1. If log x2 – y2 = a, then x2 + y2 dy / dx = 1] xy 2] y / x 3] x / y 4] none of these 1. If log x2 – y2 = a, then x2 + y2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x 2. If f is an even function and f 1 exists, then f 1 (e) + f1 (-e) = 1] 0 2] 1 3] -1 4] e 2. Solution : Given that f is an even function then f (-x) = f (x) Diff. w.r.t ‘x’ f 1(-x) (-1) = f1 (x) Substitute x = e f 1(-e) (-1) = f1 (e) f 1 (e) + f1 (-e) =0 Answer 1] 0 3.If f (x) = ex g (x), g(0) = 2, g1 (0) =1, then f1 (0) is equal to 1]1 2] 3 3] 2 4] 0 3.Solution : Given that f (x) = ex g (x), g(0) = 2, g1 (0) =1, Since f (x) = ex g (x), Diff. w.r.t ‘x’ f1 (x) = ex g1 (x) + g(x) ex Substitute , x = 0 f1 (0) = e0 g1 (0) + g(0) e0 = 1(1) + 2 (1) = 1+2=3 Answer : 2] 3 4. The derivative of an even function is always 1] an odd function 2] an even function 3] does not exist 4] none of these 4. Solution : The derivative of an even function is always an odd function Answer : 1] odd function 5. Let f and g be differentiable functions satisfying g1(a) =2,g(a) =b and fog = i (identity function).then f1(b) is equal to 1] ½ 2] 2 3] 2/3 4] - ½ 5. Solution : Given that Let f and g be differentiable functions satisfying g1(a) =2,g(a) =b and fog = i (identity function).then f1(b) is equal to Since : fog = I (fog ) x = x f [g(x)] = x Diff.w.r.t ‘x’ f1 [ g (x)]. g1 (x) = 1 Substitute : x = a f1[g(a)]. g1 (a) = 1 f1(b). 2 = 1 f1(b) = 1/2 Answer 1] 1/ 2 6.If y = Tan-1 4x + Tan-1 2 + 3x 1 + 5x2 3 – 2x then dy/dx is equal to 1] 3] 1 1 1 + x2 2] 5 1 + 25x2 4] -5 1 + 25x2 6.Solution : y =Tan-1 4x + Tan-1 2 + 3x 1 + 5x2 3 – 2x Since: Tan-1 x ± Tan-1 y = Tan x ± y 1 + xy Y = Tan-1 5x + x + Tan-1 2/3 +x 1 – 5x.x 1–(2/3)x Y = Tan-1 5x – Tan-1 x + Tan-1 2/3 + Tan-1 x Y = Tan-1 5x +Tan-1 2/3 diff.w.r.t ‘x’ dy/dx = 5 1+25x2 Answer 2] 5 1+25x2 7. If y = (sinx) 1] (sin x) (sin x) y2 sinx (1-logy) 3] y2 cot x 1 - logy ……….. ∞ then dy/dx = 2] y2 sin x 1 – logy 4] y2 tanx 1 – logy (sin x) 7. Solution: Given that y = (sinx) ……….. ∞ (sin x) Y = [f(x) ]y then dy = y2 f1 (x) dx f(x) (1 – log y ) Y = ( sin x )y dy = y2 cosx y2 cot x dx (1 –log y ) sin x 1 – log y Answer : 3] y cot x 1-logy 8. If xy = ex – y, then dy / dx is equal to 1] y (1 + log x)2 2] x (1 + logx)2 3] log x ( 1 + logx )2 4] none of these 8. Solution : Given that : xy = ex – y y log x = (x – y) log ee y log x + y = x y ( 1 + log x ) = x y= x 1 + log x Diff. y w.r.t ‘x’ dy log x dx (1 + logx)2 Answer : 3] log x (1 + logx)2 9. If 3 sin (xy) + 4 cos ( xy) = 