INAUGURAL DISSERTATION submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Presented by Florian Herrmann Apotheker (Staatsexamen) born in Karlsruhe, Germany Oral examination: 12.10.2011 TCM Plants: DNA Barcoding, Cytotoxic and Trypanocidal Properties of Drugs and Their Active Constituents This work was carried out in the Department of Biology, Institute for Pharmacy and Molecular Biotechnology (IPMB), Im Neuenheimer Feld 364, 69120 Heidelberg at the Ruprecht-Karls-University of Heidelberg between February 2006 and August 2011. Head of division: Prof. Dr. Michael Wink Supervisor: Prof. Dr. Michael Wink Department of Biology, IPMB Ruprecht-Karls-University Heidelberg 1st Referee: Prof. Dr. Michael Wink Department of Biology, IPMB Ruprecht-Karls-Universiität Heidelberg 2nd Referee: Prof. Dr. Thomas Efferth Institute for Pharmacy and Biochemistry Johannes Gutenberg-Universität Mainz 2 Publications F. Herrmann, R. Hamoud, F. Sporer, A. Tahrani, M. Wink: Carlina oxide – a natural polyacetylene from Carlina acaulis (Asteraceae) with potent antitrypanosomal and antimicrobial properties! In press, Planta Medica; published online June 15, 2011 DOI http://dx.doi.org/10.1055/s-0031-1279984 F. Herrmann, M. Wink: Synergistic interactions of saponins and monoterpenes in HeLa cells, Cos7 cells and in erythrocytes In press, Phytomedicine F. Herrmann, F. Sporer, A. Tahrani, M. Wink: Antitrypanosomal properties of Panax ginseng CA Meyer – new possibilities for a remarkable traditional drug! Submitted, Phytotherapy Research F. Herrmann, M. Wink: Cytotoxicity of structurally diverse ginsenosides from Panax ginseng in HeLa cells is linked to membrane disturbances Submitted, Journal of Pharmacy and Pharmacology F Herrmann, M. R. Romero, A.G. Blazquez, D. Kaufmann, M. L. Ashour, S. Kahl, J.J.G. Marin, T. Efferth, M. Wink: Cytotoxicity, antiviral and antitrypanosomal screening of 82 plants from Chinese and European phytomedicine Submitted, Diversity F. Herrmann, M. Wink: Use of rbcL sequences for DNA barcoding and authentication of plant drugs used in Traditional Chinese Medicine Submitted, Zeitschrift für Naturforschung N.Z. Mamadalieva§, F. Herrmann§, M.Z. El-Readi, A. Tahrani, R. Hamoud, D. Egamberdieva, Sh.S. Azimova, M. Wink: Flavonoids in Scutellaria immaculata and S. ramosissima and their biological activities In press, Journal of Pharmacy and Pharmacology § Equal distributed authors 3 T. Efferth, F. Herrmann, A. Tahrani, M. Wink: Cytotoxic activity towards cancer cells of arteanuine B, artemisitene, scopoletin and 1.8-cineole derived from Artemisia annua L. in comparison to artemisinin In press, Phytomedicine 2011 DOI 10.1016/j.phymed.2011.06.008 D. Hamdan, M. Z. El-Readi, A. Tahrani, F. Herrmann, D. Kaufmann, N. Farrag, A. El-Shazly, M. Wink: Chemical composition and biological activity of Citrus jambhiri Lush. Food Chemistry 2011, 127: 394-403 D. Hamdan, M. Z. El-Readi, A. Tahrani, F. Herrmann, D. Kaufmann, N. Farrag, A. El-Shazly, M. Wink: Secondary metabolites of ponderosa lemon (Citrus pyriformis Hassk) and their antioxidant, anti-inflammatory and cytotoxic activities In press, Zeitschrift für Naturforschung 2011 S. Mulyaningsih, M. Youns, M. Z. El-Readi, M. L. Ashour, E. Nibret, F. Sporer, F. Herrmann, J. Reichling, M. Wink: Biological activity of the essential oil of Kadsura longipedunculata (Schisandraceae) and its major components Journal of Pharmacy and Pharmacology 2010, 62: 1037–1044 4 Table of Contents Summary………………...………………………………………………………………..….…....7 Summary (German)……………………………………………………………………...………..8 1. General Introduction…………………………………………...………...…………….………9 1.1 Traditional Chinese Medicine……………………………………………….………..9 1.1.1 Traditional Chinese Medicine…………………………………….……………...9 1.1.2 Chinese herbal medicine………………………………………………………..11 1.2 Secondary metabolites………………………………………………………………12 1.2.1 Ecological function…………………………………………………………...12 1.2.2 Biosynthesis…………………………………………………………………..12 1.2.3 Storage………………………………………………………………………..12 1.2.4 Classes of secondary metabolites……………………………………………….13 1.2.5 Mode of action………………………………………………………………..14 1.3 African Trypanosomiasis……………………………………………………………17 1.3.1 Epidemiology…………………………………………………………………17 1.3.2 Classification……………………………………………………………………17 1.3.3 Biology………………………………………………………………………..17 1.3.4 Control………………………………………………………………………..19 1.3.5 Targets……...………...……………………………………………………….21 1.4 References…………………………………………………………………………...24 2. Use of rbcL sequences for DNA barcoding and authentication of plant drugs used in Traditional Chinese Medicine………………..………………………...……………………….31 2.1 Abstract……………………………………………………………………………...31 2.2 Introduction………………………………………………………………………….31 2.3 Material and Methods……………………………………………………………….34 2.4 Results……………………………………………………………………………….34 2.5 Discussion…………………………………………………………………………...36 2.6 References…………………………………………………………………………...42 3. Cytotoxicity, antitrypanosomal and antiviral screening of 82 plants from Chinese and European phytomedicine………………………..………………………………………………45 3.1 Abstract……………………………………………………………………………...45 3.2 Introduction………………………………………………………………………….45 3.3 Material and Methods……………………………………………………………….48 3.4 Results and Discussion……………………………………………………………...56 3.5 References…………………………………………………………………………...74 5 4. Cytotoxicity of 12 structurally diverse ginsenosides from Panax ginseng in HeLa cells is linked to membrane disturbance…………………………...………...…………………………81 4.1 Abstract……………………………………………………………………………...81 4.2 Introduction………………………………………………………………………….81 4.3 Material and Methods……………………………………………………………….84 4.4 Results……………………………………………………………………………….85 4.5 Discussion…………………………………………………………………………...85 4.6 References…………………………………………………………………………...91 5. Antitrypanosomal properties of Panax ginseng CA Meyer – new possibilities for a remarkable traditional drug!.......................................................................................................95 5.1 Abstract……………………………………………………………………………...95 5.2 Introduction………………………………………………………………………….95 5.3 Material and Methods……………………………………………………………...101 5.4 Results…………………………………………………………………………..….105 5.5 Discussion……………………………………………………………………….....107 5.6 References………………………………………………………………………….116 6. Carlina oxide – a natural polyacetylene from Carlina acaulis (Asteraceae) with potent antitrypanosomal and antimicrobial properties!......................................................................126 6.1 Abstract…………………………………………………………………………….136 6.2 Introduction………………………………………………………………………...126 6.3 Material and Methods……………………………………………………………...127 6.4 Results……………………………………………………………………………...132 6.5 Discussion………………………………………………………………………….133 6.6 References………………………………………………………………………….138 7. Synergistic Interactions of Saponins and Monoterpenes in HeLa cells, Cos7 Cells and in Erythrocytes.…………………...…………………………………...…………………………..141 7.1 Abstract…………………………………………………………………………….141 7.2 Introduction………………………………………………………………………...141 7.3 Material and Methods……………………………………………………………...144 7.4 Results……………………………………………………………………………...146 7.5 Discussion………………………………………………………………………….148 7.6 References………………………………………………………………………….157 8. General conclusion and outlook………………………………………..…………………...160 9. Acknowledgements…..………………………………………………..……………………..163 10. Appendix………………………………………………………………………..…………...165 6 Summary Our extensive screening of 82 herbal drugs used in traditional Chinese and European Phytomedicine revealed the great potential still hidden in this field of research. The correct authentication of plants used in research on traditional medicinal systems such as TCM is crucial before any serious research can be started. DNA barcoding offers a reliable, fast possibility to overcome this obstacle. Only one adulteration could be detected where Arctium lappa was wrongly labelled Fraxinus rhynchophylla. After screening 246 extracts of herbal drugs against a variety of targets such as trypanosomes, viruses and cancer cells we were able to select several highly promising plants for further research. We decided to focus our research on Panax ginseng, Araliaceae, a well known herbal medicine of international fame and a long history of traditional use. Our experiments revealed that ginsenosides, a highly variable group of saponins, disturb the biomembrane of cells, while the exact position of the sugar moieties and the resulting ability to be incorporated into the lipid bilayer of the cell membrane explain the great differences in their cytotoxicity. The membrane activity of the ginsenosides however was not responsible for the trypanocidal effect of ginseng revealed in our screening. Panaxynol, the major polyacetylene of ginseng was with an IC50 concentration of 0.01 µg/ml and a selectivity index of 858 three times as selective against Trypanosoma brucei brucei as established antitrypanosomal drugs like suramin. We were able to discover with Carlina oxide isolated from Carlina acaulis, Asteraceae, a second polyacetylene highly selective in its cytotoxicity against T. b. brucei with an IC50 of 1.0 µg/ ml and a selectivity index of 446. We suggest that the inhibition of the trypanothione reductase, essential for the resistance of the parasite against oxidative stress and unique to trypanosomes, is the primary principle of this selectivity. Our previous results obtained from the activity of ginsenosides had shown us the efficacy, but also the structure dependency of the membrane effects of saponins. With monoterpenes we have a second group of structurally completely different natural products that also target the biomembrane. The question arose if their omnipresence in phytomedicine and their application in combination would be more than just a coincidence. We combined several saponins with three monoterpenes and explored their effect on biomembranes modelled by erythrocytes and living cells. Astonishingly, the combination lowered the dosis necessary for haemolysis up to the factor 100, which was also confirmed in living cells. This revealed that monoterpenes and saponins are working together synergistically by enhancing their activity far above a simple additive effect. 7 Summary (German) Wir untersuchten in einem umfangreichen Screening 82 Pflanzendrogen der traditionellen Chinesischen und Europäischen Phytomedizin. Dabei bildet die korrekte Identifizierung der zu testenden Arten die entscheidende Voraussetzung für jegliche weiterführende Untersuchung. Wir benutzten erfolgreich DNA Barcoding zur Identifizierung und fanden nur eine einzige Verfälschung: Arctium lappa war fälschlicherweise als Fraxinus rhynchophylla ausgegeben worden. Durch unser umfangreiches Screening von 246 Extrakten gegen Trypanosomen, Viren und Krebszellen gelang es uns, mehrere vielversprechende Pflanzen für weiterführende Untersuchungen auszuwählen. Besonders interessant erschien uns dabei Panax ginseng, Araliaceae, eine bemerkenswerte Heilpflanze mit langer Geschichte. Die Wirkung von Ginseng wird üblicherweise den Ginsenosiden, einer speziellen Gruppe von Saponinen, zugeschrieben. Dementsprechend untersuchten wir die Wirkung von 12 Ginsenosiden und konnten feststellen, dass die Position der Zuckergruppe am Molekül hauptverantwortlich für die großen Unterschiede in ihrer zytotoxischen Wirkung auf Zellmembranen ist. Eine Erklärung für die im Screening beobachtete Wirkung der Ginsengextrakte gegenüber Trypanosomen lieferten diese Ergebnisse jedoch nicht. Bei näherer Untersuchung der Hexanextrakte konnten wir feststellen, dass Panaxynol, das Hauptpolyacetylen von Ginseng Trypanosoma brucei brucei gegenüber hoch selektiv ist (IC50 1.0 µg/ ml). Der Selektivitätsindex war mit 858 dreimal höher als der gängiger Arzneistoffe wie Suramin. Mit Carlinaoxid aus Carlina acaulis, Asteraceae, konnten wir ein weiteres gegenüber Trypanosomen hochselektives Polyacetylen entdecken (IC50 1.0 µg/ ml bei einem Selektivitätsindex von 446). Als Wirkungsmechanismus für beide Polyacetylene schlagen wir die Hemmung der Trypanothionreduktase vor; dieses Enzym kommt nur in Trypanosomen vor und ist unverzichtbar für deren Schutz vor oxidativem Stress. Die Membranaktivität der Ginsenoside veranlasste uns, die Wirkung von Saponinen in der Phytomedizin näher zu untersuchen. Besonders auffällig ist dabei, dass Saponindrogen oft mit Monoterpendrogen in Erkältungstees kombiniert werden. Da sich beide Stoffgruppen strukturell stark unterscheiden, aber trotzdem denselben Angriffspunkt, die Biomembran, besitzen, wollten wir wissen, ob diese Kombination die Wirkung verstärken würde. Wir kombinierten mehrere Saponine mit Monoterpenen und untersuchten ihre Wirkung auf kernlose Erythrozyten und lebende Zellen. Erstaunlicherweise senkte diese Kombination die für Hämolyse nötige Dosis an Saponin um den Faktor 100, was sich auch in lebenden Zellen bestätigte. Dies zeigt, dass Monoterpene und Saponine ihre Aktivität weit über einen additiven Effekt hinaus synergistisch verstärken. 