Equating quantum and thermodynamic entropy productions (Information erasure in closed system: Nature may operate twirling) Lajos Diósi Wigner Research Centre, Budapest 21 Sept 2016, Sopot Acknowledgements: EU COST Action MP1209 ‘Thermodynamics in Lajos DiósiWigner Research Centre, BudapestEquating quantum and thermodynamic entropy productions 21 (Information Sept 2016, Sopot erasure in 1closed /8 1 A new entropy theorem 2 Microscopic reversibility 3 Mechanical friction in ideal Maxwell gas 4 Nature may forget ... 5 ‘Friction’ in abstract quantum gas 6 Summary Lajos DiósiWigner Research Centre, BudapestEquating quantum and thermodynamic entropy productions 21 (Information Sept 2016, Sopot erasure in 2closed /8 A new entropy theorem A new entropy theorem Product state ρ = σ 0 ⊗ σ ⊗ σ ⊗ . . . ⊗ σ entropy: 1 2 3 ... N S[σ 0 ⊗σ ⊗(N−1) ] = S[σ 0 ] + (N −1)S[σ] Irreversible operation twirling T : σ 0 ⊗σ ⊗(N−1) + σ⊗σ 0 ⊗σ ⊗(N−2) + · · · + σ ⊗(N−1) ⊗σ 0 T σ 0 ⊗σ ⊗(N−1) = N Limit theorem for entropy production: 0 ⊗(N−1) 0 ⊗(N−1) lim S[T (σ ⊗σ )] − S[σ ⊗σ ] = S[σ 0 |σ]. N=∞ Csiszár-Hiai-Petz: We don’t see how you got the conjecture. D.-Feldmann-Kosloff: We don’t see how you prove it. Lajos DiósiWigner Research Centre, BudapestEquating quantum and thermodynamic entropy productions 21 (Information Sept 2016, Sopot erasure in 3closed /8 Microscopic reversibility Microscopic reversibility Theory: reversibility in closed systems ρ → UρU † , S[UρU † ] = S[ρ] Experience: entropy production in large closed systems Some irreversible mechanism superseds unitary evolution. ρ → UρU † → M? ρ, S[M? ρ] > S[ρ] What can M? be? Find a system such that: microscopic dynamics U is tractable macroscopic friction force is calculabe from U ⇒ thermodynamic entropy production ∆S thermo is calculable ⇒ ∆S micro = S[M? ρ] − S[ρ] is strictly given by ∆S thermo Then you construct M? ! Lajos DiósiWigner Research Centre, BudapestEquating quantum and thermodynamic entropy productions 21 (Information Sept 2016, Sopot erasure in 4closed /8 Mechanical friction in ideal Maxwell gas Mechanical friction in Maxwell gas Constant force is dragging a disk at velocity V through the gas. Friction force: 2νmV (Epstein 1910) ν collision rate m molecular mass V disc velocity Thermodynamic entropyv3 -production rate: 2βνmV 2 kg vn V Q Q v 2 ⇒ ρ1 (v)=exp − βm (2V−v1)2 k6=1 exp − βm v2 ρ(v)= k exp − βm 2 k 2 2 k v2 11 00 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 v1 2V−v1 ∆S micro /collision = S[ρ1 ] − S[ρ] = 0 ∆S thermo /collision = 2βmV 2 Impose M? : ρ1 → M? ρ1 such that is dynamically ‘innocent’ and S[M? ρ1 ] − S[ρ] = 2βmV 2 Lajos DiósiWigner Research Centre, BudapestEquating quantum and thermodynamic entropy productions 21 (Information Sept 2016, Sopot erasure in 5closed /8 Nature may forget ... Nature may forget... which one of the N molecules has just collided: M? = T T ρ1 = (ρ1 + ρ2 + ... + ρN )/N where Y βm βm 2 2 ρn (v)=exp − (2V−vn) exp − vk 2 2 k6=n Indeed, in thermodynamic limit N → ∞: ∆S micro = S[T ρ1 ] − S[ρ1 ] −→ 2βmV 2 + O(V 4 ) = ∆S thermo + O(V 4 ) Twirling Maxwell gas: dynamically ‘innocent’: T [H, ρ] = [H, T ρ] erases information ∆S micro coinciding with ∆S thermo /kB D. 2002 Lajos DiósiWigner Research Centre, BudapestEquating quantum and thermodynamic entropy productions 21 (Information Sept 2016, Sopot erasure in 6closed /8 ‘Friction’ in abstract quantum gas ‘Friction’ in abstract quantum gas ⊗N e −βH ρ= ≡ σ ⊗N Z (β) Collision on outside field/object (cf.: ‘disk’): Initial Gibbs state: ρ ⇒ ρ1 = σ 0 ⊗ σ ⊗(N−1) where σ 0 = UσU † . Identity for energy change: ∆E = tr(Hσ 0 ) − tr(Hσ) = S[σ 0 |σ]/β Suppose ∆E is dissipated, then ∆S thermo = S[σ 0 |σ]. Twirl T generates exactly this amount: S[T ρ1 ] − S[ρ1 ] = ∆S thermo . lim S[T (σ 0 ⊗σ ⊗(N−1) )] − S[σ 0 ⊗σ ⊗(N−1) ] = S[σ 0 |σ]. N=∞ Conjecture D.-Feldmann-Kosloff 2006. Proof Csiszár-Hiai-Petz 2007. Lajos DiósiWigner Research Centre, BudapestEquating quantum and thermodynamic entropy productions 21 (Information Sept 2016, Sopot erasure in 7closed /8 Summary Summary Notorious tension: reversible micro vs. irrev. macro Case study: mechanical friction in Maxwell gas Quantitative entropic constraint on microscopic mechanism Nature may use twirl to erase information Bye-product: new quantum informatic theorem Reality: twirling local perturbation of Gibbs state (D. 2012) L.Diósi: Shannon information and rescue in friction, Physics/020638 L.Diósi, T.Feldman, R.Kosloff, Int.J.Quant.Info 4, 99 (2006) I. Csiszár, F.Hiai, D.Petz, J.Math.Phys. 48, 092102 (2007) L.Diósi, AIP Conf.Proc. 1469 (2012) Lajos DiósiWigner Research Centre, BudapestEquating quantum and thermodynamic entropy productions 21 (Information Sept 2016, Sopot erasure in 8closed /8
© Copyright 2026 Paperzz