Hard X-ray Photoelectron Spectroscopy Research at NIST beamline X24A Joseph C. Woicik NIST Outline • Introduction to hard x-ray photoelectron spectroscopy (HAXPES) • Semiconductor gate stacks on silicon • Epitaxial, room temperature feroelectric SrTiO3 on silicon • Site Specific XPS and the nature of the solid state chemical bond: Cu, GaAs, TiO2 • N doping of TiO2 Hard X-ray Photoelectron Spectroscopy (HAXPES) Synchrotron Tool Variable Kinetic Energy HAXPES • Tune the HAXPES depth sensitivity (photoelectron kinetic energy) by tuning the Xray excitation energy using a synchrotron X-ray beamline • The U7A and X24A endstations form a unique measurement suite for surface to near bulk HAXPES by spanning X-ray excitation energy from 0.2 to 5 keV Example: Si electron binding energy 2p ~99 eV and 1s ~1840 eV, surface to bulk sensitivity (Lab source has fixed energy Al K Photoelectron Kinetic Energy = h – Binding Energy Advantages of HAXPES Advantages of HAXPES • Study samples from air Advantages of HAXPES • Study samples from air; i.e., real samples! Advantages of HAXPES • Study samples from air; i.e., real samples! • Tune λ for experimental system Advantages of HAXPES • Study samples from air; i.e., real samples! • Tune λ for experimental system • Variable kinetic energy XPS (VKE-XPS) for depth profiling Depth Sensitive VKE-XPS N o r m a l i z e d I n t e n s i t y ( a r b . u n it s ) Si 1s h = 2100 eV h = 2500 eV h = 2600 eV HfO2 SiO 2 h Si = 3000 eV 5 n m more oxidized less oxidized "lab-like" spectrum Si 2p -8 -6 -4 -2 Kinetic Energy (E-E h = 3500 eV h = 2100 eV 0 2 4 c) P.S. Lysaght, J. Barnett, G.I. Bersuker, J.C. Woicik, D.A. Fischer, B. Foran, H.-H. Tseng, and R. Jammy Advantages of HAXPES • Study samples from air; i.e., real samples! • Tune λ for experimental system • Variable kinetic energy XPS (VKE-XPS) for depth profiling • Bulk and surface sensitive core lines accessible for same element Surface and Bulk Sensitive Core Lines Si 2p Si 1s B.E. = 99 eV B.E. = 1840 eV h h 2068 = 2180 eV 2072 2076 Kinetic Energy (eV) 2080 324 328 = 2180 eV 332 Kinetic Energy (eV) 336 338 Advantages of HAXPES • Study samples from air; i.e., real samples! • Tune λ for experimental system • Variable kinetic energy XPS (VKE-XPS) for depth profiling • Bulk and surface sensitive core lines accessible for same element • Eliminate Auger interference Auger Interference 10000 In te n s ity ( c o u n ts /s e c o n d ) Si KLL Auger 8000 6000 4000 O 1s 2000 0 1500 1550 1600 Kinetic Energy (eV) 1650 1700 Advantages of HAXPES • Study samples from air; i.e., real samples! • Tune λ for experimental system • Variable kinetic energy XPS (VKE-XPS) for depth profiling • Bulk and surface sensitive core lines accessible for same element • Eliminate Auger interference • Photoemission and other techniques (SSXPS) What is a “gate stack?” Metal SiO2 Si What is a “gate stack?” Metal Metal SiO2 Si SiO2 Si ~ 2 nm What is a “gate stack?” Metal C = εrεoA/d ~ 2 nm HfO2 K ~ 20 Metal ~ 1 nm SiO2 K~4 SiO2 Si Si ~ 2 nm SEMATECH: HfO2/SiO2/Si Gate Stacks Intensity (a.u.) hv = 2200 eV NH3 postdeposition anneal Hf 4f HfO2 HfO2 SiO 2 Hf-N Si 5 n m NH3 predeposition anneal HfO2 N 1s Hf-N hv = 2200 eV Intensity (a.u.) B NH3 pre- & postdeposition anneal HfO2 Hf-N Intensity (a.u.) Intensity (a.u.) A NH3 postdeposition anneal NH3 predeposition anneal A Si-N B NH3 pre- & post-deposition anneal C C 1799 2181 2183 2185 Kinetic Energy (eV) 2187 1781 1783 1805 1807 1809 Kinetic Energy (eV) P.S. Lysaght, J. Barnett, G.I. Bersuker, J.C. Woicik, D.A. Fischer, B. Foran, H.