8 1. General Introduction 1.1 Traditional Chinese Medicine 1.1.1 Traditional Chinese Medicine Traditional Chinese Medicine is as old as China itself. The beginnings of acupuncture and herbal medicine seem to date back to even before the Shang Dynasty (c. 1600 to 1045 BC) [1-4]. Our main knowledge besides historical descriptions from later dynasties such as the Shiji by Sima Qian is based on oracle bones with an archaic form of Chinese characters and bronze vessels. Basic Chinese imperial ideas such as the legitimization of the ruler by the Mandate of Heaven or ancestor worship date to this period [2-4]. The philosophical concept of the TCM theory however developed during the Han Dynasty (202 BC to 220 AD) [1,5]. The Han Dynasty is generally regarded as the period when classical Chinese culture Fig. 1: Shi si jing fa hui (Expression of the Fourteen Meridians) Tokyo : Suharaya Heisuke kanko, Kyoho gan 1716 became consolidated. Confucianism was adopted as state philosophy, and the country made great advances in many areas of the arts and sciences. Military expansion enabled the Han Dynasty to form trade links across the Silk Road to the west [2-4]. In this climate of progress medicine could also flourish and changed from local traditions to a theoretical concept that was accepted all over China. Confucianism was essential for this development by creating the ideological framework the different local adaptations could be fitted into [1]. The famous Huangdi Neijing, commonly regarded as the beginning of TCM, dates to the second century BC [1]. From then, the medicinal theory developed continuously until the system we know today was created. This development is always linked to individual, outstanding physicians, such as Hua Tuo, who lived during the late Han Dynasty and introduced surgery, or Sun Simiao who wrote the first Chinese encyclopedia of medicine during the Tang Dynasty (618 to 907 AD) [1]. Li Shizhen wrote the essential book on the Chinese herbal medicine, the 9 Compendium of Materia Medica (Bencao Gangmu) during the Ming Dynasty (1368 to 1644 AD) [1]. TCM experienced a revival in simplified form under Mao who wanted the system standardized to overcome the catastrophic healthcare situation in the countryside. Based on this, the modern TCM developed and became increasingly popular in the west. Theoretical concept of TCM Contrary to western medicine, TCM has a holistic approach to illness and medical treatment. The main concept is to balance the different functions of the body [5]. According to TCM, all aspects of the human body are linked, which can be exemplified by the pulse or tongue diagnosis used to draw conclusions about the general state of health of the patient [6]. An illness is commonly regarded as a disturbance of the harmony, which can be diagnosed in various ways [5]. Due to the holistic approach, the treatment also has to be a holistic one. Rather than to treat the symptoms or a specific illness, the concept seeks to restore the harmony and thus to treat the roots of the illness. To understand TCM, it is necessary to know some of the basic principles. The concept of dualism, commonly refered to as yin and yang is crucial for TCM [5,6]. Yin and yang, the two aspects of everything, are the basis of all treatment. Stemming from this are the qi, the five elements, and the meridians [5,6]. Qi is often explained as life energy, but has a far broader application in Chinese philosophy. The five elements are closely linked to the organs of the body and are essential for the general diagnosis. The meridian system, on the other hand, is used in the treatment and detailed analysis of the health disorder (Fig. 1). Disturbances of the flow of qi, the life energy, can be diagnosed in this way. The theoretical basis of acupuncture can be found here as well [5]. From the western point of view the complex theoretical system of TCM is a way to discribe symptoms. The resulting treatment is based on long evidence based experimental knowledge integrated into the philosophical world view of the Chinese cultural tradition. Major methods of treatment Acupuncture is the best known aspect of TCM and is increasingly used in the west as well to treat pain related health problems [6]. Patients are treated by insertion of needles into the body on the meridian points. It is often combined with moxibustion, the burning of Artemisia closely above the meridian points. Two variations exist – either the moxa (Artemisia spec.) is 10 held above the meridian points and burned or it is added on top of an acupuncture needle and then ignited. Another common method to treat health problems is the cupping (Ba Guan) [6]. Several glass cups are placed on top of specific body parts, commonly the back. Due to an applied vacuum, the cups form pressure on the skin. The physician can diagnose the health problem from the effect on the skin. It is also used to treat muscle pain and back ache, and is partly related to massage techniques. The Tui Na massage is another method to restore the undisturbed flow of qi in the body and thus forms an important part in the holistic treatment traditionally applied in TCM [6]. 1.1.2 Chinese herbal medicine Chinese herbal medicine is integrated into the theoretical concept of TCM by sorting the herbs according to attributed properties such as cooling, heating, etc [7-11]. According to the theoretical concept, they are used to counterbalance deficiencies caused by diseases. Diseases causing a lack of heat thus are treated with herbs that possess heating properties to restore the balance in the human body [5,6,9]. However, we should not regard it as so simple since the long historical use and the huge number of herbs used in TCM allows a very individualized and specific treatment (Fig. 2). The combination of 10 or more herbs per formulation gives the physician the Fig. 2: Chinese herbal medicine store in Beijing, 2006 possibility to individualize the treatment in a way not possible in western medicine [9]. Behind the theoretical concept of TCM thus is a solid phytotherapy based on thousands of years of experience. The large area of China combines various climatic zones from tropics over deserts to high altitudes, providing the basis for an especially rich flora [2]. Consequently TCM uses a huge number of medicinal plants that by far exceeds those used in European phytotherapy [7-11]. Currently, 4773 herbs are officially recognised for treatment in TCM, not to mention locally used plants that are not part of the Chinese pharmacopoeia [8]. 11 1.2 Secondary metabolites 1.2.1 Ecological function Lacking the ability to avoid predators by flight or fight and lacking an immune system to fight microbes, plants developed two other methods to survive during 500 million years of evolution. One is the physical protection by bark or thorns, the other, secondary metabolites [12-18]. They are present in one form or another in all plants and form the most effective yet often unspecific defence system imaginable. So far more than 100 000 different substances have been identified that can be grouped in nitrogen-containing (alkaloids, amines, nonprotein amino acids, peptides, etc) and nitrogen-free (terpenes, phenolics, saponins, polacetylenes, etc) molecules [12]. They are synthesized in specific pathways and stored in specifically for this task developed compartments and cells. Due to their complexity, they form a highly effective defence system against herbivores, fungi, bacteria and even viruses. Additionally, they are also used in the struggle between plants for ecological advantages by attracting animals for pollination or by hindering the growth of competing plants for light or water [12]. Especially rich in secondary metabolites are usually those parts vital for reproduction such as seeds, flowers, etc [12]. 1.2.2 Biosynthesis Contrary to the huge variability of natural products, the pathways used for their biosynthesis are few. Precursors are usually products of the primary metabolic pathways such as glucose or amino acids. These primary metabolites are the basis for the secondary metabolism. Here, the primary metabolites are transformed into secondary metabolites such as terpenes, saponins, alkaloids or tannins. Especially three pathways are essential for all plants: The glycolysis, the Krebs cycle and the Shikimate pathway. They are not only essential for the common processes in the cells such as respiration but also transform the primary metabolites into secondary metabolites. The different classes of secondary metabolites can generally be attributed to different pathways. While terpenes, saponins or fatty acids are among the products of the glycolysis, alkaloids are either products of the Krebs cycle or the Shikimate pathway. The Shikimate pathway is also involved in the production of flavonoids and tannins [19-25]. 1.2.3 Storage Secondary metabolites usually need to be transported from their place of origin to the storage compartments. This transportation can occur within the cell or via the xylem and phloem to specific storage cells in remote parts of the plant. 12 Hydrophilic secondary metabolites are mainly stored in the vacuole but also in laticifers and cell walls [19,26-32]. Most alkaloids, saponins and flavonoids are commonly found in the vacuole, while several specific alkaloids are concentrated in the laticifers. Tannins are usually found in the vacuoles and cell walls. One peculiar feature is that many hydrophilic molecules such as saponins are stored as prodrugs and are only activated once the cell is hurt. The disruption of the cell compartments leads to the release of enzymes that activate the molecules to their final form. Lipophilic secondary metabolites can be stored in specific oil cells, the cuticle, resin ducts or simply in the plastid membranes [19,26,33]. Oil cells are a specific defence mechanism rich in terpenoids. Closely related is the storage of waxes and terpenoids in the cuticle. Resin ducts and plastid membranes also contain terpenoids and even lipophilic flavonoids. 1.2.4 Classes of secondary metabolites Alkaloids are the most variable group of secondary metabolites [14-17,34-38]. They usually interact with specific target proteins such as ion channels, receptors or enzymes. Similarities to neurotransmitters like acetylcholine or noradrenalin enable them to modify neuronal signal transduction [15,34,39-45]. Non-protein amino acids are analogues of the protein amino acids. They can be incorporated into proteins by enzymes instead of common amino acids, resulting in the malfunction of vital processes [34,46]. Cyanogenic glucosides are in the vacuole stored prodrugs that are activated by the rupture of the cell. β-glucosidases cleave the sugar off the molecule which is hydrolyzed into hydrocyanic acid (HCN) and an aldehyde. HCN is extremely reactive and blocks the mitochondrial respiration [34,40,47-50]. Glucosynolates are also stored as prodrugs and only activated by cell damage. They are cleaved into mustard oil by myrosinase and interact with biomembranes, enzymes or DNA [34,48-50]. Terpenes are a group of highly variable lipophilic molecules that interact with biomembranes and the lipophilic core of proteins. Their membrane activity is rather unspecific, resulting in an increase of membrane fluidity [34,50]. Saponins also target the biomembrane [34,50,51]. They are glycosides of triterpenes or steroids and appear as mono- and bidesmosidic molecules. Bidesmosidic saponins are prodrugs that need enzymatic activation prior to be able to interact with biomembranes. Monodesmosidic saponins are amphiphilic molecules that interact with the lipid bilayer and 13 proteins of the biomembrane. One subgroup of the saponins is the cardiac glycosides that target the Na+-K+-ATPase. Flavonoids and polyphenols are phydrophilic molecules that interact with proteins via phenolic hydroxyl groups. While flavonoids are sometimes target specific and interact with enzymes, the polyphenols with more phenolic hydroxygroups are usually much less specific and interact with all proteins present [14,34,50,52,53]. Fig. 3: Targets for secondary metabolites in animal cells after Wink 2008 [14] 1.2.5 Mode of action The animal cell offers a wide range of targets for secondary metabolites (Fig. 3). The principal ones are proteins, the biomembrane and nucleic acids. Proteins are responsible for almost all processes in the cell. They act as receptors, ion channels, regulatory molecules such as transcription factors or signal molecules, transporters, catalytic enzymes and structural molecules. Their functionality depends on their three dimensional structure – any conformational change usually modifies the activity of the protein [19,34]. Most secondary metabolites interact with proteins unselectively (Fig. 4). 14 Fig. 4: Unspecific interaction of polyphenols with proteins after Wink 2008 [14] They are not specific for certain proteins but interact with all proteins by forming covalent or ionic bonds with free amino-, SH- or OH-groups. Molecules with epoxide or aldehyde groups bind to amino groups, while molecules with double or triple bonds interact with free SHgroups and epoxides. The Hydroxylgroups of polyphenols dissociate under physiological conditions into O- ions that form hydrogen and ionic bonds with electronegative atoms and positively charged side chains of the amino acids. The presence of several polyphenols leads to interactions that are strong enough to inactivate proteins [19,34]. Besides the unselective interaction of polyphenols a lot of secondary metabolites interact quite specifically with enzymes and receptors. They bind to the active binding site of the molecule due to structural similarities to endogenous ligands. There, they either activate or inactivate proteins and disturb for example the signal transduction of vital Fig. 5: Interaction of saponins [1], mono- [2,3] and sesquiterpenes [4] with the biomembrane of animal cells after Wink and Schimmer 2009 [34] processes. This effect can be either reversible or, in worst case, irreversible. Many neurotoxic alkaloids work this way [19,34,35,40]. The biomembrane (Fig. 5) is the second major target of secondary metabolites [19,34]. Contrary to many interactions with proteins is the interference with the biomembrane purely unspecific. Monodesmosidic saponins are amphiphilic molecules whose lipophilic part integrates into the biomembrane while the hydrophilic part interacts with proteins or sugars on the membrane surface. Thus the fluidity of the lipid bilayer is enhanced while the conformation of proteins is disturbed. Additionally the interactions with cholesterol in the lipid bilayer influence the microstructure of the biomembrane which also leads to conformational changes of receptors on the surface. Monoterpenes interact with the same target by integrating into the lipid bilayer and the lipophilic core Fig. 6: Intercalation of planar natural products into the DNA after Wink 2008 [14] 15 of membrane proteins. Their interaction is usually even less specific than that of saponins. They simply increase the membrane fluidity which results in leakage and eventually the rupture of the biomembrane. The third major target of secondary metabolites is nucleic acids such as DNA (Fig. 6) and RNA [15,19,34,41,44,45]. Several natural products interfere with proteins necessary for the replication of DNA and mRNA. However, there exist also natural products that interact with the DNA directly. Epoxides and aldehydes like pyrrolizidine alkaloids or furanocoumarins bind covalently to functional groups of the DNA bases. Planar molecules with aromatic rings like the alkaloids berberine, emetine, quinidine or furanocumarins intercalate into the DNA by fitting between adenine-thymine or guanine-cytosine base pairs. There, they can cross-link DNA strands; a disturbed replication leads to apoptosis, mutations and even cancer. 