
o
Ag
electron trap
hole trap
照射發光玻璃劑量計及計讀系統
SC-1
[5]
30
9 mm3
2
FD-7
ground state
Ag
+
–
hPO4
Ag
Ag o
o
PO4
2+
Ag
337.1 nm
Ag 2+
e
–
32%
[5]
51%
6.1%
16 16 1.5 mm3
X-ray
-ray
SC-1
FD-7 11%
0.17%
FGD-202
FGD-202
SC-1
SC-1
FGD-202
Cs
6 mGy
calibration glass dosimeter
FGD-202
SC-1
Gy
137
Ag+
Ag+
1
e–
Ago electron trap
hPO4
PO4 Ag2+ hole trap
40
15 g
Sv
熱發光劑量計及計讀系統
Bicron
o
325
Harshaw 7776
Harshaw 8814
0.0635 mm 10 mg / cm
7776
Bicron
Bicron
8814
2
劑量線性度實驗
137
實驗方法
Cs
mGy 0.2 mGy 0.6 mGy
mGy 50 mGy 500 mGy
0.01 mGy
500 mGy
reproducibility of
readout value
fading effect
build-up effect
dose
linearity
energy dependence
angular dependence
137
60
Cs
Co
Pantak HF 420 X
能量依存度實驗
計讀值再現性實驗
M30 20 keV
M60 25 keV
S60
32 keV
M150 67 keV
H150 119 keV
M250
137
60
142 keV
M300 210 keV
Cs 662 keV
Co
137
1250 keV
Cs
137
Cs
Harshaw 6600
137
SC-1
0.6 mGy
Cs
0.01 mGy
2 mGy 6 mGy
0.1
20
6 mGy
7776
6 mGy 20 mGy
角度依存度實驗
coefficient of variation
137
C.V.
137
Cs
6 mGy
[8]
0
Cs
0
40
70
消光效應實驗
137
00 ~
Cs
0
0
60
80
0
800
6 mGy
22
2
0.5
5
1
2
4
6
1
計讀值再現性
照射發光玻璃劑量計增建效應實驗
reliability
137
0.6 mGy
6
1
6 mGy
Cs
20 mGy
0.5
1
2
5
22
2
4
1
0.6 mGy
6 mGy
20 mGy
0
326
1
1.05
mGy
6
20
RPLGD* TLD* RPLGD* TLD*
0.67
2.53
0.48
1.38
0.70
1.99
0.41
1.38
0.43
3.27
0.86
1.23
0.65
2.32
0.38
1.31
0.66
2.11
0.33
1.36
0.59
2.45
0.46
1.68
0.49
1.14
0.62
2.15
0.93
1.21
0.46
1.96
0.65
2.40
0.62
2.40
0.97
1.18
0.48
2.35
0.61
1.54
0.32
2.24
0.55
1.13
0.48
2.46
0.33
1.73
0.51
2.46
0.61
2.35
0.33
2.32
0.59
1.19
0.53
1.59
0.63
1.90
0.48
1.88
*
RPLGD*
0.53
0.97
0.46
0.48
0.45
0.52
0.32
0.50
0.54
0.30
0.63
0.39
0.29
1.01
0.26
0.51
coefficient of variation
1.00
TLD*
2.09
1.97
2.00
1.86
1.28
1.37
1.58
1.47
1.42
1.38
1.46
1.49
0.74
1.28
1.20
1.50
相對計讀值
0.6
0.95
0.90
0.85
TLD 經預熱程:C. V. <3%
TLD 未經預熱程序:C. V. <3%
GD:C. V.:1%
0.80
10
1
天照射後時間(天)
0.1
3
100
GD
TLD
22
C.V.
C.V.
n
C.V. =
∑ (Xi − X)
2
n −1
∑X
i=1
n
i
-1
=S/X
S
1.1
X
1
0.48
1.90
0.51
1.88
經70℃一小時加熱處理後放射螢光訊號強度
1.50
0.9
相對計讀值
0.63
0.8
0.7
0.6 mGy
20 mGy
C.V.: < 1%
0.6
0.6mGy
20mGy
6mGy
0.5
消光效應
0.1
1
天照射後時間(天)
4
10
100
70
22
C.V.
precision
3
照射發光玻璃劑量計增建效應
70
22
30
1%
12%
18%
4
30
1%
Burgkhardt
[9]
99%
90%
100
100
327
500
99
500
[10]
100
劑量計讀值(mGy)
70
500
y = 1.0528x–0.2236
R2 = 1
400
y = 0.977x+0.1142
R2 = 1
300
200
100
劑量線性度
TLD: C.V. <3%
GD: C.V.<1%
0
0
100
5
200
300
400
照射劑量(mGy)
GD
500
TLD
C.V.