-H. Tseng, and R. Jammy Motorola: 5 ML (20 Å) SrTiO3 films on Si(001) In te n s ity ( a r b . u n its ) Si 2p h = 2210 eV SiO SrTiO 2104 2 /Si(001) 3 /Si(001) 2106 2108 Kinetic Energy (eV) 2110 2112 HfO2/SiGe/Si 2 nm HfO2 30 nm SiGe Si 950˚C anneal as deposited (300˚C) SiGe SiGe Si 2p Ge 3d -8 -6 -4 -2 Kinetic Energy (E - E 0 2 c) Si 1s = 2140 eV In te n s ity ( a r b . u n its ) = 2140 eV In te n s ity ( a r b . u n its ) h h 4 -12 Ge 2p -8 -4 0 Kinetic Energy (E - E 4 c) Hf 4f h = 2140 eV In te n s ity ( a r b . u n its ) as deposited 950°C anneal 2116 2200 Kinetic Energy (eV) 2204 Si 2p In te n s ity ( a r b . u n its ) h = 2140 eV 950°C anneal as deposited SiGe 2030 2034 2038 Kinetic Energy (eV) 2042 Si 1s h = 2140 eV In te n s ity ( a r b . u n its ) 950°C anneal as deposited SiGe 288 292 296 Kinetic Energy (eV) 300 304 Ge 3d = 2140 eV In te n s ity ( a r b . u n its ) h 950°C anneal as deposited SiGe 2100 2104 2108 Kinetic Energy (eV) 2112 Ge 2p = 2140 eV In te n s ity ( a r b . u n its ) h 950°C anneal as deposited SiGe 914 918 922 Kinetic Energy (eV) 926 Advantages of HAXPES • Study samples from air; i.e., real systems! • Tune λ for experimental system • Variable kinetic energy XPS (VKE-XPS) for depth profiling • Bulk and surface sensitive core lines accessible for same element • Eliminate Auger interference • Photoemission and other techniques (SSXPS) Electronic Structure of GaAs J. Chelikowsky, D.J. Chadi, and M.L. Cohen X-ray Standing Waves Bragg's Law: H H=k h -k ko o kh Electric Field: E(r,t) = [ ^ . E o e ik o r + ^ . E h e ik h r ] e -i t Electric Field Intensity: . I(r) = E E* = |E where E o| h 2 [ 1 + R + 2¦R cos( / E o = ¦R e i and 0 < + H .r ) ] < Bragg Diffraction: = 2d sin( d Reflectivity R EB XSW Yield Y EB ) In te n s i ty ( a r b . u n i ts ) 2 1 0 Ga As d 111 200 As 3d GaAs I n t e n s ity ( c n t s . / s e c o n d ) 160 120 Ga 3d 80 40 Valence Band 0 -40 -30 -20 Kinetic Energy (eV) (E - E -10 ) 0 VBM T h e o ry V a le n c e B a n d In te n s ity ( a r b itr a r y u n its ) E x p e r im e n t Ga As -1 6 -1 2 -8 -4 K in e tic E n e r g y ( E - E 0 VBM ) Electronic Structure of Cu J. Friis, B. Jiang, K. Marthinsen, and R. Holmestad I n t e n s it y ( a r b . u n it s ) Cu(11-1) Cu (valence) Cu 3p (core) 2970 2972 2974 Photon Energy (eV) 2976 2978 Cu(11-1) I n t e n s it y ( a r b . u n its ) valence spectra 2954 2958 2962 Kinetic Energy (eV) 2966 2970 N o r m a liz e d I n t e n s it y ( a r b . u n it s ) What happened to the “free-electron” theory of metals? Cu(11-1) valence spectra -8 -6 -4 -2 Kinetic Energy (eV) (E - E 0 2 f ) Photoemission process Feynman diagram: hole What