16 1.3 African Trypanosomiasis 1.3.1 Epidemiology African trypanosomiasis or sleeping sickness is a parasitic disease found in most sub-Saharan countries. Human trypanosomiasis is caused by the protozoon Trypanosoma brucei rhodesiense and T. b. gambiense, while T. b. brucei, T. congolense, T. simiae and T. vivax are responsible for the cattle disease nagana [54-56]. T. b. gambiense is responsible for the chronic form of sleeping sickness with 90% of the cases. It occurs in west and central Africa, while T. b. rhodesiense, found in eastern and southern Africa, represents less than 10% of the cases and causes the acute form of the disease [57]. African trypanosomiasis is responsible for severe health and economic problems. After being nearly extinct in the middle of the 20th century, it has been increasing since the independence of the African countries due to several reasons. The development of resistances against the commonly used drugs together with a decentralisation of the measures taken to fight African trypanosomiasis is among the reasons to explain this unfortunate trend. Nowadays, African trypanosomiasis is endemic again to 36 countries with 60 million people threatened by its consequences. Estimations of the WHO speak of 300 000 to 500 000 cases of human trypanosomiasis per year, while at least 46 million cattle are exposed to nagana, the cattle version of the disease [58-60]. 1.3.2 Classification The different trypanosome species with Trypanosoma brucei and Trypanosoma cruzi as famous representatives form part of the order of the Trypanosomatida, a group of exclusively parasitic, single-cell uniflagellates. The Trypanosomatida are an order of the class of the Domain Kingdom Phylum Class Order Genera Eukaryota Excavata Euglenozoa Kinetoplastida Trypanosomatida Trypanosoma Kinetoplastida, which consists mainly of parasitic, single-cell flagellates. Kinetoplastida can be separated into uniflagellates (Trypanosomastida) and biflagellates (Bodonida). The Kinetoplastida are part of the phylum Euglenozoa. Euglenozoa, which are separated into Kinetoplastida and Euglenida are unicellular organisms. While Euglenida often contain chloroplasts Kinetoplastida mostly are parasitic organisms. Euglenozoa are part of the kingdom of Excavata, one of the six kingdoms of the Eukaryota [61]. 17 1.3.3 Biology Human African trypanosomiasis and nagana are transmitted to their mammalian hosts by the tsetse fly (Glossina species) [54]. Accordingly, the occurrence of sleeping sickness is limited to the distribution of the tsetse fly. They inhabit most of mid-continental Africa between the Sahara and the Kalahari deserts. Tsetse flies are usually separated into savannah flies, forest flies and riverine flies based on their usual habitat and behaviour [62]. Only high altitudes and deserts are free of them. The name tsetse derives from Tswana, a language spoken in southern Africa and simply means fly [63]. Fig. 7: Life cycle of Trypanosoma brucei after CDC [64] Life Cycle The life cycle of African trypanosomiasis includes a Tsetse fly stage and a human stage (Fig. 7). By taking a blood meal, the infected tsetse fly injects the metacyclic trypomastigotes into the host. Now the human stage starts with the transformation of the metacyclic trypomastigotes into bloodstream trypomastigotes. These are distributed in the human body and multiply by binary fission. At first they occur mostly in the blood and the lymphatic system. After crossing the blood-brain barrier, they invade the central nervous system and 18 cause irreparable damage to the brain. If left untreated, the disease is in most cases fatal. The human stage ends for the parasite with the uptake of the bloodstream trypomastigotes by a new tsetse fly bite. Once the parasite is in the tsetse fly midgut, the bloodstream trypomastigotes transform into the procyclic trypomastigotes which multiply again by binary fission. In the next step the procyclic trypomastigotes leave the midgut and transform into epimastigotes. These wander into the salivary glands of the fly where they multiply once more by binary fission. Finally, they transform into metacyclic trypomastigotes and the cycle is closed [64,65]. Kinetoplast The Kinetoplastida are named after their kinetoplast, a unique feature existing only in this class of single cell eucaryots. It is found at the base of the flagella and connected to the flagellum basal body via the cytoskeleton. The kinetoplast is a dense granule containing the mitochondrial genome with the associated structural proteins and DNA and RNA polymerases in the single mitochondrion of the cell [66]. The genome of T. brucei is made up of 11 pairs of large chromosomes, 3 to 5 intermediate chromosomes containing mostly genes responsible for the antigenic variation such as the VSG genes and up to 100 mini chromosomes [66]. The genes are organised in polycistronic units, so that they are transcribed at an equivalent rate. This requires post-transcriptional regulations to control the gene expression. The advantage of this system is the avoidance of transcription factors which allows a fast reaction to adapt to a new environment that occurs during the change of the host from tsetse fly to human [67]. Variable Surface Glycoprotein The Variable Surface Glycoprotein (VSG) hides T. brucei from the host’s immune system, enabling a chronic infection. The surface of the trypanosome is densely covered with approximately 1x107 molecules of highly variable VSG, which shields the plasma membrane from the immune reaction of the host. Each trypanosome expresses only one VSG gene at a time, while the other genes are inactive [68,69]. VSGs occur in dimers and have a highly variable N terminal domain of between 300 and 350 amino acids, a conserved C terminal domain of approximately 100 amino acids and are anchored in the cell membrane by a glycophosphatidylinositol (GPI) anchor. Their tertiary structure is conservative enough to form a physical barrier to protect the cell membrane [70]. The immune system reacts strongly to the VSG protein and would destroy the trypanosome. However, each cell division of the parasite results in a stochastic genetic modification of the VSG, which makes an immune 19 reaction against T. brucei almost impossible due to the short period between each division cycle. Accordingly, the trypanosomes occur in waves in the blood and the disease persists chronically in the host [71]. 1.3.4 Control The control of African trypanosomiasis includes the control of its vector, the tsetse fly and the treatment of the disease in the patient. Frequently applied measures of vector control include pesticides, trapping and the release of sterile males. The use of sterile male tsetse flies has been especially successful due to the specific breeding habit of the flies since tsetse fly females mate only once in their life. Sterile males are released in an infected area in great numbers, where they will compete with the local males and mate with the local females. Accordingly, all unions with sterile males will have no offspring, thus dropping the numbers of tsetse flies in the area significantly. Land clearing can be locally of use by removing the habitat of the tsetse fly but are not practicable in the larger scale [54]. Fig. 8: Approved drugs against African trypanosomiasis 20 The medical treatment of African trypanosomiasis is still problematic. Only four drugs are licensed for the treatment of African trypanosomiasis (Fig. 8): Suramin, pentamidine, melarsoprol and eflornithine [56,72-78]. Pentamine is the drug of choice against T. b. gambiense while suramin can be used as alternative. T. b. rhodesiense is preferably treated with suramin. Once the disease invades the central nervous system, either eflornithine or melarsoprol are applied [79]. Except for eflornithine, which was introduced in 1990, all drugs for the treatment of African trypanosomiasis date to the first half of the 20th century. The mode of action of suramin and melarprosol are unknown, while pentamidine is enriched in the parasite and attacks a whole range of unspecific targets. Eflornithine is a suicide inhibitor of the ornithine decarboxylase [80,81]. Unfortunately, all of these drugs have strong side effects and several resistances were reported recently [82-85], so that the discovery of new drugs is an urgent necessity [86-88]. 1.3.5 Targets Trypanothione reductase Fig. 9: Trypanothione reductase with binding site after Bond et al., 1999 [92] The trypanothione reductase (Fig. 9) is an enzyme specific to trypanosomastids and essential for the protection of the cell against oxidative stress [81,89-92] and an exciting new target for 21 drugs against African trypanosomiasis. Mammalian cells use the closely related gluthatione reductase instead. Both enzymes are members of the FAD-dependent NADPH oxidoreductase family. These dimeric molecules protect the cell against reactive oxygen species formed during the aerobic metabolism, since trypanosomes are extremely sensitive to oxidative stress. Fig. 10: The equilibrium of trypanothione disulfide and trypanothione is kept on the side of trypanothione by NADPH and the trypanothione reductase after Krauth-Siegel et al., 2005 [81] Trypanothione is kept in its reduced form in the cell by NADPH and the trypanothione reductase (Fig. 10). In the presence of reactive oxygen species like hydroperoxides trypanothione reacts to trypanothione disulfide while the reactive oxygen species are reduced [92]. The equilibrium of TS2 and T(SH)2 can only be kept on the side of T(SH)2 if the trypanothione reductase is working properly. Once it is inactive, the equilibrium changes rapidly to TS2 which can not inactive the reactive oxygen species resulting in the death of the cell. The two enzymes are able to distinguish their substrates trypanothione disulfide and glutathione disulfide by the factor 1000 because of differences in size and charge [92]. Glutathione disulfide is smaller and -2 charged at physiological pH, while trypanothione disulfide is +1 charged with a hydrophobic body of 7 methylene groups (Fig. 11). The trypanothione disulfide binding site in the trypanothione reductase is larger with a negatively 22 Fig. 11: Glutathione disulfide (a) and trypanothione disulfide (b) after Bond et al., 1999 [92] charged glutamate side chain and a hydrophobic cleft for the polyamine moiety. Contrary to this, the glutathione reductase has a positively charged, smaller active centre. Recently, the importance of the trypanothione reductase as a target for the selective inhibition of trypanosomes has gained wide recognition. Research is focusing on the discovery of selective inhibitors with several promising findings such as polyamine-based inhibitors or tricyclic compounds [81]. However, none have reached the clinical phase yet. Other trypanothione disulfide dependent enzymes can also be regarded as potential targets for a selective inhibition of T. brucei. Especially interesting are those enzymes important for the biosynthesis of trypanothione disulfide such as S-adenosylmethionine decarboxylase [93,94] or trypanothione synthetase [93,95]. Trypanosome alternative oxidase The bloodstream forms of trypanosomes entirely depend on the conversion of glucose into pyruvate for their ATP production. Under aerobic conditions, only pyruvate is produced, while under anaerobic conditions glucose is converted into similar amounts of pyruvate and glycerol. Characteristically for trypanosomes is that glycolysis occurs to the biggest part in compartments and not in the cytoplasma [96]. The production of ATP depends on a reoxidation system with the trypanosome alternative oxidase (TAO) as one of the essential enzymes [93]. TAO is unique for trypanosomes and located in the inner membrane of the mitochondrion. In the process of ATP production glycerol 3-phosphate is converted into glycerol, while ADP is converted into ATP. As an essential part of the ATP production TAO is accordingly an interesting target for the development of new antitrypanosomal drugs. Without it, the production of ATP depends on high glycerol 3-phosphate concentrations and a high ADP/ATP ratio. The inhibition of TAO decreases the ATP concentration significantly; in combination with additional glycerol the ATP production is completely blocked [97]. Accordingly, the complete energy production of trypanosome is inhibited with fatal consequences for the parasite. Topoisomerase and kinetoplast DNA A second important target is the kinetoplast with its unique mitochondrial DNA and topoisomerases [66]. Several natural products are known to inhibit cell growth by intercalation into the DNA. Examples are berberine and sanguinarine [93,98]. Camptothecin is a DNA topoisomerase inhibitor known for its selective cytotoxicity against tumor cells. It exhibits also a strong cytotoxitic effect against T. brucei [93,99]. 23 1.4 References 1 Unschuld PU (1980). Medizin in China. Eine Ideengeschichte. 1st ed., C.H. Beck, München. 2 Ebrey PB, Walthall A, Palais JB (2006). East Asia. A Cultural, Social and Political History. 1 ed., Houghton Mifflin Comp., Boston. st 3 Ebrey PB (1996). China. 1st ed., Cambridge University Press. 4 Goepper R, Brinker H, Dietsch KA (1988). Das alte China. 1st ed., C. Bertelsmann, München. 5 Sapriel M, Stoltz P (2006). Une introduction a la médicine traditionelle chinoise: Le corps théorique. 1st ed., Sringer, Berlin. 6 Meng A (2005). Gesundheitsvorsorge mit TCM. Philosophie – Krankheitslehre – Diagnostik – Therapie. 1st ed., Springer, Wien. 7 Wu JN (2005). An illustrated Chinese materia medica, 1st ed., Oxford University Press 8 Chinese Pharmacopoeia (2005) 9 Reid D (2001). A handbook of Chinese healing herbs, 1st ed., Periplus, Singapore 10 Jiangsu New Medicine College Editorial Board (1995). A Grand Dictionary of Chinese Medicinal Herbs, 3rd ed., Shanghai Science Technology Publishing Co., Shanghai 11 van Wyk BE, Wink M (2004): Medicinal Plants of the World, BRIZA, Pretoria 12 Wink M (2009). Introduction, Chapter 1. Annu Plant Rev. 39, 1-20. 13 Wink M (2009). Introduction: biochemistry, physiology and ecological function of secondary metabolites, in Annual Plant Reviews Vol. 20: Biochemistry of Plant Secondary Metabolism, 2nd edn (ed. M. Wink), Blackwell, Oxford. 14 Wink M (2008). Evolutionary advantage and molecular modes of action of multicomponent mixtures used in phytomedicine. Curr Drug Metab. 9, 996-1009. 15 Wink M (1993). Allelochemical properties and the raison d’être of alkaloids, in The Alkaloids, Vol. 43 (ed. G. Cordell), Academic Press, Orlando, pp. 1-118. 16 Wink M (1992). The role of quinolizidine alkaloids in plant insect interactions, in InsectPlant Interactions, Vol. IV (ed. E.A.Bernays), CRC Press, Boca Raton, pp. 133-169. 17 Wink M (1988). Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Gen. 75, 225-233. 18 Hartmann T (2007). From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry. 68, 2831-2846. 24 19 Wink M (2010). Biochemistry, Physiology and Ecological Function of Secondary Metabolites. Chapter 1, Introduction. Annu Plant Rev. 40, 1-19. 20 Dewick PM (2002). Medicinal Plant Products. A Biosynthetic Approach, 2nd edn. Wiley, New York. 21 Seigler DS (1998). Plant Secondary Metabolism. Kluwer, Norwell. 22 Dey PM, Harborne JB (1997). Plant Biochemistry. Academic Press, San Diego. 23 Luckner M (1990). Secondary Metabolism in Microorganisms, Plants and Animals. Springer, Heidelberg. 