• WHY ARE MR. AND MRS. NUMBER SO HAPPY? Find the simplest form for each expression below in the adjacent answer column. The letter of the exercise goes in the box that contains the number of the corresponding answer. x3 3x2 x 2x2.3x O 0 0 O 0 0 x • x2•x3 x 4( -3x2) 8 2X 2 )( - 2x) x(—x4)(—x4) ® (3ab)(2a3b) ab(-4ab3) ( —a4b)(-5a2b3) C) m (-2a3b)(2ab3) (6a2b2)(-2ab5) (-4ab4)(-3ab4) 0 CO 0 > =1 -1) c Cr " (u2v)(-6uv2) - 8u6v4 v(uv2)(u3v) 4 4 U V 0 (4uv)(—u)(2u4v) - 8U6V2 ® (-3u2)(—u2v2)(2uv) 3 7 U V © 5a6b4 a3b3 , 1 2a2b8 ® —4a2b4 1 2a3b7 ® —4a4b4 • 6a4b2 • ® (ab2)(a2b) D 0 —3x6 3x3 x9 x7 x6 4x3 6x3 (—u2)(-6u2v3)(—u3v4) 0 O (-2u)(u2v)(4u3v3) 0 (2u2v3)(2uv4) 6U5V3 (—b2)(9a2b3) (3a2c)(-3bc2) ® c(—ab)(a2b2c2) O (-3a2c)(-3b2c) (—ab)(—b2c2)(—a2b2) ® (a2bc2)(b2c3)(9a) —a3b5c2 —ab3c2 281 —a3b3c3 9a3b3c5 ® —9a2bc3 —9a2b5 0 0 0 0— 0 ® (3b2)(3abc)(—c) -6U3V3 -6u7v7 0 ® 9a2b2c2 N N () N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 What Happens to a Dog Who Eats Table Scraps ? OD rm Simplify each expression below. Find your answer in the corresponding answer column and notice the letter next to it. Write this letter in the box that contains the number of that exercise. . ® (X3)2 5 -o N )> • N N 0 (X4)3 (2x2)3 • (-4x3)2 ® (-3x4)3 0 (8X5)2 • (-2x3)5 ® (4x)3 O (-9x)2 0 —3x(2x)2 0 x2(5x3)3 0 —4x2(-4x)2 X(2X2)3 0 1 ® 81x2 OT 125x11 —32x15 ® 8x6 ® —64x4 (4a2b3)2 0 (2a4b)3 0 (-5a3b3)2 0 (ab5)3 x6 0 (-8ab4)2 2a(3a2b)2 —b(5a3b)3 0 ® -12x3 c64x1° ® x 12 ® 64x3 ® 16x6 OI 8x7 OT —27x12 2 3 4 5 6 7 8 9 10 11 12 13 ix.1191 t (—a2b2)3 0 3ab(2ab2)4 (ab3)2(a2b)3 0 (-2ab2)2(—ab)3 0 (3ab2)(3ab)2 (—a2b)4(—a2b4) 0 —a6b6 —a lobs 16a4b6 a8b9 25a6b6 18a5b2 27a3b4 a3b15 64a2b8 48a5b9 8a12b3 —4a5b7 —125a9b4 14 15 16 17 18 19 20 21 22 23 24 25 26 What Did the Martian Say When * He Accidentally Landed on Venus ? a) U)C CC 5x2 + 2x2 — 3x2 5xy2 (5x2)(2x2)( —3x2) 16x6 4x3 + x2 + 4x 3x + 2y (4x3)(x2) (4x) 7x2y — 2xy2 — 3x3 + 5x2 — 3x3 4x2 ( — 3x3)(5x2)( — 3x3) 4x3 + x2 + 4x 3x + 2y 45x8 (3x) (2y) — 14x3y3 7xy2 — 2xy2 — 30x6 (7xy2) ( — 2xy2) — 14x2y4 7x2y — 0 2xy2 6xy ( 7x2y) ( — 2xy2) — 6x3 + 5x2 (1) (3a)(a2)(a3) + (2a2)(a4) — 2a5b5 O T 13a3b (a4)(5a)(a2) + ( — 4a3)(2a3)(a) — 3a7 ® (2a 3 )(a2 )(3a2) + (8a 2 )( —a2)(a) OD (5a 2)(2ab) + (a2b)(3a) 0 0 0 (2ab 2)(— 2a 2b2) — (ab3)(6a2b) — 10a3b4 O (—a2b)(ab2)(a 2b2) + (a3b2)(—a2b3) 5a6 O P (4a 2b 2 )(-3b3 ) — (2ab 2)( — 6ab3) 2 3 6a 7 — 8a5 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ALGEBRA WITH PItZAZZ! OBJECTIVE 1—g: To add, subtract, or multiply monomials (review). 