is left behind. photon What goes in the crystal. photoelectron What comes out of the crystal. Electron/hole propagators are shown by solid lines. This process is forbidden for free electrons because of energy/momentum conservation. E.L. Shirley Photoemission process Feynman diagram: hole What is left behind. photoelectron What comes out of the crystal. Phonon lattice recoil photon What goes in the crystal. Electron/hole propagators are shown by solid lines. This process is forbidden for free electrons because of energy/momentum conservation. E.L. Shirley Recoil Effects of Photoelectrons in a Solid Y. Takata, Y. Kayanuma, M. Yabashi, K. Tamasaku, Y. Nishino, D. Miwa, Y. Harada, K. Horiba, S. Shin, S. Tanaka, E. Ikenaga, K. Kobayashi, Y. Senba, H. Ohashi, and T. Ishikawa Electronic Structure of Rutile TiO2 I n t e n s ity ( a r b . u n it s ) DOS theory expt. c-theory -8 -6 -4 Energy (eV) (E - E 0 -2 ) VBM 2 O c Ti b a I n t e n s ity ( a r b . u n it s ) TiO 2(110) Ti 3p O 2s VB -50 -40 -30 -20 Energy (eV) (E - E -10 ) VBM 0 I n t e n s ity ( a r b . u n it s ) (a) DOS theory expt. (b) pDOS Ti expt. x4 O expt. -8 -6 -4 Energy (eV) (E - E 0 -2 ) VBM 2 Chemical Hybridization I n t e n s ity ( a r b . u n it s ) (a) DOS theory expt. (b) pDOS Ti π σ expt. O x4 O-π expt. -8 -6 -4 Energy (eV) (E - E 0 -2 ) VBM 2 (a) pDOS I n t e n s it y ( a r b . u n it s ) Ti theory expt. (b) pDOS O theory expt. -8 -6 -4 Energy (eV) (E - E 0 -2 ) VBM 2 lpDOS x 1.0 I n t e n s ity ( a r b . u n it s ) O 2p x 110 O 2s Ti 3d -8 x 1.8 Ti 4p x 11 Ti 4s x 15 -6 -4 Energy (eV) (E - E 0 -2 ) VBM 2 Theoretical Atomic Cross Sections σTi σTi 4s ≈ 30 ! 3d σO σO 2s ≈ 10 ! 2p XPS favors states with smaller values of angular momentum! I(E,ħω) α ∑i,l ρi,l(E) σi,l(E,ħω) (a) pDOS I n t e n s it y ( a r b . u n it s ) Ti c-theory expt. (b) pDOS O c-theory expt. -8 -6 -4 Energy (eV) (E - E 0 -2 ) VBM 2 Electronic Structure of Rutile TiO2 I n t e n s ity ( a r b . u n it s ) DOS theory expt. c-theory -8 -6 -4 Energy (eV) (E - E 0 -2 ) VBM 2 I n t e n s ity ( a r b . u n it s ) TiO 2(110) Ti 3p O 2s VB -50 -40 -30 -20 Energy (eV) (E - E -10 ) VBM 0 N doped TiO2 (anatase) Ti 2p lpDOS Electronic Structure of TiO2 (anatase) lpDOS Electronic Structure of N doped TiO2 (anatase) Many Thanks…… • • • • Daniel Fischer (NIST) and Barry Karlin (NIST) Pat Lysaght (SEMATECH) Hao Li (Motorola Labs) Erik Nelson (SSRL), David Heskett (URI), and Lonny Berman (NSLS) • Leeor Kronik (Weizmann) and Jim Chelikowsky (Austin) • Abdul Rumaiz (NSLS) and Eric Cockayne (NIST) 30 In te n s ity ( c n ts ./s e c ) Ga 20 As 10 to ta l 0 -1 6 -1 2 -8 K in e tic E n e r g y ( E - E -4 VBM 0 ) eV d d Ho = ik o . r |<f|e i 2 . p)|i >| ( p i 2 /2m + V( r) H ' = A o. p E kin = h [ p ,H] = -i d (h b ik f. r |f>=e d -E h |<f| >> E (k f >> k b) o) V( r ) . V( r ) | i > | 2 V a le n c e P h o to e m is s io n | f > | i > V( r ) d d | < f | e ik o . r ( ^ .p) | i > | 2 Chemical Hybridization + + - = λ2s 2p 2s + + λ2s + 2pz λ2s - 2pz λ2s + 2pz + 2pz - + - - Hi,j = ∫ ψi H ψj dV “s-p hybrid” Stronger Chemical Bond!
© Copyright 2026 Paperzz