24 Conn EE (1981). Secondary plant products, in The Biochemistry of Plants, Vol. 7. Academic Press, New York. 25 Bell EA, Charlwood BV (1980). Secondary Plant Products. Springer, Heidelberg. 26 Kutchan TM (2005). A role for intra- and intercellular translocation in natural product biosynthesis. Curr Opin Plant Biol. 8, 292-300. 27 Yazaki K (2005). Transporters of secondary metabolites. Curr Opin Plant Biol. 8, 301-307. 28 Wink M (1997). Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. Adv Bot Res. 25, 141-169. 29 Wink M (1993). The plant vacuole: a multifunctional compartment. J Exp Bot. 44, 231-246. 30 Boller T, Wiemken A (1986). Dynamics of vacuolar compatmentation. Annu Rev Plant Physiol. 37, 137-164. 31 Matile P (1984). Das toxische Kompartiment der Pflanzenzelle. Naturwissenschaften. 71, 18-24. 32 Matile P (1978). Biochemistry and function of vacuoles. Annu Rev Plant Physiol. 29, 193213. 33 Wiermann R (1981). Secondary plant products and cell and tissue differentiation, in The Biochemistry of Plants, Vol 7. Academic Press, New York. 34 Wink M, Schimmer O (2010). Molecular Modes of Action of Defensive Secondary Metabolites. Chapter 2. Annu Plant Rev. 39, 21-161. 35 Roberts MF, Wink M (1998). Alkaloids: Biochemistry, Ecology and Medicinal Applications. Plenum Press, New York. 36 Hartmann T (1991). Alkaloids, in Herbivores: Their Interaction with Secondary Metabolites, Vol. 1 (eds G.A. Rosenthal and M.R. Berenbaum), Academic Press, San Diego, pp. 79-121. 25 37 Swain T (1977). Secondary compounds as protective agents. Ann Rev Plant Physiol. 28, 479-501. 38 Levin DA (1976). The chemical defenses of plants to pathogens and herbivores. Ann Rev Ecol Syst. 7, 121-159. 39 Roberts MF, Strack D (1999). Biochemistry and physiology of alkaloids and betalains, in Annual Plant Reviews, Vol. 2: Biochemistry of Plant Secondary Metabolism (ed. M. Wink), Sheffield Academic Press, Sheffield, England, pp. 17-78. 40 Wink M, van Wyk BE (2008). Mind-Altering and Poisonous Plants of the World. BRIZA, Pretoria. 41 Wink M (2007). Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance, in The Alkaloids (ed. G. Cordell), Vol. 64, Elsevier, London, pp. 1-48. 42 Wink M (2000). Interference of alkaloids with neuroreceptors and ion channels, in Bioactive Natural Products (ed. Atta-ur-Rahman), Elsevier, Amsterdam pp. 1-127. 43 Wink M (1999). Annual Plant Reviews, Vol. 3: Function of Plant Secondary Metabolites and Their Exploitation in Biotechnology. Sheffield Academic Press, Sheffield, England. 44 Wink M, Latz-Brüning B, Schmeller T (1998). Biochemical effects of allelopathic alkaloids, in Principles and Practices in Chemical Ecology (eds Inderjit, K.M.M. Dakshini and C.L. Foy), CRC Press, Boca Raton. 45 Wink M, Schmeller T, Latz-Brüning B (1998). Modes of action of allelochemical alkaloids: interaction with neuroreceptors, DNA and other molecular targets. J Chem Ecol. 24, 18811937. 46 Rosenthal GA (1982). Plant Nonprotein Amino and Imino Acid. Academic Press, New York. 47 Conn (1980). Cyanogenic glycosides, in Secondary Plant Products (eds E.A. Bell and B.V. Charlwood), Springer, Berlin, pp. 461-492. 48 Selmar D (2010). Biosynthesis of cyanogenic glycosides, glucosinolates and nonprotein amino acids, in Annual Plant Reviews, Vol. 40: Biochemistry of Plant Secondary Metabolism (ed. M. Wink), Blackwell, Oxford, Chapter 3. 49 Selmar D (1999). Biosynthesis of cyanogenic glycosides, glucosinolates and nonprotein amino acids, in Annual Plant Reviews, Vol. 2: Biochemistry of Plant Secondary Metabolism (ed. M. Wink), Sheffield Academic Press, Sheffield, England, pp. 79-150. 50 van Wyk BE, Wink M (2004). Medicinal Plants of the World. BRIZA, Pretoria. 51 Ashour M, Wink M, Gershenzon J (2010). Biochemistry of terpenoids: sterols, cardiac glycosids and steroid saponins, in Annual Plant Reviews, Vol. 40: Biochemistry of Plant Secondary Metabolism (ed. M. Wink), Blackwell, Oxford, Chapter 5. 26 52 Petersen M, Hans J, Matem U (2010). Biosynthesis of phenylpropanoids and related compounds, in Annual Plant Reviews, Vol. 40: Biochemistry of Plant Secondary Metabolism (ed. M. Wink), Blackwell, Oxford, Chapter 4. 53 Petersen M, Strack D, Matem U (1999). Biosynthesis of phenylpropanoids and related compounds, in Annual Plant Reviews, Vol. 2: Biochemistry of Plant Secondary Metabolism (ed. M. Wink), Sheffield Academic Press, Sheffield, England, pp. 151-221. 54 Maudlin I (2006). African trypanosomiasis. Ann Trop Med Parasitol. 100, 679-701. 55 Pink R, Hudson A, Mouriès MA, Bending M (2005). Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 4, 727-740. 56 Hoet S, Opperdoes F, Brun R, Quetin-Leclerq J (2004). Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep. 21, 353-364. 57 Simarro PP, Jannin J, Cattand P (2008). Eliminating human African trypanosomiasis: where do we stand and what comes next? PloS Med. 5, e55. 58 WHO/CDS/CSR/ISR/2000.1: WHO report on global surveillance of epidemic-prone infectious diseases, World Health Organisation (2000) http://www.who.int/csr/resources/publications/surveillance/en/a_tryps.pdf Last access: June 2011 59 Barrett MP (1999). The fall and rise of sleeping sickness. Lancet. 353, 1113-1114. 60 Cattand P, Jannin J, Lucas P (2001). Sleeping sickness surveillance: an essential step towards elimination. Trop Med Int Health. 6, 348-361. 61 Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, MozleyStandridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 52, 399-451. 62 A. M. Jordan (1993). "Tsetse-flies (Glossinidae)". In R. P. Lane & R. W. Crosskey. Medical Insects and Arachnids. Chapman and Hall. 63 D. T. Cole (1995). Setswana — Animals and Plants (Setswana — Ditshedi le ditlhare). Gaborone: The Botswana Society. pp. 11 & 173. 64 Centers for Disease Control and Prevention (CDC) http://www.dpd.cdc.gov/dpdx/HTML/TrypanosomiasisAfrican.htm Last access: June 2011 65 Vickerman K, Tetley L, Hendry KA, Turner CM (1988). Biology of African trypanosomes in the tsetse fly. Biol Cell. 64,109-119. 66 Ogbadoyi E, Ersfeld K, Robinson D, Sherwin T, Gull K (2000). Architecture of the Trypanosoma brucei nucleus during the interphase and mitosis. Chromosoma. 108, 501-513. 27 67 Gomez C, Ramirez EM, Calixto-Galvez M, Medel O, Rodríguez MA (2010). Regulation of gene expression in protozoa parasites. J Biomed Biotechnol. 2010:726045. Epub 2010 Mar 2. 68 Machado CR, Augusto-Pinto L, McCulloch R, Teixeira SM (2006). DNA metabolism and genetic diversity in Trypanosomes. Mutat. Res. 612, 40-57. 69 Martínez-Calvillo S, Vizuet-de-Rueda JC, Florencio-Martínez LE, Manning-Cela RG, Figueroa-Angulo EE (2006). Gene expression in trypanosomatid parasites. J. Biomed. Biotechnol. 2010:525241. Epub 2010 Feb 11. 70 Overath P, Chaudhri M, Steverding D, Ziegelbauer K (1994). Invariant surface proteins in bloodstream forms of Trypanosoma brucei. Parasitol Today. 10, 53-58. 71 Barry JD, McCulloch R (2001). Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol. 49, 1-70. 72 Jannin J, Cattand P (2004). Treatment and control of human African trypanosomiasis. Curr Opin Infect Dis. 17, 565-571. 73 Bouteille B, Oukem O, Bisser S, Dumas M (2003). Treatment perspectives for human African trypanosomiasis. Fundam Clin Pharmacol. 17, 171-181. 74 Docampo R, Moreno SN (2003). Current chemotherapy of human African trypanosomiasis. Parasitol Res. 90, S10-S13. 75 Nok AJ (2003). Arsenicals (melarprosol), pentamidine and suramin in the treatment of human African trypanosomiasis. Parasitol Res. 90, 71-79. 76 Burchmore RJ, Ogbunude PO, Enanga B, Barrett MP (2002). Chemotherapy of Human African Trypanosomiasis. Curr Pharm Des. 8, 256-267. 77 Denise H, Barrett MP (2001). Uptake and mode of action of drugs used against sleeping sickness. Biochem Pharmacol. 61, 1-5. 78 Nussbaum K, Honek J, Cadmus CMCvC, Efferth T (2010). Trypanosomatid Parasites Causing Neglected Diseases. Curr Med Chem. 17, 1594-1617. 79 The Medical letter (Drugs for Parasitic Infections), CDC. http://www.dpd.cdc.gov/dpdx/HTML/PDF_Files/MedLetter/Trypanosomiasis.pdf Last access: June 2011 80 Phillips MA, Coffino P, Wang CC (1987). Cloning and sequencing of the ornithine decarboxylase gene from Trypanosoma brucei. Implications for enzyme turnover and selective difluoromethylornithine inhibition. J Biol Chem. 262, 8721-8727. 81 Krauth-Siegel RL, Bauer H, Schirmer RH (2005). Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new targets in trypanosomes and malariacausing plasmodia. Angew Chem Int Ed Engl. 44, 690-715. 28 82 Fairlamb AH (2003). Chemotherapy of human African trypanosomiasis: current status and future prospects. Trends Parasitol. 19, 488-494. 83 Croft SL (1997). The current status of antiparasitic chemotherapy. Parasitology. 114 Sup, 3-15. 84 Ross CA, Sutherland DV (1997). Drug resistance in trypanosomatids. In: Hide G, Mottram JC, Coombs GH, Holmes PH, editors. Trypanosomiasis and leishmaniasis: biology and control. CAB international, Wallinford, Oxon. 259-269. 85 Gehrig S, Efferth T (2008). Development of drug resistance in Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Treatment of human African trypanosomiasis with natural products. Int J Mol Med. 22,411-419. 86 Newman DJ, Cragg GM, Snader KM (2003). Natural products as sources of new drugs over the period 1981-2002. J Nat Prod. 66, 1022-1037. 87 Legros D, Ollivier G, Gastellu-Etchegorry M, Paquet C, Burri C, Jannin J, Büscher P (2002). Treatment of human African trypanosomiasis--present situation and needs for research and development. Lancet Infect Dis. 2, 437-440. 88 Brun R, Schumacher R, Schmid C, Kunz C, Burri C (2001). The phenomenon of treatment failures in Human African Trypanosomiasis. Trop Med Int Health. 6, 906-914. 89 Fairlamb AH (2003). Target discovery and validation with special reference to trypanothione. In Fairlamb AH, Ridley RG, Vial HJ eds. Drugs against parasitic diseases: R&D methodologies and issues. Ed. Geneva: WHO TDR. pp 107-118. 90 Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985). Trypanothione: a novel bis (glutathionyl) spermidine cofactor for glutathione reductase in trypanosomatids. Science 227, 1485-1487. 91 Fairlamb AH, Cerami A (1985). Identification of a novel, thiol-containing co-factor essential for glutathione reductase enzyme activity in trypanosomatids. Mol Biochem Parasitol. 14, 187-198. 92 Bond CS, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WH (1999). Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 7, 81-89. 93 Hannaert V (2011). Sleeping Sickness Pathogen (Trypanosoma brucei) and Natural Products: Therapeutic Targets and Screening Systems. Planta Med. 77, 586-597. 94 Willert EK, Phillips MA (2008). Regulated expression of an essential allosteric activator of polyamie biosynthesis in African trypanosomes. PLoS Pathog. 4, e1000183. 95 Comini MA, Guerrero SA, Haile S, Menge U, Lunsdorf H, Flohé L (2004). Validation of Trypanosoma brucei trypanothione synthase as drug target. Free Radic Biol Med. 36, 12891302. 29 96 Verlinde CL, Hannaert V, Blonski C, Willson M, Périé JJ, Fothergill-Gilmore LA, Opperdoes FR, Gelb MH, Hol WG, Michels PA (2001). Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist Updat. 4, 50-65. 97 Clarkson AB Jr, Grady RW, Grossman SA, McCallum RJ, Brohn FH (1981). Trypanosoma brucei brucei: a systematic screening for alternatives to the salicylhydroxamic acid-glycerol combination. Mol Biochem Parasitol. 3, 271-291. 98 Merschjohann K, Sporer F, Steverding D, Wink M (2001). In vitro effect of alkaloids on bloodstream forms of Trypanosoma brucei and Trypanosoma congolense. Planta Med. 67, 623-627. 99 Bodley AL, Shapiro TA (1995). Molecular and cytotoxic effects of camptothecin, a topoisomerase I inhibitor, on trypanosomes and Leishmania. Proc Natl Acad Sci USA. 92, 3726-3730. 30 2. Use of rbcL sequences for DNA barcoding and authentication of plant drugs used in Traditional Chinese Medicine 2.1 Abstract Traditional Chinese medicine has become increasingly popular in Europe and North America. There is evidence that quality control in terms of species authentication is sometimes inappropriate. Repeated incidents of adulterations and wrong identification, some even with serious consequences have occurred recently. The necessity of a quality control for TCM plants to avoid these incidents is given since many years. DNA barcoding was used in this study to authenticate drugs which are often used in Chinese herbal medicine. 37 plants from 28 families were identified using the rbcL gene. Only one adulteration could be detected where Fraxinus rhynchophylla was substituted with Arctium lappa. Both the advantages and limitations of rbcL as a marker gene for identification were analysed and discussed. We could show that DNA barcoding is a valid and fast method to identify medicinal herbs, showing some advantages over chemical profiling because of its universal application even for unknown plant species. 2.2 Introduction The complex nomenclature in Traditional Chinese Medicine is an acknowledged yet unsolved problem, responsible for potentially fatal confusions [1]. Currently, 4773 botanicals are listed as used in TCM [2]. The scientific term “species” often does not correlate with the nomenclature used in TCM. We would like to elaborate this in a few examples. Four main classifications are common in TCM nomenclature. 1. Drug and plant name are identical, e.g. Panax ginseng is called ren shen ( 参) both as a drug and as a plant species. 2. Drug and plant name differ, even though the drug is derived from a single species. Ginkgo biloba is called bai guo ( 果) as a drug while the species is referred to as yin xing (银 ). 3. The different parts of a particular species have different names as drugs. Trichosanthes kirilowii is a good example where the plant is called gua lou (瓜蒌); the fruit bears the same name, while the seed is called gua lou zi (瓜蒌 (瓜蒌 ) and the root tian hua fen ( ), the pericarpum gua lou pi ). 4. Several plant species can be combined under one drug name, making it impossible to know which exact species has been used. One example is lao guan cao ( 鹳 31 ) which can be either Erodium stephanianum, Geranium carolinianum or G. wilfordii (Tab. 1). Table 1: Examples for the complex nomenclature in Traditional Chinese Medicine Case Scientific name of the plant Chinese name of the plant Part used Chinese name of the drug Case 1 Panax ginseng ren shen 参 root ren shen 参 Case 2 Ginkgo biloba yin xing 银 seed bai guo 果 Case 3 Trichosanthes kirilowii gua lou 瓜蒌 fruit gua lou 瓜蒌 gua lou zi 瓜蒌 chao gua lou zi 瓜蒌 gua lou pi 瓜蒌 tian hua fen seed roasted seed pericarpum root Case 4 Erodium stephanianum Geranium wilfordii Geranium carolinianum mang niu er miao 牻 儿 lao guan cao 鹳 ye lao guan cao 鹳 herb lao guan cao 鹳 lao guan cao 鹳 lao guan cao 鹳 herb herb To make things worse, several substitutions are allowed in TCM, so that han fang ji ( Stephania tetrandra can be substituted by mu fang ji ( orbiculatus or by guang fang ji (廣 己), 己), Cocculus trilobus or C. 