5, then dy / dx 1] -y/x 2] 3 sin (xy) + 4 cos (xy) 3 cos (xy) – 4 sin ( xy) 3] 3cos (xy) + 4 sin (xy) 4 cos (xy) – 3 sin (xy) 4] none of these 9. Solution : Given that 3 sin (xy) + 4 cos ( xy) = 5, Take xy = k Diff. w.r.t ‘x’ x dy + y = 0 dx dy = - y dx x Answer : 1] –y/x 10. If f (x)=cos-1 1 – ( log x )2 ,then f1(e) is 1 + ( log x )2 1] 1 / e 2] 1 3] 2 / e 4] 2e 10. (x)=cos-1 1 – ( log x )2 1 + ( log x )2 cos-1 1 – f 2 ( x ) 2 Tan-1 [f(x)] 1 + f 2 (x ) f (x) = 2 Tan-1 ( log x) Diff. w.r.t ‘x’ f1 ( x ) = 2 1 1 1 + ( logx)2 x f1 ( x ) = 2 1 1 1 + ( logx)2 x Substitute : x = e f1 (e) 2 1 2 1 + ( logee)2 e 2e 1 e Answer : 1] 1 e 11. If 2x2 + 4xy + 3y2 = 0, then d2y / dx2 = 1] 0 2] ½ 3] 1 (2x+y)2 4] ¾ 11. Solution : Given that 2x2 + 4xy + 3y2 = 0, ax2 + 2hxy + by2 = 0 then d2y = 0 dx2 Answer : 1] 0 12. lt f (x + y) = f(x). f(y) for all x and y. suppose f(5) = 2, f1 (0) =3, then f1(5)= 1] 3 2] 2 3] 6 4]-1 12. Solution: Given that f (x + y) = f(x). f(y) f(5) = 2, f1 (0) =3, then f1(5)= consider f ( x + 5 ) = f (x) f (5) Diff. w.r.t ‘x’ f1 ( x + 5) = f1 ( x) f (5) Sub x = 0 f1 ( 0 + 5 ) = f1 (0) f (5) f1 (5) = 3 (2) =6 Answer : 3] 6 13. The differential co-efficient of f(sinx) w.r.t x where f (x) = logx is 1] tan x 2] cotx 3] (cosx) 4] 1/x 13. Solution: The differential co-efficient of f (sinx) w.r.t x where f (x) = logx is Diff. f (sinx) w.r.t ‘x’ f1 ( sinx ) cos x since f (x) = log x 1 cosx = cot x f1 (x) = 1 sinx x Answer: 2] cotx 14. If y = 1 + x + x2 + ….. to ∞ dy / dx = [ |x| < |] 1] x/y 2] x2 / y2 3] - y2 4] y2 14. Solution : Given that : y = 1 + x + x2 + ….. to ∞ [ |x| < |] which represents a geometric series S ∞ = a , where |r|<| 1–r y= 1 1-x Diff. y .w.r.t ‘x’ dy /dy = - 1 (-1) = 1 (1-x)2 (1-x)2 = y2 Answer : 4] y2 15.If f (x) = ( 1 + x ) ( 1 + x2 ) ( 1 + x3 ) ……(1+xn ) then f1 (o) = 1] 0 2] 1 3] -1 4] 2 15. Solution : Given that : f (x) = ( 1 + x ) ( 1 + x2 ) ( 1 + x3 )……(1+xn ) log f (x) = log ( 1+x) + log (1+x2) +………log (1+xn) Diff. w.r.t ‘x’ f1 (x) = 1 2x ……… n xn-1 f(x) 1 + x 1 + x2 1 + xn f1 (0) = 1 2(0) ……… n(0) f(0) 1+0 1+0 1+0 f1 (0) = 1 Answer : 2] 1 16. If y = Tan-1 log (e/x2) + Tan 4 +2logx log (ex2) 1-8 logx then d2y/dx2 = 1] 2 2] 1 3] 0 4] -1 16.y = Tan-1 log (e/x2) +Tan-1 4 +2logx log (ex2) 1-8 logx y = Tan-1 1 – 2 logx + Tan-1 4 + 2 log x 1 + 2 log x 1 – 4 (2 logx ) Y= Tan-1 1-Tan-1 (2logx ) + Tan-1 4 + Tan-1 (2logx ) diff. w.r.t ‘x’ dy/dx = 0 d2y = 0 Answer : 3] 0 dx2 Answer : 3] 0 17.If y = (Tanx-x)+ (Tanx-x)+ (Tanx-x)+…….to ∞ terms then