0 Creative Publications 65 • cn Why Couldn't the Chicken Find Her Egg ? Simplify each expression and find your answer below. Cross out the box containing your answer. When you finish, there will be six boxes not crossed out. Print the letters from these boxes in the squares at the bottom of the page. 0 0(_ 0 0( 0 ( (4xy2)(x3y)2 (4x2y) (2xy2) x2 ( 3xy) ( xy4) (- 4x 3y) ( x 2y2) (y) x4y)(3xy 3 ) 2 0- (6x2) (2x)3 (2x) 4( - x 2) ( -y)2 -3x2y2)(- 3xy) 2 3 x2y)2 (xy2)4 (-3x2y)3 0 (7x6y4)(x3y2)2 _xy)2( _xy2) (5xy3) 2 (-1)3(5x2y)3 •( (5X2Y)2(2XY3) 0 @ 7)6/4 + (x3y2)2 0 x (xy 2 2x2)3( - y)5 3)2 + y2(x2y2)2 IX SH EL EE OW EM 7x1 2 8 7x10y8 -x3y4 2x4y6 8x3y3 16x4y3 3x8y1 GG IS OS YO AT LK LA TE 844 -443 50x5y5 48x5 845 4x7y4 448 -12543 SD TH ID LO QU IT ST EN 25x2y6 -947 -x5y8 - 27x4y4 3x4y5 3x7y12 -1642 -2743 IT TH -4x5y4 1, 11"=10/0444414-)S 0 °IL".11.0114901$00104=-* Why Are Babies Like Hinges ? Simplify each expression below and find your answer in the set of answers to the right of that exercise. Write the letter of your answer in the box that contains the number of that exercise. n9 O2n4 n5 n 12 6n2 n3 ® 3n5 x3y4 r; —8x6y2 O 2x3y2 8xy2 O 12x3y5 20x3y8 0 —5x3y 3a5b2 —24a2b (7:\ x2y 9a2b5 - 15a2b9 18ab5 30a9b2 2a6b2 —3ab 8 uv 4 10 15 — 2u2v8uv3 ® 2n3 • 2n6 ® n 910 n4 r\-, 23 (i-Q 2 n n 6 0 — 4x 0 —4y4 3 O 0 ® a3 O 3b3 —7uv3 0 V 6 (-,84 3(.16 —6u2v6 O 2 14k9m3 —3k5m6 ® —3k 2km3 k4m3 2v4 © 7e OO 15a2 15a3 —4u2v2 —4u7v2 26u 7 v 16k5m3 OA ® —7uv5® —9u8v2 20 12km3 —4m3 2 3xy4 3x 2y3 0 5ab8 ® 5ab6 4a 3b4 xy3 —4y7 2 13u7v7(-) 4k2m2 O 1 4k3m ® 7k6m OR —3km3 1 4km2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 76 ALGEBRA WITH PIZZAZZ! © Creative Publications OBJECTIVE 3—a: To divide monomials. .00Why Was the Engineer ••• 4#11. Driving the Train Backwards ? Oh, Find the missing factor in each exercise below. Find your answer in the set of answers to the right of that exercise. Write the letter next to your answer in the box containing the number of that exercise. 0® 24x = (6x2)( x8 = (x8) ( 5 0 — 5X5 0 —12x 4 = (3x3)( • 20x 7 = (-4x2)( 0 a 5 b 8 = (a2b3)( 0 0 —12a2b4 —1 b 0 5a5b3 2a8 2ab7 O 5 — 6U3V12 = (2uv)( 9 14 ALGEBRA WITH PIZZAZZ! © Creative Publications ® 2X7 ® —2X6Y x 2y4 3x2y8 ® 3x2y3 x3y3 0 3y2 ® —3u2v4 © _3u2v1i ® —2uv6 • 11v2 • 11uv3 TO —3u2v 0 121u 2 v 3 = (11u2v)( 78 ® a3b5 0 —3y4 (u2v)( 1 —5x3 OO 2ab4 0 32uv v= =( —16v2)( 12 ® • —6x 2y7 = (-2y)( 14x9y 6 = (-7x2y6)( 27x 4y3 = (9x4y)( 0 13 0 5a3b3 x5y3 = (x2)( —3u 4 2 ® 0 a2b2 ® 4a 2 b 8 = (2ab2)( 0 —15a 7 b 4 = (-3a4b)( 0 72a 1 °b 3 = (-6a5b2)( 0 ® x8 OO 4x3 ® — 4x8 0 —4x 0 4x5 4 11 2 16 6 15 3u2v8 00 —2uv3 10 13 3 7 5 OBJECTIVE 3—c: To find a missing factor of a monomial.
© Copyright 2026 Paperzz