Number of cells in the human body M 100 kg N M = m V 1000 – 10,000 µm3 m 10–12 – 10–11 kg 100 kg 10–12 – 10–11 kg = 1013 – 1014 Number of chromosome replications (r) occurring per generation in humans 1013 – 1014 cells 1016 divisions in lifetime three idealized scenarios: binary tree divisions hybrid scenario 2r = 1016 (log2(10) 3.3) binary tree stage theoretical number chromosome replications per generation r 1016 1 kg of stem cells r 40 r 50 one stem cell divisions 2r = 1012 cells terminal differentiation stage x 104 giving a total of 1016 cells r 40 + 104 104 How many rRNA genes are needed? 200,000 ribosomes cell cycle 100 min 6000 s Vpolymerase footprint 40 bases 10–20 bases s 30 ribosomes s dozens of gene repeats needed max rRNA production ≤ 1 s rate Leakage time scale through membrane (rapid if small molecule is uncharged—e.g., glycerol) concentration cout permeability volume V concentration cin flux = number area × s total amount lost = p × (cin–cout) × A area A flux leakage time scale, τ τ= number of molecules inside amount lost each second = V × cin = p × A × (cin–cout) cin × 4 πr 3 3 r = 3p cin × p × 4πr 2 assume cout = 0 for glycerol in E. coli bacterial cell size r 3p 10–6 m 1 × 3 4x10–8 m s glycerol permeability 10 s so if the similar glyceraldehyde used in glycolysis was not phosphorylated it would rapidly leak from cell total area Number of photons needed to make a cyanobacterium volume 1 µm3 CO2 + H2O + n x h ν 1010 carbon atoms per cyanobacterium 1011 n photons cyanobacterium CH2O + O2 10 photons per carbon atom Fraction of cell volume occupied by bursting virions total virions fraction of host cell volume = D Bx d B = burst size e.g.: SIV in T cell T phage in E. coli D (µm) 10 1 d (µm) 0.1 0.05 d3 x B D3 B 50,000 200 fraction 5% 2% bone marrow cells 2.4% hepatocytes 0.8% adipocytes 0.2% lymphocytes 1.6% platelets 4.7% erythrocytes, 84% 26±3×1012 of 31±6×1012 total human cell count epidermal cells 0.4% dermal fibroblasts 0.6% bronchial endothelial cells 0.5% vascular endothelial cells 1.9% muscle cells other respiratory 0.0003% 2% interstitial cells 0.4% (A) (B) number of fat cells (×109 cells) obese 80 60 40 lean 20 0 0 10 20 30 40 age (years) 50 60 fat cell volume (fL) 1,200,000 1,000,000 800,000 600,000 400,000 200,000 0 0 20 40 60 80 body fat mass (kg) 100 120 zygote germline gut pharynx and neurons muscle time epidermis vulva somatic gonad early (B) origin middle late terminus frequency of rRNA genes (%) (A) (C) 60 origin 40 E. coli K–12 20 terminus 0 location on genome nucleoli microtubules nucleus ≈10 µm HCO3– glycerol sucrose glucose Cl– + + Na K fructose –5 10 –3 10 increasing permeability tryptophan 10 –1 10 1 H 2O urea indole 10 3 NH3 10 CO2 O2 5 permeability coefficient (nm/s) (A) (B) 20 nm empty capsids following infection nascent viruses 1 µm organism nematode C. elegans D. melanogaster Arabidopsis thaliana mouse human number of chromosome replications leading to: male sperm female ovum/ovule 8 34–39 10 36 62 40–1000 [age range 15–50] 25 23 BNID 105572 103523 106749 105576 105574, 105585 organism human D. melanogaster C. elegans C. elegans C. elegans stage in life cycle or organ adult embryo cycle 14 adult male (somatic) adult hermaphrodite (somatic) hatched larvae estimated cell count 3.7±0.8×1013 6000 (nuclei) 1031 959 558 BNID 109716 106463 100582 100581 101366 virus host cell used influenza A & B influenza A HIV SIV (model for HIV) chicken egg cells MDCK cell line H. sapiens memory T cells R. macaque T cells prokaryotic host cyanomyovirus S-PM2 podovirus P60 cyanomyovirus MA-LMM01 bacteriophage S1 bacteriophage S3 phi EF24C bacteriophage Lambda bacteriophage T1 to T7 bacteriophage MS2 Synechococcus WH7803 Synechococcus WH7803 M. aeruginosa Stenotrophomonas sp. Stenotrophomonas sp. E. faecalis E. coli E. coli E. coli burst size BNID multicellular host 500–1000 1000–10,000 1000–3000 40,000–60,000 101590 101605 105872 102377 40 80 50–120 80 100 100 150 100–300 5000–10,000 104841 104842 103247 104855 104852 104857 105025 105870 109050
© Copyright 2026 Paperzz