0 x9 0 x7

•
WHY ARE MR. AND MRS. NUMBER SO HAPPY?
Find the simplest form for each expression below in the adjacent answer column. The letter of the exercise
goes in the box that contains the number of the corresponding answer.
x3
3x2 x
2x2.3x
O
0
0
O
0
0
x • x2•x3
x 4( -3x2)
8
2X 2 )( - 2x)
x(—x4)(—x4)
® (3ab)(2a3b)
ab(-4ab3)
( —a4b)(-5a2b3)
C)
m
(-2a3b)(2ab3)
(6a2b2)(-2ab5)
(-4ab4)(-3ab4)
0 CO
0
>
=1
-1)
c
Cr
"
(u2v)(-6uv2)
- 8u6v4
v(uv2)(u3v)
4 4
U V
0
(4uv)(—u)(2u4v)
- 8U6V2
®
(-3u2)(—u2v2)(2uv) 3 7
U V
©
5a6b4
a3b3
, 1 2a2b8
® —4a2b4
1 2a3b7
® —4a4b4
• 6a4b2
•
® (ab2)(a2b)
D
0
—3x6
3x3
x9
x7
x6
4x3
6x3
(—u2)(-6u2v3)(—u3v4)
0
O (-2u)(u2v)(4u3v3)
0 (2u2v3)(2uv4)
6U5V3
(—b2)(9a2b3)
(3a2c)(-3bc2)
® c(—ab)(a2b2c2)
O (-3a2c)(-3b2c)
(—ab)(—b2c2)(—a2b2)
® (a2bc2)(b2c3)(9a)
—a3b5c2
—ab3c2
281 —a3b3c3
9a3b3c5
® —9a2bc3
—9a2b5
0
0
0
0—
0
®
(3b2)(3abc)(—c)
-6U3V3
-6u7v7
0
® 9a2b2c2
N
N
()
N
1
2
3
4
5
6
7
8
9
10
11
12
13 14 15 16
17
18 19 20 21
22 23 24 25 26 27 28
What Happens to a Dog Who Eats Table Scraps ?
OD
rm
Simplify each expression below. Find your answer in the corresponding answer column and notice
the letter next to it. Write this letter in the box that contains the number of that exercise.
.
® (X3)2
5 -o
N
)>
•
N
N
0
(X4)3
(2x2)3
• (-4x3)2
® (-3x4)3
0 (8X5)2
• (-2x3)5
® (4x)3
O (-9x)2
0 —3x(2x)2
0 x2(5x3)3
0 —4x2(-4x)2
X(2X2)3
0
1
® 81x2
OT 125x11
—32x15
® 8x6
® —64x4
(4a2b3)2
0 (2a4b)3
0 (-5a3b3)2
0 (ab5)3
x6
0 (-8ab4)2
2a(3a2b)2
—b(5a3b)3
0
®
-12x3
c64x1°
® x 12
® 64x3
® 16x6
OI 8x7
OT —27x12
2 3 4 5 6 7 8 9 10 11 12 13
ix.1191
t
(—a2b2)3
0
3ab(2ab2)4
(ab3)2(a2b)3
0
(-2ab2)2(—ab)3
0 (3ab2)(3ab)2
(—a2b)4(—a2b4)
0
—a6b6
—a lobs
16a4b6
a8b9
25a6b6
18a5b2
27a3b4
a3b15
64a2b8
48a5b9
8a12b3
—4a5b7
—125a9b4
14 15 16 17 18 19 20 21 22 23 24 25 26
What Did the Martian Say When
* He Accidentally Landed on Venus ?
a)
U)C
CC
5x2 + 2x2 — 3x2
5xy2
(5x2)(2x2)( —3x2)
16x6
4x3 + x2 + 4x
3x + 2y
(4x3)(x2) (4x)
7x2y — 2xy2
— 3x3 + 5x2 — 3x3
4x2
( — 3x3)(5x2)( — 3x3)
4x3 + x2 + 4x
3x + 2y
45x8
(3x) (2y)
— 14x3y3
7xy2 — 2xy2
— 30x6
(7xy2) ( — 2xy2)
— 14x2y4
7x2y —
0
2xy2
6xy
( 7x2y) ( — 2xy2)
— 6x3 + 5x2
(1) (3a)(a2)(a3) + (2a2)(a4)
— 2a5b5
O
T
13a3b
(a4)(5a)(a2) + ( — 4a3)(2a3)(a)
— 3a7
® (2a 3 )(a2 )(3a2) + (8a 2 )( —a2)(a)
OD (5a 2)(2ab)
+ (a2b)(3a)
0
0
0
(2ab 2)(— 2a 2b2) — (ab3)(6a2b)
— 10a3b4
O
(—a2b)(ab2)(a 2b2) + (a3b2)(—a2b3)
5a6
O
P (4a 2b 2 )(-3b3 ) — (2ab 2)( — 6ab3)
2
3
6a 7 — 8a5
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ALGEBRA WITH PItZAZZ!