己), Aristolochia fangchi [1]. Intoxication with renal failure due to carcinogenic aristolochic acids, as reported in 1993, might be due to such nomenclature difficulties [3]. These difficulties are intrinsic problems based on the complex nature of TCM. However, frequent adulterations of expensive drugs with cheap, similar looking species cause additional problems [4-6]. Therefore, TCM needs rigorous quality control which allows a reliable authentication of the plant material. 32 Plant drugs can be authenticated by several methods: 1. Microscopic and macroscopic analysis 2. Identification via the phytochemical profiling 3. Identification via DNA sequences of marker genes Place of origin, age, season and treatment all affect the chemical profile [7], while they have no influence on the DNA. Chemical markers are further sensible to severe errors, since they need to be specific for the species, stable during storage and modification processes and should represent the therapeutically relevant compound. Especially the latter is often extremely difficult to achieve, since the active principle is either not known or ignores the other compounds responsible for modifying the pharmaceutical effect [8]. A more holistic approach is chemical profiling by HPLC and mixture NMR (metabolomics). Here, many of the problems of individual chemical markers are avoided since the profile represents the whole spectrum of compounds [9-11]. One major drawback is that the profile is extremely sensitive to origin, age, season and modification processes the drug went through before being sold on the market and thus no profile is identical. To cope with these problems, authentication of the herbs can be accessed from a less variable character, the DNA. The genetic information is not affected by the factors mentioned before but remains constant allowing the reliable identification of a plant [12,13]. The comparison of nucleotide sequences of marker genes is often referred to as DNA barcoding. Using this method, conclusions regarding the relationship between plant families, species and even individuals can be drawn. The choice of the marker gene determines the grade of separation that can be detected. Different DNA methods to identify Chinese medical materials have recently been reviewed [14,15]. As discussed above, several aspects require to be considered addressing the complex problem of quality control of TCM. To get reproducible results, a combination of chemical profiling together with the identification of the plant via DNA is crucial to avoid toxic substitutions. We will show in this study the practicability of DNA barcoding to authenticate TCM plants using sequences of the chloroplast gene rbcL, which is widely used in plant systematics. 33 2.3 Material and Methods Plant material We analysed 37 herbal drugs purchased in the herbal market of Shanghai, China, belonging to 29 families and 23 orders. Plant samples were deposited at the IPMB, Heidelberg. Authentic species were obtained from the Botanical Garden, Heidelberg, and 886 DNA sequences were retrieved from the online database GenBank. DNA extraction, amplification and sequencing Chloroplast DNA was extracted from the herbal material using the chloroform extraction method [16]. Chloroplast DNA was amplified using a primer pair for ribulose-bisphosphate carboxylase large chain (rbcL) obtained from MWG Biotech AG. As forward primer rbcL-N (5’ ATGTCACCACAAACAGAAACTAAAGC 3’) was used, as reverse primer rbcL-leg7 (5’ TTCRCATGTACCYGCAGTAGCA 3’), obtaining a PCR product of approximately 700 bp length (TRIO Thermoblock Biometra). The PCR-mix contained 5 µl buffer, 1.5 µl nucleotide mix (100µM), 0.5 µl BSA (10mg/ ml), 0.2 µl Taq polymerase (5 units/ µl), 0.5 µl primer rbcL-N and 0.5 µl primer rbcL-leg7 (concentration: 10 pM/ µl) and 2 µl DNA solution. The temperature program was 94 °C 5 min, 94 °C 43 sec, 50 °C 1 min, 72 °C 2 min (38 times), 72 °C 20 min. The purified PCR products were sequenced on a MegaBace 1000 instrument (GE Healthcare). Dye-terminator sequencing provided reliable >1000 nucleotide long fragments [17,18], sufficient for the 700 bp fragments obtained in the PCR. Sequence alignment and data analysis Clustal W was used to align the sequences [19]; the genetic distances were calculated using MEGA 4.0 following the Kimura 2-Parameter (K2P) model [20]. BLAST database search was performed as described previously [21]; Neighbour-joining (NJ) and Maximum Likelihood (ML) performed with MEGA 4.0 were used to reconstruct the phylogenetic tree [22]. 2.4 Results 37 herbal drugs traditionally used in TCM were authenticated according to partial nucleotide sequences of rbcL. The 37 plants belong to 28 families and 23 orders; they were chosen to represent the high diversity of plants used in TCM and to test the utility of rbcL for barcoding of herbal medicine. In 75% of the plants, species identity could be confirmed by comparison 34 with authentic DNA sequences (plants or GenBank accessions); in 25% this was possible only at the genus level, which is similar to the findings of Arif et al. [23] (Tab. 2). Table 2: Plants studied and identified by rbcL A. Identification: Species level No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 IPMB Accession number P6839 / 05 P6843 / 09 P6883 / 49 P6846 / 12 P6859 / 25 P6860 / 26 P6863 / 29 P6864 / 30 P6865 / 31 P6866 / 32 P6894 / 60 P6872 / 38 P6875 / 41 P6879 / 45 P6882 / 48 P6885 / 51 P8088 / 81 P6888 / 54 P6891 / 57 P6893 / 59 P6896 / 62 P6897 / 63 P6898 / 64 P6901 / 67 P6903 / 69 P6904 / 70 P6908 / 74 P6910 / 76 Genbank Accession number JF949994 JF949995 JF949996 JF949997 JF949998 JF949999 JF950000 JF950001 JF950002 JF950003 JF950004 JF950005 JF950006 JF950007 JF950008 JF950009 JF950028 JF950010 JF950011 JF950012 JF950013 JF950014 JF950015 JF950016 JF950017 JF950018 JF950019 JF950020 Species, Family, Order Arctium lappa, Asteraceae, Asterales Belamcanda chinensis, Iridaceae, Asparagales Berberis bealei, Berberidaceae, Ranunculales Capsella bursa-pastoris, Brassicaceae, Brassicales Cyrtomium fortunei, Dryopteridaceae, Polypodiales Dendrobium loddigesii, Orchidaceae, Asparagales Eclipta prostrata, Asteraceae, Asterales Ephedra sinica, Ephedraceae, Gnetales Epimedium koreanum, Berberidaceae, Ranunculales Equisetum hiemale, Equisetaceae, Equisetales Fallopia japonica, Polygonaceae, Caryophyllales Ginkgo biloba, Ginkgoaceae, Ginkgoales Houttuynia cordata, Saururaceae, Piperales Kadsura longipedunculata, Schisandraceae, Austrobaileyales Magnolia officinalis, Magnoliaceae, Magnoliales Ophioglossum vulgatum, Ophioglossaceae, Ophioglossales Panax ginseng, Araliaceae, Apiales Paris polyphylla, Melanthiaceae, Liliales Platycladus orientalis, Cupressaceae, Pinales Polygonum aviculare, Polygonaceae, Caryophyllales Prunella vulgaris, Lamiaceae, Lamiales Punica granatum, Lythraceae, Myrtales Rheum officinale, Polygonaceae, Caryophyllales Sanguisorba officinalis, Rosaceae, Rosales Scutellaria baicalensis, Lamiaceae, Lamiales Selaginella tamariscina, Selaginellaceae, Selaginellales Taraxacum officinale, Asteraceae, Asterales Verbena officinalis, Verbenaceae, Lamiales B. Identification: Genus level 29 30 31 32 33 34 35 36 P6844 / 10 P6849 / 15 P6853 / 19 P6855 / 21 P6873 / 39 P6886 / 52 P6887 / 53 P6892 / 58 JF950021 JF950022 JF950023 JF950024 JF950025 JF950026 JF950030 JF950027 Bupleurum chinense, Apiaceae, Apiales Centella asiatica, Apiaceae, Apiales Cinnamomum cassia, Lauraceae, Laurales Coptis chinensis, Ranunculaceae, Ranunculales Glycyrrhiza inflata, Fabaceae, Fabales Paeonia lactiflora, Paeoniaceae, Saxifragales Panax notoginseng, Araliaceae, Apiales Polygonatum kingianum, Ruscaceae, Asparagales C. Identification: Substitution of the TCM drug Fraxinus rhynchophylla with Arctium lappa 37 P6871 / 37 Arctium lappa, Oleaceae, Lamiales 35 In 8 cases, the interspecific variations of rbcL within a genus were too small to allow the distinction of species while in 28 cases, this was possible. One drug (Fraxinus rhynchophylla) was substituted with Arctium lappa. BLAST search resulted in 100% identity (627/ 627 bp) with 0 gaps. DNA isolation and amplification of the rbcL gene sequence was repeated three times with similar results. Two examples are given to exemplify this (Tab. 3, 4). Equisetum hiemale, (Equisetaceae) could be identified with p-distances within the genus ranging between 0.003 and 0.03. The next family, Lycopodiaceae, has already p-distances of 0.15. The second example is the genus Coptis. TCM does not differentiate between the three used species; rbcL did not allow the exact identification since the sequence of C. chinensis and C. deltoidea was identical. C. teeta could be excluded because of a difference at position 498. The p-distances within the genus range between 0.000 and 0.009, within the family Ranunculaceae between 0.03 and 0.04 and within the order between 0.05 and 0.09. The phylogenetic trees of these two examples further visualize the relationships (Fig. 1, 2). 2.5 Discussion The genetic authentication via DNA barcoding is an important aspect of quality control to increase the safety of TCM drugs. Unfortunately, substitutions and adulterations with cheaper plants are a well-known phenomenon in TCM [15]. DNA barcoding is increasingly used to identify these substitutes [14,24]. In one study by Mihalov et al. [25], soybean was detected as an adulteration in P. ginseng preparations. We could also detect an alteration in our sample of Fraxinus rhynchophylla. Instead, A. lappa was present, as BLAST and comparison of the gene sequence revealed. However, adulterations are not the only problem quality control of TCM has to face. The more common problem lies in the system of TCM itself. As explained above, the complex nomenclature of TCM plants can be responsible for unintentional substitutions with fatal consequences [1]. A major problem every DNA barcoding approach of TCM drugs has to face is the often problematic condition of the DNA [14]. Due to the various processes such as drying, steaming, bleaching etc TCM drugs have to undergo before being sold, the DNA is often badly damaged. 36 Table 3: Phylogeny of Equisetum hiemale, Equisetaceae, with Lycopodium and Polypodium as outgroups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Species Family Order Genbank Accession number Equisetum hiemale (TCM) Equisetum hiemale Equisetum hiemale Bot. Garden Heidelberg Equisetum arvense Equisetum bogotense Equisetum diffusum Equisetum fluviatile Equisetum palustre Equisetum pratense Equisetum sylvaticum Equisetum telmateia Equisetum variegatum Equisetum x ferrissii Lycopodium annotinum Polypodium scouleri Equisetaceae Equisetaceae Equisetaceae Equisetaceae Equisetaceae Equisetaceae Equisetaceae Equisetaceae Equisetaceae Equisetaceae Equisetaceae Equisetaceae Equisetaceae Lycopodiaceae Polypodiaceae Equisetales Equisetales Equisetales Equisetales Equisetales Equisetales Equisetales Equisetales Equisetales Equisetales Equisetales Equisetales Equisetales Lycopodiales Filicales JF950003 EU677110 L11053 AY226139 AY226141 DQ463101 GQ248601 AY226137 AY226136 AF313580 AY226134 AF313579 EU352290 FJ825693 87 Equisetum arvense 95 Equisetum fluviatile 32 Equisetum diffusum Equisetum telmateia 97 Equisetum sylvaticum Equisetum palustre 51 69 42 Equisetum pratense 78 Equisetum variegatum Equisetum x ferrissii 100 100 Equisetum hiemale TCM Equisetum hiemale 63 Equisetum hiemale Bot. Garden Heidelberg Equisetum bogotense Lycopodium annotinum Polypodium scouleri 0.02 Fig. 1: Phylogenetic NJ tree of E. hiemale based on nucleotide sequences of the rbcL gene with bootstrap values 37 Table 4: Phylogeny of Coptis chinensis, Ranunculaceae, and other families of the Ranunculales 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Species Family Genbank Accession number Coptis chinensis (TCM) Coptis chinensis Coptis deltoidea Coptis teeta Coptis aspleniifolia Coptis japonica_var._anemonifolia Coptis japonica_var._major Coptis laciniata Coptis lutescens Coptis occidentalis Coptis omeiensis Coptis quinquefolia Coptis quinquesecta Coptis ramosa Coptis trifolia Coptis trifoliolata Aconitum napellus Anemone hupehensis Aquilegia vulgaris Clematis montana Delphinium bonvalotii Glaucidium palmatum Hydrastis canadensis Ranunculus japonicus Thalictrum simplex Berberis bealei Circaeaster agrestis Euptelea pleiosperma Lardizabala biternata Menispermum dauricum Papaver rhoeas Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae Berberidaceae Circaeasteraceae Eupteleaceae Lardizabalaceae Menispermaceae Papaveraceae JF950024 AB163775 AB163774 AB163773 AB163777 AB163764 AB163765 AB163778 AB163766 AB163779 AB163776 AB163770 AB163772 AB163769 AF093730 AB163768 EU053898 FJ626577 FJ449851 FJ449855 FJ626583 L75848 L75849 FJ449862 FJ449863 FJ449858 FJ626607 AY048174 D85693 FJ026493 FJ626614 38 Coptis chinensis Coptis omeiensis 63 Coptis deltoidea Coptis sp. TCM 38 Coptis teeta 22 Coptis quinquesecta Coptis aspleniifolia Coptis laciniata 3852 94 Coptis occidentalis Coptis japonica var. anemonifolia 87 Coptis japonica var. major 77 Coptis lutescens Coptis quinquefolia 99 57 Coptis ramosa 46 Coptis trifoliolata 30 Coptis trifolia Glaucidium palmatum Aquilegia vulgaris 89 Thalictrum simplex 13 61 Aconitum napellus 97 36 Delphinium bonvalotii Ranunculus japonicus 43 24 Anemone hupehensis 45 Clematis montana 96 35 Hydrastis canadensis Euptelea pleiosperma 75 Menispermum dauricum 73 Berberis bealei Lardizabala biternata Papaver rhoeas Circaeaster agrestis 0.01 Fig. 2: Phylogenetic NJ tree of Coptis species TCM (C. chinensis or C. deltoidea) based on nucleotide sequences of the rbcL gene with bootstrap values. The rbcL gene does not allow the distinction between these two Coptis species. 