10 Gy [5]
1.2
mGy
mSv
500 mGy
500 mSv
500
500
2
0.8
0.6
5
r
1.0
相對關係
0.01 mGy
0.4
GD:C.V.<1%
TLD:C.V.<3%
1
137
10
0.01 mGy
500 mGy
100
Cs 1000
光子能量(keV)
6
GD
10000
TLD
C.V.
y
1.0528x
0.977x
0.1142
TLD
y
Harshaw 8814
0.2236
能量依存度
32 keV
角度依存度
6
SC-1
32 keV
SC-1
32 keV
-2%
1.25 MeV
15.8%
7
20 keV
32 keV 1.25 MeV
-8% 23%
1.25 MeV
328
FD-7
16
16
1.5 mm
3
60˚
7
X
8
80˚
16.5%
8
6%
80˚
5%
SC-1
1%
1. Ruihua Z, Boyand L, Z J, A new method for the UV
excitaton in radiophotoluminescence dosimetry. Radiat.
Prot. Dosim 1986; 17: 299-302
2. Piesch E, Burgkhardt B, Fischer M. Properties of radiophotoluminescencent glass dosemeter systems using
pulsed laser UV excitation. Radiat Prot Dosim 1986;
17: 293-297
3. Becker K. High r-dose response of recent silver-activated phosphate glasses. Health Phys 1965; 11: 523-529
4. Piesch E, Burgkhardt B, Vilgis M. Photoluminescence
dosimetry: progress and present state of art. Radiat.
Prot. Dosim 1990; 33: 215-226
5. Corporation A. T. G. RPL glass dosemeter enviromental monitoring system technical guide. 2000
6. Corporation A. T. G. Technical information for RPL
glass dosemeter type SC-1. 2000
329
7. Corporation, Chiyoda Technol, Personal monitoring
system by glass badge. 2003
8.
INER-T2719
2001
9. Burgkhardt B, Vgi S, Vilgis M, Piesch E. Experience
with phosphate glass dosemeters in personal and area
monitoring. Radiat. Prot. Dosim. 1996; 66: 83-88
10. Corporation A. T. G. RPL glass dosemeter environmental monitoring system basic characteristic data. 2000
11. Araki F, Ikegami T, Ishidoya T, Kubo HD.
Measurements of Gamma-Knife helmet output factors
using a radiophotoluminescent glass rod dosimeter and
a diode detector. Med Phys 2003; 30: 1976-1981
12. Arakia F, Moribe N, Shimonobou T, Yamashita Y.
Dosimetric properties of radiophotoluminescent glass
rod detector in high-energy photon beams from a linear
accelerator and cyber-knife. Med Phys 2004; 31: 19801986
330
A Comparative Study on Characteristics of
Radiation Detectors Between
Radiophotoluminescent Glass Dosimeters
and Thermoluminescent Dosimeters
S HIH -M ING H SU
1
S HANN -H ORNG Y EH
2
M EEI -S HIOW L IN
3
W EI -L I C HEN
1
1
Department of Medical Radiation Technology , National yang-Ming University
2
Department of Radiological Technology , Tzu-Chi College of Technology
3
Institute of Nuclear Energy Research
The radiophotoluminescent glass dosimeters (RPLGD) and the thermoluminescent
dosimeters (TLD) are two systems can be used for measurement of radiation dose of Xrays and gamma rays. This study compared the physical characteristics of the RPLGD
and the TLD.
For RPLGD system, it used the flat silver activated phosphate glass. The RPL glass
dosimeter material contains Na 11%, P 32%, O 51%, Al 6.1% and Ag 0.17% by weight.
For TLD system, it used crystalline chips of 7LiF:Mg,Ti. Gamma sources of 60Co and
137
Cs as well as X-rays generator were borrowed from the National Radiation Standard
Laboratory to irradiate the RPLGD and TLD. This study compared the physical
characteristics of these two radiation measuring systems on reproducibility of readout
value, fading effect, build-up effect, dose linearity, energy dependence and the angular
dependence of irradiation.
In comparison to TLD, the RPLGD system has better reproducibility of readout
values (coefficient of variations equaled 0.48~0.63 vs 1.50~1.90), lesser fading effect
(1% vs 12% per 30 days), lower energy dependence (between -2 to 15.8% vs -8 to 23%
for 32 keV to 1250 keV), better dose linearity (y = 0.977x + 0.1142 vs y = 1.0528x –
0.2236 for 0.01 mGy to 500 mGy), and higher angular dependence (-80˚ ~80˚ within
16.5% vs 6%).
According to the study on data reproducibility, fading effect, build-up effect, dose
linearity, energy dependence and the angular dependence of irradiation, RPLGD is
better than TLD for the dose range of X and gamma rays of personnel and
environmental monitoring.
Key words: Dosimetry; Radiation, measurement; Radiophotoluminescent
glass dosimeter; Thermoluminescent dosimeter