OBJECTIVE 1—g: To add, subtract, or multiply monomials (review).
0 Creative Publications
65
•
cn Why Couldn't the Chicken Find Her Egg ?
Simplify each expression and find your answer below. Cross out the box containing
your answer. When you finish, there will be six boxes not crossed out. Print the
letters from these boxes in the squares at the bottom of the page.
0
0(_
0
0(
0 (
(4xy2)(x3y)2
(4x2y) (2xy2)
x2 ( 3xy) ( xy4)
(- 4x 3y) ( x 2y2) (y)
x4y)(3xy 3 ) 2
0-
(6x2) (2x)3
(2x) 4( - x 2) ( -y)2
-3x2y2)(- 3xy)
2
3 x2y)2 (xy2)4
(-3x2y)3
0
(7x6y4)(x3y2)2
_xy)2( _xy2)
(5xy3) 2
(-1)3(5x2y)3
•(
(5X2Y)2(2XY3)
0
@ 7)6/4 + (x3y2)2
0 x (xy
2
2x2)3( - y)5
3)2 + y2(x2y2)2
IX
SH
EL
EE
OW
EM
7x1 2 8
7x10y8
-x3y4
2x4y6
8x3y3
16x4y3
3x8y1
GG
IS
OS
YO
AT
LK
LA
TE
844
-443
50x5y5
48x5
845
4x7y4
448
-12543
SD
TH
ID
LO
QU
IT
ST
EN
25x2y6
-947
-x5y8
- 27x4y4
3x4y5
3x7y12
-1642
-2743
IT
TH
-4x5y4
1,
11"=10/0444414-)S
0
°IL".11.0114901$00104=-*
Why Are Babies Like Hinges ?
Simplify each expression below and find your answer in the set of answers to the right of that
exercise. Write the letter of your answer in the box that contains the number of that exercise.
n9
O2n4
n5
n 12
6n2
n3
® 3n5
x3y4
r; —8x6y2
O 2x3y2
8xy2
O 12x3y5
20x3y8
0 —5x3y
3a5b2 —24a2b
(7:\
x2y
9a2b5
- 15a2b9
18ab5
30a9b2
2a6b2
—3ab
8
uv
4 10
15 — 2u2v8uv3
® 2n3
• 2n6
® n 910 n4
r\-, 23
(i-Q 2
n
n
6
0 — 4x 0 —4y4
3
O
0
®
a3
O 3b3
—7uv3
0
V 6
(-,84
3(.16
—6u2v6
O
2
14k9m3
—3k5m6
®
—3k
2km3
k4m3
2v4
© 7e
OO
15a2
15a3
—4u2v2
—4u7v2
26u 7 v
16k5m3
OA
® —7uv5®
—9u8v2
20 12km3
—4m3
2
3xy4
3x 2y3
0 5ab8
® 5ab6
4a
3b4
xy3
—4y7
2
13u7v7(-)
4k2m2
O
1
4k3m
®
7k6m
OR —3km3
1 4km2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
76
ALGEBRA WITH PIZZAZZ!
© Creative Publications
OBJECTIVE 3—a: To divide monomials.
.00Why Was the Engineer
•••
4#11. Driving the Train Backwards ? Oh,
Find the missing factor in each exercise below. Find your answer in the set of answers to
the right of that exercise. Write the letter next to your answer in the box containing the
number of that exercise.
0® 24x = (6x2)(
x8 = (x8) (
5
0 — 5X5
0 —12x 4 = (3x3)(
• 20x 7 = (-4x2)(
0
a 5 b 8 = (a2b3)(
0
0 —12a2b4
—1 b
0 5a5b3
2a8
2ab7
O
5
— 6U3V12 =
(2uv)(
9
14
ALGEBRA WITH PIZZAZZ!
© Creative Publications
®
2X7
®
—2X6Y
x 2y4
3x2y8
® 3x2y3
x3y3
0 3y2
®
—3u2v4
© _3u2v1i
® —2uv6
• 11v2
• 11uv3
TO —3u2v
0 121u 2 v 3 = (11u2v)(
78
® a3b5
0 —3y4
(u2v)(
1
—5x3
OO 2ab4
0 32uv v= =( —16v2)(
12
®
•
—6x 2y7 = (-2y)(
14x9y 6 = (-7x2y6)(
27x 4y3 = (9x4y)(
0
13
0 5a3b3
x5y3 = (x2)(
—3u 4 2
®
0 a2b2
® 4a 2 b 8 = (2ab2)(
0 —15a 7 b 4 = (-3a4b)(
0 72a 1 °b 3 = (-6a5b2)(
0
® x8
OO 4x3
® — 4x8
0 —4x
0 4x5
4
11
2
16
6
15
3u2v8
00 —2uv3
10
13
3
7
5
OBJECTIVE 3—c: To find a missing factor of a monomial.