39 Additionally, the secondary metabolites such as flavonoids, tannins or alkaloids inhibit the PCR amplification of the selected marker gene. Intercalating substances can disturb the PCR resulting in mismatched base pairs and erroneous DNA sequences. Purification of the DNA is essential to reduce the secondary metabolites before a successful amplification can be tried [26,27]. The challenge is to discover a DNA marker that is general enough not to raise false alarm but specific enough to discover all adulterations. Furthermore, the marker must be universal to cover the large variety of plant species applied in TCM. And, last but not least, the DNA must ideally exist in many copies to increase the chance of detection in TCM drugs which are usually dried and grounded and thus often contain degraded DNA. Several studies showed that a marker fulfilling all these requirements hardly exists and we need to live with certain restrictions [15,28]. However, the level of identification can be directed by carefully choosing the adequate target region of the genome. Promising for the identification of herbal medicine are especially chloroplast genes since chloroplasts contain many copies of the same gene and thus increase the chances of successful detection [29]. The interspecific variations change from plant species to plant species which means the decision for the right marker gene can not be absolute but needs to be adapted to the particular situation [15,30]. Nevertheless, two marker genes, rbcL and ITS (a commonly used nuclear marker), are widely used in DNA barcoding. Several examples of successful identification of TCM drugs both of rbcL [25,30] and ITS [24,31-33] were published recently. To choose the right gene, we have to remember the nature of TCM. Quite often, several closely related members of the same genus are used as one drug; a marker gene distinguishing between these species or even subspecies might raise false alarm. ITS is useful to detect a plant at the species level, while rbcL is in 75% of the cases precise enough to determine the species but can not distinguish drugs on the species level in the remaining 25% of the cases [15,23,29]. This disadvantage of rbcL for phylogenetic research might be an advantage in quality control of herbal medicine. It is important to detect adulterations beyond doubt, but the exact species within a genus is only of secondary importance, since TCM itself does not differentiate to that level and also phytochemical profiles are similar between closely related species. rbcL can fulfil these requirements successfully and can guarantee the safety of the drug, as we could demonstrate in our study. The level of detection of rbcL is high enough to 40 discover possibly toxic substitutions within the traditional system of TCM, such as Aristolochia species as substitutes for Stephania. Adulterations can be identified using database search since an extensive library of most families and even most genera exists already for these two marker genes. Furthermore, the rbcL marker is present in many copies in each plant cell, making a successful amplification more probable than for nuclear genes. In our study we have demonstrated the utility of rbcL as marker for DNA barcoding, but have to point out its limitations as well. Since genetic information does not cover the morphology, chemical profile, quality control should always try to consider different techniques. The Medicinal Materials DNA Barcode Database [34] offers with 1297 species the possibility to authenticate TCM herbal medicine. For roughly 400 species the rbcL gene sequence is provided, while currently 4773 botanicals are officially used in TCM [2]. It is advisable to extend this and similar TCM libraries with the rbcL and ITS sequences of all botanicals officially used in TCM for international use to allow rapid detection since authentic species examples are rather difficult to obtain outside of Asia. This would improve the acceptance of TCM internationally beyond the image of traditional medicine. 41 2.6 References 1 Wu KM, Farrelly JG, Upton R, Chen J (2007). Complexities of herbal nomenclature system in traditional Chinese medicine (TCM): Lessons learned from the misuse of Aristolochia-related species and the importance of pharmaceutical name during botanical drug development. Phytomedicine. 14, 273-279. 2 Jiangsu New Medicine College Editorial Board (1995). A Grand Dictionary of Chinese Medicinal Herbs, 3rd Ed., Shanghai Science Technology Publishing Co., Shanghai, p. 2754. 3 CFSAN/US FDA, Office of Nutritional Products, Labelling and Dietary Supplements (2001). Letter to industry associations regarding safety concerns related to the use of botanical products containing aristolochic acid. http://www.fda.gov/Food/DietarySupplements/Alerts/ucm096374.htm Accessed June 30, 2011 4 But PP (1993). Need for correct identification of herbs in herbal poisoning. Lancet. 341, 637. 5 But PP (1994). Herbal poisoning caused by adulterants or erroneous substitutes. J Trop Med Hyg. 97, 371-374. 6 But PP, Tomlinson B, Cheung KO, Yong SP, Szeto ML, Lee CK (1996). Adulterations of herbal products can cause poisoning. BMJ. 313, 117. 7 Xie PS, Leung AY (2009). Understanding the traditional aspect of Chinese medicine in order to achieve meaningful quality control of Chinese materia medica. J Chromatogr A. 1216, 1933-1940. 8 Li S, Han Q, Qiao C, Song J, Cheng CL, Xu H (2008). Chemical markers for the quality control of herbal medicines: an overview. Chin Med. 3, 7. 9 Van Beek TA, Montoro P (2009). Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J Chromatogr A. 1216, 2002-2032. 10 Yi L, Liang Y, Wu H, Yuan D (2009). The analysis of Radix Angelicae Sinensis (Danggui). J Chromatogr A. 1216, 1991-2001. 11 Zhang Q, Ye M (2009). Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J Chromatogr A. 1216, 1954-1969. 12 Chang WT, Thissen U, Ehlert KA, Koek MM, Jellema RH, Hankemeier T, van der Greef J, Wang M (2006). Effects of growth conditions and processing on Rehmannia glutinosa using fingerprint strategy. Planta Med. 72, 458-467. 13 Ma XQ, Shi Q, Duan JA, Dong TT, Tsim KW (2002). Chemical analysis of Radix Astragali (Huangqi) in China: a comparison with its adulterations and seasonal variations. J Agr Food Chem. 50, 4861-4866. 14 Heubl G (2010). New aspects of DNA-based authentication of Chinese medicinal plants by molecular biological techniques. Planta Med. 76, 1963-1974. 15 Yip PY, Chau CF, Mak CY, Kwan HS (2007). DNA methods for identification of Chinese medicinal materials. Chin Med. 2, 9. 16 Doyle JJ, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, BSA. 19, 11–15. 42 17 Olsvik O, Wahlberg J, Petterson B, Uhlén M, Popovic T, Wachsmuth IK, Fields PI (1993). Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J Clin Microbiol. 31, 22-25. 18 Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005). Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci. 102, 8369-8374. 19 Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. 20 Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 24, 1596-1599. 21 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. J Mol Biol. 215, 403-410. 22 Saitou N, Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4, 406-425. 23 Arif IA, Bakir MA, Khan HA, Al Farhan AH, Al Homaidan AA, Bahkali AH, Al Sadoon M, Shobrak M (2010). A brief review of molecular techniques to assess plant diversity. Int J Mol Sci. 11, 2079-2096. 24 Lu KT, Lo CF, Chang HC, Lin JH (2005). Identification of Saposhnikoviae radix in concentrated Chinese medicine preparations by nested PCR and DNA sequencing methods. J Food Drug Anal. 13, 219-224. 25 Mihalov JJ, Marderosian AD, Pierce JC (2000). DNA identification of commercial ginseng samples. J Agr Food Chem. 48, 3744-3752. 26 Shahzadi I, Ahmed R, Hassan A, Shah MM (2010). Optimization of DNA extraction from seeds and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase chain reaction analysis. Genet Mol Res. 9, 386-393. 27 Ribeiro RA, Lovato MB (2007). Comparative analysis of different DNA extraction protocols in fresh and herbarium specimens of the genus Dalbergia. Genet Mol Res. 6, 173187. 28 Rubinoff D, Cameron S, Will K (2006). Are plant DNA barcodes a search for the Holy Grail? Tends Ecol Evol. 21, 1-2. 29 Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu YL (1993). Phylogenetics of seed plants: An analysis of nucleotide sequences from plastid gene rbcL. Ann Missouri Bot Gard. 80, 528-580. 30 Song J, Yao H, Li Y, Li X, Lin Y, Liu C, Han J, Xie C, Chen S (2009). Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. J Ethnopharmacol. 124, 434439. 31 Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE. 5, 1. 43 32 Gao T, Yao H, Song J, Liu C, Zhu Y, Ma X, Pang X, Xu H, Chen S (2010). Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J Ethnopharmacol. 130, 116-121. 33 Yang ZY, Chao Z, Huo KK, Xie H, Tian ZP, Pan SL (2007). ITS sequence analysis used for molecular identification of the Bupleurum species from northwestern China. Phytomedicine. 14, 416423. 34 Lou SK, Wong KL, Li M, Butt PP, Tsui SK, Shaw PC (2010). An integrated web medicinal materials DNA database: MMDBD (Medicinal materials DNA Barcode Database). BMC Genomics. 11, 402. 44 3. Cytotoxicity, antiviral and antitrypanosomal screening of 82 plants from Chinese and European phytomedicine 3.1 Abstract In an extensive screening the antiviral, antitrypanosomal and anticancer properties of extracts from 82 plants used in traditional Chinese medicine and European phytomedicine were determined. Several promising plants that were highly effective against hepatitis B virus (HBV), bovine viral diarrhoea virus (BVDV) - a flavivirus used here as a surrogate in vitro model of hepatitis C virus -, trypanosomes (Trypanosoma brucei brucei) and several cancer cell lines were identified. Six aqueous extracts from Celosia cristata, Ophioglossum vulgatum, Houttuynia cordata, Selaginella tamariscina, Alpinia galanga and Alpinia oxyphylla showed significant antiviral effects against BVDV without toxic effects on host EBTr cells, while Evodia lepta, Hedyotis diffusa and Glycyrrhiza spp. demonstrated promising activities against the HBV without toxic effects on host HepG2 2.2.15 cells. Seven organic extracts from Alpinia oxyphylla, Coptis chinensis, Kadsura longipedunculata, Arctium lappa, Panax ginseng, Panax notoginseng and Saposhnikovia divaricata inhibited T. b. brucei. Moreover, among fifteen water extracts that combined high antiproliferative activity (IC50 0.5-20 µg/ml) and low acute in vitro toxicity (0-10% reduction in cell viability at IC50), Coptis chinensis presented the best beneficial characteristics. In conclusion, traditional herbal medicine from Europe and China still has a potential for new therapeutic targets and therapeutic applications. 3.2 Introduction Traditional Chinese medicine (TCM) has a long history of almost 5000 years and officially uses approximately 4773 herbs, while the number of locally used plants is probably much higher [1]. Clinical efficacy was shown in various examples, one of the best known is that of artemisinin from Artemisia annua, commonly used against malaria, but also effective against T. b. brucei, viral infections and cancer [2-8]. European medicine also has a long tradition of at least 2500 years with the two important early scholars Hippocrates and Dioscorides who described more than 400 medicinal plants 2000 years ago of which many are still in use today [9]. Many pure therapeutic agents used in modern medicine were originally based on herbal medicine; in fact, the process of developing new drugs from European herbal medicine is still alive and important discoveries are regularly made [10,11]. Even though the theoretical concept of traditional medicine differs between Europe and China, often the same plants were and are still used in both cultures to 45 treat the same or similar health disorders. Modern European phytotherapy also includes important herbal medicines from Africa and America. Even though the diversity of plants and possible natural products is vast, the number of targets is usually limited (Tab. 1). Most natural products target proteins, biomembranes or DNA unselectively. Selective interaction is often the case when especially alkaloids mimic signal molecules and interact with receptors or enzymes. It is often possible to conclude from the type of the natural products to their most likely mode of action. Saponins and monoterpenes are active on the biomembrane, while polyphenols usually interact with proteins. Alkaloids also interact with proteins or the DNA. The formations of covalent and of non-covalent bonds are the two modes of action that form the basis of all interactions between proteins and natural products. The two main targets for the formation of covalent bonds are free amino and free SH groups. Aldehydes, isothiocyanates and epoxids can form covalent bonds with free amino groups while sesquiterpene lactones, disulfides (e.g. allicin), polyacetylenes and epoxides can form covalent bonds with free SH groups. The second mechanism of maybe even greater importance due to its universality is the formation of non-covalent bonds between phenolic OH-groups and amino groups. The proton of the phenolic OH-group can partly dissociate under physiological conditions so that unspecific interactions by forming strong, ionic bonds occur with proteins. Tannins are especially effective due to their large number of hydroxygroups. All of these interactions will change the three dimensional structure of the protein and thus inactivate it. The omnipresence of these unspecific natural products in plants explains the efficacy of many plant extracts. They are responsible for the great number of “hits” usually occurring in extended screenings of medicinal plant extracts (Tab. 2). Hepatitis B (HBV) and hepatitis C (HCV) are responsible for 75% of all cases of liver diseases worldwide, often causing cirrhosis and hepatocellular carcinoma [12,13]. HBV and HCV account for the most problematic viral infections, since the standard treatment with pegylated IFN-α and the purine nucleoside analogues lamivudine and ribavirin have severe side effects while being at the same time ineffective for 50% of the patients [12,14]. Thus, new drugs are urgently needed [15]. Together with the bovine viral diarrhoea virus (BVDV), 46 and the Japanese Encephalitis virus, HCV belongs to the Flaviviridae family. As BVDV, whose cytopathic strains induce a lytic infection in some cell lines, such as embryonic bovine trachea (EBTr) cells, is easier to manipulate and lacks human infectivity, this is commonly used as in vitro model for infections of this viral family [16]. Our knowledge of the natural products of many plants used in European and Chinese phytomedicine is broad (Tab. 2), however, many new discoveries are still possible. Previously, several studies demonstrated the promising potential of traditional phytomedicine for the discovery of new antiviral drugs. Artemisinin and related compounds proved effective in screening assays against viral hepatitis [6,7,17]. In water extracts of Terminalia chebula, Sanguisorba officinalis, Rubus coreanus and Rheum palmatum Kim et al. [18] discovered prominent anti-HBV activities. The ethanolic extract of Hypericum perforatum, a wellestablished drug for treatment of depression [9] was also shown to be active against the hepatitis B virus [19]. Laxative anthraquinones isolated from Rheum palmatum demonstrated significant effects against hepatitis B virus [20] and saikosaponins from Bupleurum species were previously shown to lower significantly the hepatitis