dy/dx = 1] sec2x 2] sec2x 2y-1 1-2y 3] Tanx 2y-1 4] –Tan x 2y-1 17. y = (Tanx-x)+ (Tanx-x)+ (Tanx-x)+…….to ∞ y = f(x) + f(x) + ………to ∞ dy f1 (x) dx 2y – 1 dy sec2 x -1 Tan x dx 2y-1 2y-1 Answer : 3] Tan x 2y-1 18. Let ‘f’ be a function defined for all x Є.R If ‘f’ is differentiable and f (x3) = x5 ( x ≠ 0 ) then the value of f1 ( 27) is 1]15 2] 45 3] 0 4] 10 18. Solution : Given that f (x3) = x5 ( x ≠ 0 ) Diff. w.r.t ‘x’ f1 (x3 ) 3x2 = 5x4 f1 ( 33) 3. 32 = 5 .34 f1 (27 ) = 5 (3) = 15 Answer: 1] 15 19. If logsinx y = cosx then dy/ dx = 1] [ cosx cotx – sinx log sinx ] 2] y [ cosx cotx + sin x log sinx ] 3] [cosx cotx – sinx log sinx ] 4] y [cosx cotx – sinx log sinx] 19. Solution : logsinx y = cosx then = Y = (sinx)cosx y = [f (x)]g(x) dy = [ f(x)] g(x) g (x) f1 (x) + g1 (x) log f (x) dx f(x) dy = ( sinx)cosx cosx cosx - sinx log sin x dx sinx = y [cosx cotx – sinx log sinx] Answer: 4] y [cosx cotx – sinx log sinx] 20. If y = sinx. Sin2x. sin3x ….. Sinnx then dy/dx = n 1] y ∑ k cot kx n 2] y ∑ k cot kx k=1 k=1 n n 3] y ∑ k TAn kx k=1 4] y ∑ k Tan kx k=1 20. Solution : If y = sinx. Sin2x sin3x ….. Sinnx log y = log sinx + log sin 2x +………. + log sinnx y1 cosx 2 cos2x 3 cos3x + ……..+ n cosnx y sinx sin2x sin3x sinnx Y1 = y [ cotx + 2cot 2x + …. + k cot k x] n Y1 = y ∑ k cot kx K=1 Answer : 1] n y ∑ k cot k x K=1 21. If y = 1+ logx + (logx)2 + ( logx)3 + ………….. to ∞ 2 3! terms then d2y /dx2 1] 1 / x 2] 2 / x 3] 1 4] 0 21. Solution : y = 1+ logx + (logx)2 + ( logx)3 + ………….. to ∞ 2 3! ex = 1 + x + x2 + x3 + ………. to ∞ 2! 3! y = elog x y=x dy/dx = 1 d2y dx2 = 0 Answer: 4] 0 22. If y = sec x + Tanx and o < x < π. then dy secx – Tanx dx 1] sec x [ secx – Tanx ] 2] Tan x [ secx + tanx ] 3] secx [secx + Tanx] 4] Tan x [ secx – Tanx] 22. Solution : If y = sec x + Tanx and o < x < π. secx – Tanx y = (sec x + Tanx)2 sec2x – Tan2x y = secx + Tan x dy = secx Tan x + sec2x dx = secx [Tan x + secx] Answer: 3] secx [ Tan x + secx] 23. If g is the inverse function of f and f1 (x) = 1 then g1 (x) is equal to 1 + xn, 1] 1+(g (x))n 2] 1 – g (x) 3] 1 + g (x) 4] 1 – (g(x))n 23. Solution : Given that: g is the inverse function of f and f` (x) = 1 1 + xn, and also f = g-1 (fog) = I ( identity function) (fog) x = x f ( g (x) ] = x diff. w.r.t ‘x’ f1 [g (x)] g1 (x) = 1 1 g1 (x) = 1 1+ (g(x)n g (x) = 1+ [g (x)n Answer 1] 1 + [ g (x)]n 24. If f (x) is an odd differentiable function defined on (- ∞, ∞) such that f1 (3) = 2, then f1 (-3) equals : 1] 0 2] 1 3] 2 4] 4 24. Solution : Given that f (x) is an odd differentiable function : f (-x) = - f (x) Diff w.r.t ‘x’ f1 (-x) (-1) = - f1 (x) f1 (-x) = f1 (x) since f1 (3) = 2 f1 (-3) = f1 (3) f1 (-3) = 2 Answer: 3] 2 25.A differentiable function f(x) is such that f (1) = 7 and f1 (1) = 1/7. If f-1 exists and f-1 = g, then 1] g1 (7) = 1/7 2] g1 (7) = 7 3] g1 (1) = 1/7 4] g1 (1) = 8 25.Solution : Given that : f-1 = g, f(1) = 7, and f1 (1) = 1/7 go f = I ( gof) x = x g [ f (x)] = x g1 [(f(x)]. f1 (x) =1 g1 [f(1)]. f1 (1) = 1 g1 (7). 1/7 = 1 g1 (7) = 7 Answer 2] g (7) = 7 -1 26. If x = eTan 2 2 [y – x x ] then dy/dx = 1] 2x [1 + Tan x (log x )] + x sec2 ( logx) 2] 2 x [ 1 + Tan ( log x) ] + sec2 ( log x ) 3] 2 x [ 1 + Tan ( logx) ] + x2 sec2 ( logx) 4] 2x [ 1 + tan ( logx ) ] + sec2 ( logx) -1 2 2 26. Solution : Given that x = eTan [y – x x ] Tan (logx) = y – x2 x2 x2 Tan (logx) = y –x2 Y = x2 + x2 Tan ( logx) dy/dx =2x + x2 sec2 (logx) + Tan ( logx ) ( 2x) x Answer :3] 2 x [ 1 + Tan ( logx) ] + x2 sec2 ( logx) . 27. If x = a [θ-sinθ], y = a[1-cosθ].Then dy/dx = 1] cot θ/2 2] Tan θ/2 3] ½ coesec2 θ/2 4] -½ cosec2 θ/2 . 27. Solution : Given that If x = a [θ-sinθ], y = a[1-cosθ]. dy/dx = a [1-cosθ] a sin θ = 2sin2 θ/2 2 sin θ/2 cos θ/2 =Tan θ/2 Answer 2] Tan θ/2 . 28. If log y = m tan-1 x, then 1] (1 +x2) y2 + (2x + m ) y1 = 0 2] (1 +x2) y2 + (2x - m ) y1 = 0 3] (1 +x2) y2 - (2x + m ) y1 = 0 4] (1 +x2) y2 - (2x - m ) y1 = 0 . 28. Solution : Given that log y = m tan-1 x, y1 = m y 1+x2 (1+x2) y1 = my (1 + x2) y2 + y1 2x = my1 ( 1 + x2 ) y2 + 2 xy1 – my1 = 0 ( 1 + x2 ) y2 + ( 2 x – m ) y1 = 0 Answer : 2] ( 1 + x) y + ( 2x – m) y = 0 . 29. If y2 – 2x2 = y, then dy/dx at (1, - 1 ) is 1] -4/3 2] 4/3 3] ¾ 4] -3/4 . 29. Solution: Given that y2 - 2x2 - y = 0 dy/dx = - (diff. w.r.t ‘x’ keeping y as constant) (diff. w.r.t ‘y’ keeping x as constant) = - (-4x) (2y-1) dy/dx = 4x 2y-1 dy 4(1) (4) -4 dx (1,-1) 2(-1) -1 -3 3 Answer : 1] -4/3 . 30. Derivative of f (logx) w.r.t ‘x’ where f (x) = ex 1] ex 2] log x 3] 1/x 4] 1 . 30. Solution :diff f (logx) w.r.t ‘x’ = f1 ( log x ) 1 f (x) = ex x f1 (x) = ex =x 1 f1 ( logx) = elogx x =x =1 Answer: 4] 1 . 31. If f (x) = sin [π / 2 [x]-x5], 1 <x<2, where[x] denotes the greatest integer.less than or equal to x, then f1(5 π/2) = 1] 5 (π /2)4/5 2] -5 (π /2)4/5 3] 0 4] none of these . 31. Solution : Given that f (x) = sin [π/2 [x]-x5], 1 < x < 2, [x]=1 f (x) = sin [π/2 (1) –x5], f1 (x) = cos [π/2 –x5]. [-5x4] f1 (5 π/2) = cos [π/2– 5 π/2 )5].(-5)(5 π/2 )4 = - 5 (π/2)4/5 Answer 2] - 5 (π/2)4/5 . 