B virus level in the HepG2 2.2.15 assay [21]. HepG2 2.2.15 is a stable cell line infected with the hepatitis B virus. The assay measures the production of secreted HBV from the cell by using real time quantitative PCR. Parasites such as protozoa and helminths cause a major health threat in many tropical countries [22], while suitable drugs are still rare [23]. Blood parasites of the genus Trypanosoma (Trypanosoma brucei rhodesiense and T. b. gambiense) are responsible for African trypanosomiasis (sleeping sickness) with serious consequences for human health and economy. Due to the high infectivity of African human trypanosomes, T. b. brucei is commonly used as model organism with similar morphology and biochemical processes, while being only infective for cattle [22,24,25]. This subspecies causes the cattle epidemic nagana, it is responsible for severe financial loss of 1340 billion USD per year [26]. Currently, only four drugs are approved internationally for the treatment of humans against sleeping sickness: suramin, pentamidine, melarsoprol and eflornithine. Diminazene, another effective antitrypanosomal drug, is only approved for the use on animals because of severe side effects [24]. Even the drugs approved for human use are responsible for serious side effects, and furthermore, the parasites develop increasing resistance to them [27-30]. This 47 situation makes the discovery of new, effective drugs an urgent task of the 21st century [3133]. When considered together, enterohepatic tumours, i.e., those affecting the liver, the biliary duct, gallbladder and the intestine, constitute the first cause of death due to cancer. Although in many cases surgery and radiotherapy are efficacious, these therapeutic strategies cannot always be applied. Moreover, even when the removal of tumours is possible, pre- and postoperative pharmacological adjuvant regimens are often needed. However, one important limitation to the use of cytostatic drugs to treat enterohepatic tumours is that they generally exhibit marked resistance to currently available pharmacological approaches and the development of resistance during treatment [34]. Many natural products and derivatives thereof belong to the standard repertoire of cancer chemotherapy. Examples are Vinca alkaloids, such as vincristine, vinblastine and vinorelbine, obtained from Madagascar periwinkle (Catharanthus rosea). Also taxanes such as paclitaxel and docetaxel, which are produced from the bark of Pacific yew (Taxus), podophyllotoxins, such as etoposide and teniposide, derivatives of the genus Podophyllum, and camptothecin, derived from the Asian "Tree of Happiness" (Camptotheca acuminata) and its derivatives, irinotecan and topotecan, are natural products from TCM plants [4]. In this study extracts from 82 traditional medicinal plants were screened against hepatitis B virus and flaviviruses, T. b. brucei and several cancer cell lines. Our aim was to detect new sources of active compounds for the possible treatment of these important causes of diseases. 3.3 Material and Methods Chemicals Dimethylsulfoxide (DMSO), trypsin-EDTA, DMEM and MEM with GLUTAMAX media, fetal bovine serum (FBS) and supplementary chemicals were bought from Gibco Invitrogen; Germany. Antibiotic/antimycotic solution, gentamicin, Neutral Red (NR, 3amino-7-dimethylamino-2-methylphenazine), NaHCO3, L-glutamine and MEM media were purchased from Sigma-Aldrich (Madrid, Spain). Geneticin® (G418) was from Roche (Barcelona, Spain). Dried TCM plants were obtained in Shanghai; South African plants were provided by Prof. van Wyk, University of Johannesburg, South Africa. 48 Table 1: Targets in animal cells, bacteria cells and viruses [35] Target Activity Biomembrane Membrane disruption Disturbance of membrane fluidity Disturbance of membrane proteins Proteins (unspecific interaction) Secondary metabolites Saponins Saponins, monoterpenes Monoterpenes Phenolic molecules (flavonoids, catechins, tannins, anthraquinones, quinones, lignans, phenylpropanoids) Allicin, furanocoumarins, Covalent bonding (change of 3D isothiocyanates, sesquiterpene lactones, protein conformation) aldehydes, epoxids, triple bonds Non-covalent bonding (change of 3D protein conformation) Proteins (specific interaction) Structural mimetics of signal molecules (many alkaloids, e.g. nicotin), hydrogen cyanide from cyanogens Cardiac glycosides Colchicine, podophyllotoxin, taxol, vinblastine Inhibition of enzymes Inhibition of Na+Ka+ pumps Inhibition of microtubule formation Inhibition of protein biosynthesis Inhibition of transporters Modulation of hormone receptors Modulation of ion channels Emetine, lectins Non-protein amino acids Isoflavonoids Modulation of neuroreceptors Modulation of regulatory proteins Modulation of transcription factors Many alkaloids, aconitine Many alkaloids, some non-protein amino acids Caffeine, phorbol esters Structural mimetics of hormones (e.g. isoflavones genistein, daidzein) DNA/ RNA Aristolochic acids, furanocoumarins, pyrrolizidine alkaloids, molecules with epoxy groups Covalent modification (alkylation) Inhibition of DNA topoisomerase I Inhibition of transcription Berberine, camptothecin Amanitine Planar, aromatic and lipophilic molecules (anthraquinones, berberine, emetine, quinine, sanguinarine, furanocoumarins) Intercalation 49 Table 2: Main Compounds of Plants used in this study [9,36] Family Acanthaceae Species Andrographis paniculata Amaranthaceae Celosia cristata Apiaceae Bupleurum chinense Bupleurum marginatum Centella asiatica Cnidium monnieri Saposhnikovia divaricata Araliaceae Eleutherococcus senticosus Panax ginseng China Panax ginseng Korea Panax notoginseng Arecaceae Areca catechu Asclepiadaceae Cynanchum paniculatum Asteraceae Artemisia annua Artemisia capillaris Arctium lappa Centipeda minima Chrysanthemum indicum 50 Main Compounds Diterpenelactones Lectins (amarathin, isoamaranthin, celosianin), ferulic acid Flavonoids (quercetin, rutin, isoquercetin, isorhamnetin), β-sitosterol, β-sitosterol-3-O-glucosid, α-spinasterol, α-spinasterol-3-O-glucoside Flavonoids (quercetin, rutin, isoquercetin, isorhamnetin), β-sitosterol, β-sitosterol-3-O-glucosid, α-spinasterol, α-spinasterol-3-O-glucoside Triterpenes (asiaticoside, asiatic acid, madecassic acid), flavonoids (kaempferol), monoterpenes (camphor), fatty acids (palmitic acid) Monoterpenes (pinene), cnidium lactone Polyacetylenes, furanocoumarins, chromones Saponins (ginsenosides), polyacetylenes, fatty acids, amino acids, polysaccharides Saponins (ginsenosides Rb1, Rb2, Rc, Rd, Re and Rg1), polyacetylenes (panaxynol, panaxydol, panaxytriol, falcarindiol), fatty acids, amino acids, polysaccharides Saponins (ginsenosides Rb1, Rb2, Rc, Rd, Re and Rg1), polyacetylenes (panaxynol, panaxydol, panaxytriol, falcarindiol), fatty acids, amino acids, polysaccharides Saponins (ginsenosides Rb1, Rb2, Rc, Rd, Re and Rg1), polyacetylenes (panaxynol, panaxydol, panaxytriol, falcarindiol), fatty acids, amino acids, polysaccharides Alkaloids (arecoline, arecaidin, arecolidin, guvacolin, guvacin) Glucosides (cynanchocerin, cynanchin) Sesquiterpene lactones (artemisinin, arteannuin, artemisitene), monoterpenes (1,8 cineol, borneol, camphor, menthol), coumarins (coumarin, scopoletin) Sesquiterpene lactones, monoterpenes (1,8 cineol, borneol, camphor, menthol), coumarins (coumarin, scopoletin) Monoterpenes, polyacetylenes (falcarinol), fatty acids, sterols Monoterpenes (thymol), terpene glycosids, sesquiterpene lactones Monoterpenes (1,8 cineole, pinene, Chrysanthemum morifolium Eclipta prostrata Senecio scandens Siegesbeckia orientalis Taraxacum officinale Berberidaceae Berberis bealei Dysosma versipellis Epimedium koreanum Brassicaceae Capsella bursa-pastoris Isatis indigotica (root) Isatis indigotica (leaf) Caprifoliaceae Lonicera confusa Convallariaceae Crassulaceae Cupressaceae Dryopteridaceae Ephedraceae Equisetaceae Polygonatum kingianum Rhodiola rosea Platycladus orientalis Cyrtomium fortunei Ephedra sinica Equisetum hiemale Euphorbiaceae Croton tiglium Fabaceae Abrus cantoniensis Acacia catechu Cassia tora 51 borneol, camphor), tannins Monoterpenes (1,8 cineole, pinene, borneol, camphor), tannins Monoterpenes, volatile compounds (Heptadecane, 6,10,14-trimethyl-2pentadecanone, n-hexadecanoic acid, pentadecane, eudesma-4(14),11-diene, phytol, octadec-9-enoic acid, 1,2benzenedicarboxylic acid diisooctyl ester, (Z,Z)-9,12-octadecadienoic acid) Pyrrolizidine alkaloids, terpenoids Phytosterols (β-sitosterol) Sesquiterpene lactones, phenolic acids, triterpene saponins, inulin, phytosterols (β-sitosterol) Alkaloids (berberine, columbamine, jatrorrhizine, palmatine) Flavonoids, podophyllotoxin lignans Flavonoids (quercetin, maohuoside B, epimedin A, epimedin B, icariin, icriside II, icariside I, epimedoside A, hexandraside E) Flavonoids, terpenes, glucosinolates, saponins, tannins Flavonoids, glucosinolates, alkaloids (isatisine A, indican, isatin, indirubin and indigotin) Flavonoids, glucosinolates, alkaloids (isatisine A, indican, isatin, indirubin, indigotin) Flavonoids (rutin, quercetin, luteilin-7O-beta-D-galactoside, lonicerin), chlorogenic acid, beta-sitosterol, tetratriacontane) Flavonoids, steroidal saponins Glucosides (salidroside, tyrosol) Monoterpenes Flavonoids Phenylethylamine alkaloids (ephedrine) Flavonoids, silicic acids Glyceryl crotonate, crotonic acid, crotonic resin, phorbol esters (phorbol formate, phorbol butyrate, phorbol crotonate) Lectins, indolalkaloids Flavonoids (quercetin, rutin), catechin, epicatechin Flavonoids, dianthrone glycosides (sennoside A, B), anthraquinones (anthrones, emodin, rhein) Desmodium styracifolium Monoterpenes, alkaloids Flavonoids, isoflavonoids, chalcone (liquiritin, isoliquiritin), saponins (glycyrrhizic acid, 4-hydroxyGlycyrrhiza inflata glycyrrhtinic acid), monoterpenes (1-(2Furyl)propan-2-one, pyrazine (2-acetyl1-furfuryl pyrrole), benzene (1-methoxy4-isopropylbenzene) Spatholobus suberectus Flavonoids, catechin, pyranoside Flavonoids, triterpene saponins, LSutherlandia frutescens canavanin, pinitol Geranium wilfordii Flavonoids, tannins, monoterpenes Geraniaceae Flavonoids, tannins, coumarines, Pelargonium sidoides monoterpenes Flavonoids (glycosides of kaempferol, quercetin, isorhamnetin), bisflavonoids, Ginkgo biloba proanthocyanidins, ginkgolic acid, the Ginkgoaceae sesqiterpene alcohol bilobalide, terpene lactones, diterpene lactones (ginkgolides) Hypericin, hyperforin, monoterpenes, Hypericum japonicum Hypericaceae flavonoids, tannins, saponins Belamcanda chinensis Flavonoids (belamcandin, iridin) Iridaceae Mentha haplocalyx Monoterpenes (menthol) Lamiaceae Triterpene saponins, flavonoids (rutin) Prunella vulgaris tannins, rosmarinic acid, monoterpenes (camphor) Scutellaria baicalensis Flavonoids, iridoid glycosides Monoterpenes (1,8-cineol, pinene, Cinnamomum cassia Lauraceae cinnamaldehyde), coumarins, tannins Taxillus chinensis Flavonoids (avicularin, quercetin) Loranthaceae Tannins (punicalin, punicalagin), Punica granatum Lythraceae piperidine alkaloids Tannins, flavonoids (rutin), Magnolia officinalis sesquiterpenes, monoterpenes (1,8Magnoliaceae cineol) Steroidal saponins (dioscin, polyphyllin Melanthiaceae Paris polyphylla D) Lysimachia christinae Flavonoids, tannins, triterpene saponins Myrsinaceae Monoterpenes (1,8-cineol) Eucalyptus robusta Myrtaceae sesquiterpenes Quercetin 3-O-methyl ether, ophioglonin Ophioglossaceae Ophioglossum vulgatum Dendrobium loddigesii Alkaloids (dendrobine, nobiline) Orchidaceae Flavonoids, (kaempferol), β-sitosterol, Paeonia lactiflora resveratrol derivatives, phytoestrogens, Paeoniaceae monoterpene glycosid (paeoniflorin) Iridoid glycosides (harpagide, Harpagophytum procumbens Pedaliaceae harpagoside) 52 Poaceae Cymbopogon distans Polygonaceae Fallopia japonica (syn. Polygonum cuspidatum) Fallopia multiflora (syn. Polygonum multiflorum) Polygonum aviculare Rheum officinale Ranunculaceae Coptis chinensis Rosaceae Rosa chinensis Rosa laevigata Sanguisorba officinalis Rubiaceae Hedyotis diffusa Rutaceae Evodia lepta Evodia rutaecarpa Phellodendron chinense Saururaceae Houttuynia cordata Schisandraceae Kadsura longipedunculata Selaginellaceae Selaginella tamariscina Valerianaceae Patrinia scabiosaefolia Verbenaceae Violaceae Verbena officinalis Viola yezoensis Zingiberaceae Alpinia galanga Alpinia oxyphylla 53 Monoterpenes (1,8-cineol, pinene, cymbopogone, cymbopogonol) Anthraquinones (emodin, rhein, chrysophanol), tetrahydroxystilbene glucosides, steroidal saponins, tannins Flavonoids, tannins Flavonoids, tannins Flavonoids, tannins, anthraquinone glycosides (emodin, rhein) Alkaloids (berberine, palmatine, coptisine, columbamine, epiberberine) Flavonoids, tannins, carotinoids, vitamin C Flavonoids, tannins, carotinoids, vitamin C Tannins, flavonoids, saponins, proanthocyanidins Iridoid glycosides Indole alkaloids, (evodiamin, rutecarpin), chromenes Indole alkaloids, (evodiamin, rutecarpin) Isoquinoline alkaloids (berberine, palmatine, jatrorrhizine), sesquiterpene lactones Flavonoids (quercetin, quercetin 3rhamnoside), norcepharadione B Lignans (kadsurilignans), triterpenoid acids, triterpene dilactones, camphene, borneol Flavonoids (amentoflavone, isocryptomerin, biflavonoids), sterols Triterpene saponins, iridoid glycosides (patrinoside) Iridoid glycosides, flavonoids Falavonoids, saponins Monoterpenes (camphor, cineole, dpinene, eugenol, cadinene), flavonoids (galangin, riboflavin), niacin, 1'acetoxychavicol acetate, ascorbic acid Monoterpenes (camphor, cineole, dpinene, eugenol, cadinene), flavonoids (galangin, riboflavin), niacin, 1'acetoxychavicol acetate, ascorbic acid Genetic authentication of plant material The TCM plants were genetically identified by DNA barcoding. DNA was isolated from plant drugs; their chloroplast rbcL gene was amplified and sequenced. The obtained sequences were authenticated with sequences obtained from sample species of the Botanical Garden of Heidelberg and databases. Voucher specimens of the plant material were deposited at the Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany. Extract preparation 500 g of dry plant material was powdered and extracted with dichloromethane, methanol and water under moderate heat using a reflux condenser for 4 hours. The extracts obtained were concentrated using the rotation evaporator, stored at -40 °C under exclusion of light and dried under vacuum prior to the experiments. Dried extracts were dissolved in DMSO for the experiments. Test organisms T. b. brucei TC 221 were originally obtained from Prof. Peter Overath (Max-Plank Institut für Bioloie, Tübingen) by Dr. D. Steverding before being cultured at the IPMB, Heidelberg since 1999. HeLa cancer cells and Cos7 fibroblast cells (African green monkey kidney cells immortalized with the monkey virus SV40) were cultured at the IPMB, Heidelberg for several years; Hep G2, Sk Hep1 and LS 174 T, HepG2 2.2.15 and EBTr cells were cultured at the Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, CIBERehd, Spain. Methods Cancer Cells (Hep G2, Sk Hep1 and LS 174 T) were basically grown as previously described1 [35], HeLa and Cos72 cells were grown at 37 °C with 5% CO2 in DMEM complete media (10% heat-inactivated FBS; 5% penicillin/ streptomycin; 5% non-essential amino acids). Hep G2, Sk Hep1, and LS 174 T cells were grown at 37 ºC with 5% CO2 in MEM complete media (10% heat-inactivated FBS; 1% antibiotic-antimycotic solution). 