32. If y = cos-1 2cosx -3sinx √13 1] 2 2] -2 3] -1 4] 1 then dy = dx . 32. Solution : y = cos-1 2cosx -3sinx √13 y = cos-1 2 cosx - 3 sinx √13 √13 cosα = 2/√13 sin α 3/√13 y = cos-1 [cosα cosx – sinα sinx] y = cos-1 [cos(α + x)] y=α+x dy/dx = 1 Answer: 4] 1 . 33. If y = cos2 3x/2 – sin2 3x/2, then d2 y/dx2 is 1] 9y 2] -3 √1 – y2 3] 3 √ 1 – y2 4] -9y . 33. Solution : Given that y = cos2 3x/2 – sin2 3x/2 y= cos 3x dy/dx = - 3 sin 3x d2y/dx2 = -9 cos 3x = -9y Answer: 4]-9y . 34. If y = log5 ( log5 x ) then dy/dx = 1] 1 x log5 x 2] 1 x log5 x.log5x 3] 1 x log5 x.(log5)2 4] none of these . 34. Solution : Given that: y = log5 ( log5 x ) dy 1 dx (log5) (log5x) x (log5) 1 = x (log5x) (log5)2 Answer:3] 1 x (log5x) (log5)2 . 35. If f (x ) =1+nx+ n (n-1) x2 + n ( n-1) (n-2) x3 2 6 + ………….. + xn then f “ (1) = 1] n ( n-1 ) 2n-1 2] (n-1)2n-1 3] n (n-1)2 n-2 4] n (n-1)2n . 35. Solution : Given that: f (x ) = 1 + nx + n (n-1) x+ n ( n-1) (n-2) x2 2 6 + ………….+ xn f (x) = ( 1+x)n (by binomial theorem) f1 (x) = x ( 1 + x )n-1 f11 (x) = n ( n-1) ( 1+x)n-2 f11 (1) = n ( n-1) ( 1+1)n-2 = n ( n-1) 2n-2 Answer : 3] n ( n-1) 2n-2 36. If y = sec-1 x+1 + sin-1 x - 1 , then dy = x-1 x+1 dx 1] x - 1 x+1 ` 2] x + 1 x-1 3] 0 4] 1 . 36. Solution : Given that: y = sec-1 x+1 + sin-1 x - 1 x -1 x +1 y = cos-1 x - 1 + sin-1 x - 1 x +1 x +1 y=π/2 dy/dx = 0 Answer :3] 0 . 37.If y = tan-1 √1+sinx+√1– sinx , 0 <x< π/2 √1+sinx –√1– sinx Then dy/dx = 1] ½ 2] -½ 3] x/2 4] –x/2 . 37. Solution : Given that: y = tan-1 √1+sinx+√1– sinx √1+sinx –√1– sinx 0 <x< π/2 0 <x/2< π/4 Cos x/2 > sin x/2 y = tan-1 cosx/2 + sin x/2+ cos x/2-sinx/2 cosx/2 + sin x/2- cos x/2+sinx/2 y = tan-1 [cotx/2] y = π/2 –x/2 dy/dx = - ½ Answer :2] - ½ . 37. y = sin-1(3x – 4x3), then dy/dx at x = 1/3, is 38. 1] -9 √ 2 4 2] 9 √ 2 3] 9 √ 2 4 4] 9/8 . 37. Solution : Given that: 38. y = sin-1(3x – 4x3) y = 3 sin-1 x dy/dx = 3 √1 - x dy/dx = 3 9 √ 1 - 1/9 √ 8 9 √2 4 Answer :3] 9 √ 2 4 . 37. 39. If y = tan-1 1 + tan-1 1 + tan-1 1 1 + x+x2 x2+3x+3 x2+5x+7 …. to n terms then y1 (0) = 1] -1/n2 +1 3] n2 /n2 +1 2] –n2 /(n2+1) 4] n / n+1 . -1 39. If y = tan 37. 1 + tan-1 1 + tan-1 1 1 + x+x2 x2+3x+3 x2+5x+7 +………..+ to n terms y = tan-1 (x+1)-x tan-1 (x+2) –(x+1) ………… 1+ (x+1)x 1+ ( x+2) ( x + 1) tan-1 (x+n)-(x+n-1) 1 + ( x + n) ( x + n-1) Y= tan-1 (x+1)- tan1x + tan-1 (x+2) –tan-1 (x+1) ……….+ tan-1 (x+n) –tan-1 (x+n-1) Y=tan-1 (x+n) – tan-1 x y1 = 1/1+(x+n)2 – 1/1+x2 y1 (0)=1/(1+n2)- 1 Answer: 2]–n2 /(n2+1)
© Copyright 2026 Paperzz