1 Experiments performed by Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, CIBERehd, Spain: Marta R. Romero, Alba G. Blazquez, Jose J.G. Marin 2 Experiments performed by Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany: Dorothea Kaufmann 54 HepG 2.2.15 cells were cultured as previously described3 [7] in DMEM complete medium with 10% FBS and 20 mg/ml gentamicin. EBTr cells were cultured as described elsewhere3 [6], they were maintained in MEM-GLUTAMAX medium with 10% heat-inactivated FBS; 1% penicillin/ streptomycin, and 0.1 % gentamicin. T. b. brucei TC221 cells were cultured in BALTZ medium [36] supplemented with 20% inactivated FBS and 0.001% β-mercaptoethanol. The MTT cell viability assay was used to determine cytotoxicity in Cos74 and HeLa cells [37,38]. Cells during the logarithmic growth period were seeded in 96 well plates (Greiner Labortechnik) at concentrations of 2 x 104 cells/ well and grown for 24 h. Dried and powdered extracts were dissolved in DMSO before being serially diluted to 10 concentrations in 96 well plates. Cells were incubated with the extract for 24 h before the medium was removed and replaces with fresh medium containing 0.5 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT). The formazan crystals were dissolved in DMSO 4 h later; the absorbance was measured at 570 nm with a Tecan Safire II Reader. T. b. brucei TC221 cell viability was additionally to the MTT assay confirmed and evaluated using microscopic techniques. Toxicity of the extracts for T. b. brucei was compared to HeLa and Cos7 cells and the Selectivity index (SI) was calculated. SI: ratio of the IC50 value of mammalian cells divided by the IC50 value of trypanosomes. To test the antiproliferative effect, 5x103 or 15x103 cells per well (depending on the cell line) were seeded in 96 well plates and incubated with 5, 10, 25, 50, 100, and 200 µg/ml water extract for 72 h. The cell viability was also determined using the MTT assay with minor modifications. Acute toxicity was similarly measured using MTT assay but after short-term (6 h) incubation with the extracts at the concentrations of IC50 calculated for each cell line. To determine the antiviral effect of the extracts, BVDV was used here as a substitute in vitro model for hepatitis C virus infection3. Bovine epithelial cells obtained from embryonic 3 Experiments performed by Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, CIBERehd, Spain: Marta R. Romero, Alba G. Blazquez, Jose J.G. Marin 4 Experiments performed by Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany: Dorothea Kaufmann 55 trachea (EBTr) were cultured in MEM medium as described previously [6]. They were seeded in 96 well plates (15 x 103 cells/well; 50 µl/well) and left to attach for 2 h. Afterwards, the cells were infected with 50 µl/well of the desired dilution in culture medium of an initial suspension of BVDV (cytopathic strain Oregon C24V, genotype I, subgenotype b) to reach 40% cytopathic effect. After 48 h of incubation the medium was replaced with dilutions in culture medium of the extracts (1, 5, 10, 50, 100 µg/ml). The viability of the EBTr cells was measured using the MTT assay after 72 h incubation. An HBV antiviral assay based on the HepG2 2.2.15 model was used to determine the antiviral activity of the extracts5 [39]. HepG2 2.2.15 cells were seeded in six-wells plates (35x104 per well) before being incubated for 21 days with 50 µg/ml, 25 µg/ml and 12.5 µg/ml extract. The culture medium was replaced every 3 days with fresh medium, containing the extract dilutions. Quantitative real-time PCR (QPCR) was used to measure the HBV-DNA levels in the culture medium (representing HBV virion production) as described previously [7]. Cytotoxicity was determined using the uptake of NR dye at the end of treatment [40]. At least three cultures for each experimental condition were carried out. Data points were obtained in triplicate form (T. b. brucei, cancer cell lines, Cos7, HepG2 2.2.15 cells) and in 8 different wells (EBTr). The IC50 value was calculated using SigmaPlot® 11.0 (4 parameter logistic curve). Statistical significance determined via paired t-test or the Bonferroni method of multiple-range testing. 3.4 Results and Discussion The great diversity of natural products occurring in plants is of the utmost importance for the discovery of new pharmaceutical lead compounds. Through millions of years of evolution the defence mechanisms of plants were perfected. The great variety of natural products clearly demonstrates the efficacy of this defence strategy against herbivores, but also fungi, bacteria and viruses (Tab. 2). In many cases the plants do not rely on specific interactions but also rely on unspecific molecules that interact with a great number of targets (Tab. 1). Of highest importance are the interactions with free amino and free SH groups. While aldehydes, isothiocyanates and epoxids are able to form covalent bonds with free amino groups, sesquiterpene lactones, disulfides, polyacetylenes and epoxides interact with free SH groups. 5 Experiments performed by Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, CIBERehd, Spain: Marta R. Romero, Alba G. Blazquez, Jose J.G. Marin 56 Phenolic OH-groups interact on a non-covalent basis with free amino groups by forming strong hydrogen and ionic bonds. The cytotoxicity of water and organic solvent extracts from 82 medicinal plants was determined in the fibroblast cells Cos7 and in four cancer cell lines: HeLa, HepG2, SK Hep1 and LS 174T (Tab. 3, 4). The aqueous extracts were also screened against BVDV and HBV (Tab. 3), whereas organic solvent extracts were assayed on T. b. brucei (Tab. 4). Our results revealed promising results in order to use several of these plants as sources for therapeutic agents. The viral cell offers three main targets to the natural products (Tab. 1). They can interact with the surface proteins, the biomembrane and the DNA or RNA. While most plants interact unselectively with the virus, selective interactions do also occur. Ten plants demonstrated antiviral protection against BVDV in combination with low cytotoxicity. Four plants (Panax ginseng, Cassia tora, Ginkgo biloba and Viola yezoensis) exerted protective antiviral effect only at high doses, whereas other six plant extracts (Celosia cristata, Ophioglossum vulgatum, Houttuynia cordata, Selaginella tamariscina, Alpinia galanga and Alpinia oxyphylla) were effective at lower concentrations (Tab. 3). Regarding the six plants with higher potential interest as a source of anti-HCV drugs, antiviral glycoproteins, CCP-25 and CCP-27, purified from the leaves of Celosia cristata [43] have been previously studied [44-48]. Their ability to inhibit viral RNA translation activities against several plant viruses have been described [49]. Quercetin 3-O-methyl ether and ophioglonin obtained from plants belonging to Ophioglossaceae genus have shown slight activity against HBV [50]. Since 1995 when antiviral activities against enveloped viruses were discovered in extracts of Houttuynia cordata [51], such as influenza, HIV, herpes, SARS and also in enteroviruses [51-54], 40 compounds have been isolated from the whole plant [55]. Among all of them, norcepharadione B has been identified as anti-herpes virus type 1 compound [55], quercetin may reduce virions production of HCV [56], but not against HBV [7] and quercetin 3-rhamnoside may be effective against influenza A virus [57]. 57 Selaginella tamariscina has been a source of several drugs with anti-bacterial and antifungal activities such as amentoflavone [58], isocryptomerin [59-61], or with antitumor effects such as sterols [62] and biflavonoids [63]. Alpinia galanga crude extracts have been shown to have antibacterial activities [64] which seem to be enhanced in combination with other plants such as rosemary and lemon iron bark [65]. Compounds obtained from this plant, have also demonstrated other antimicrobial activities, such as anti-leishmanial phenylpropanoids [66] or 1'-acetoxychavicol acetate, and its halogenated derivatives (inhibitors of HIV-regulator protein Rev-export) [67-70]. The insecticidal properties of diarylheptanoid [71] as well as protective effects on anaphylactic reactions of the aqueous extracts from the fruit of Alpinia oxyphylla [72] have been described in the past. Recently anti-angiogenic properties of the fruit have been also discovered [73]. The water extracts were also screened against HBV in HepG2 2.2.15 cells (Tab. 3). Evodia lepta, Hedyotis diffusa and several Glycyrrhiza species lowered the HBV DNA significantly while being not toxic to the HepG2 2.2.15 cell line (Fig. 1). Hardly anything is known about the other natural products of Evodia lepta, while the highly bioactive chromenes seem to be among the major constituents [74]. Glycyrrhiza species, on the other hand, are well known for their anti-inflammatory effects due to glycyrrhizic acid [9]. This genus is also known for its antiviral, especially antihepatitis properties [15,75]. Its ability to reduce the HBV-DNA in the culture medium of HepG2 2.2.15 at high doses has been previously reported [7]. Heydiotis diffusa again is a plant rich in iridoid glycosides with antiinflammatory and hepatoprotective activities [76-78]. These compounds are most likely to be responsible for the effects against HBV. Three enterohepatic cancer cell lines, HepG2 and SK Hep1 (from human hepatoblastoma and hepatoma) and LS 174T (from human colon adenocarcinoma), were used to determine the antitumor ability of water extracts (Tab. 3). Twenty extracts were found to induce a significant antiproliferative effect with IC50 values between 0.5 and 20 µg/ml on these cell lines. These were further investigated to elucidate whether this was due to cytotoxicity. 58 Fig. 1: Effect of water extracts on hepatitis B virus (HBV) release as determined by HBV-DNA content in the culture medium and cell viability as determined by Neutral Red uptake by human hepatoblastoma cells HepG2 2.2.15 infected with HBV. Values are means ± SD of three experiments carried out in triplicate by incubation with the extracts for 21 days. 59 Fig. 2: Acute cell toxicity as determined by MTT assay in human hepatoblastoma HepG2 cells. Values are means ± SD of four experiments carried out in triplicate. Fig. 3: Acute cell toxicity as determined by MTT assay in human hepatoma SK-Hep1 cells. Values are means ± SD of four experiments carried out in triplicate. 60 Fig. 4: Acute cell toxicity as determined by MTT assay in human colon adenocarcinoma LS 174T cells. Values are means±SD of four experiments carried out in triplicate. In HepG2, none of the four extracts with ability to inhibit cell growth (Coptis chinensis, Epimedium brevicornum, Equisetum hiemale and Senecio scandens) were found to induce acute cell toxicity when they were incubated with the IC50 of the extracts for 6 h (Fig. 2). In SK Hep1, among the ten extracts with antitumour effect seven did not induce acute toxicity (Arctium lappa, Cassia tora, Centipeda minima, Chrysanthemum indicum, Coptis chinensis, Phellodendron chinense and Rheum palmatum), whereas Dysosma versipellis was especially active by lowering the cell viability in comparison to the control to 40% (Fig. 3). This is consistent with the inhibitory effects known for the lignans of D. versipellis against prostate cancer cell lines [79]. Evodia lepta and Kadsura longipedunculata lowered also the cell viability of Sk Hep1 in comparison to the control to 50-60%. Recently, it has been reported that the essential oil of Kadsura longipedunculata and its major components (delta-cadinene, camphene, borneol, cubenol, and delta-cadinol) have some degree of cytotoxic activity against some human cell lines [80]. In LS 174T cells, water extracts from Coptis chinensis, Dysosma versipellis, Epimedium brevicornum, Hedyotis diffusa and Houttunia cordata have antiproliferative effects without affecting cell viability (Fig. 4), whereas Paeonia lactiflora, Platycladus orientalis, and Polygonum aviculare, in addition to inhibition of cell growth were able to acutely lower cell viability in comparison to the control to 60-70%. 61 Paeonia lactiflora, which belongs to the Paeoniacea family, is known as one of the richest sources of various resveratrol derivatives [81]. These phytoestrogens are known to exert strong antioxidant activity [81] and to inhibit growth of several cancer cell lines [82,83], including a colon human cell line [84]. Recently, the antiproliferative effects of essential oils obtained from Platycladus orientalis on human renal adenocarcinoma and amelanotic melanoma cells have been reported [85]. Coptis chinensis, which has been found active against the three enterohepatic cell lines, belongs to TCM formulations commonly used to treat liver diseases associated to infections by gastrointestinal parasite such as Blastocystis hominis [86]. Coptisine, which is used as gastric mucosa protector, and berberine, which has very interesting properties as antiinflamatory, antidiabetes, antidiarrhea, and hypocholesterolemic drug, have been obtained from this plant. Berberine has also shown antitumoral activities in other in vitro models [8791]. Animal cells offer several targets to natural products (Tab. 1). Of great importance are the biomembrane, the proteins and the DNA. Since human cells and trypanosomes share many similarities in the structure of the cells, it is extremely important to select those plant extracts where a great selectivity index occurred. The different cytotoxicity strongly hints to selective interactions between natural products and trypanosomes that do not occur in human cells. A great selectivity index also hints to the relative absence or relative insignificance of general cytotoxic mechanisms like the unspecific interaction of phenolic OH-groups compared to more specific interactions with certain structures in trypanosomes. The CH2Cl2 and MeOH extracts of 82 medicinal plants were screened against the cell lines HeLa, Cos7 and trypanosomes (T. b. brucei) (Tab. 4). The Selectivity index (SI) of the IC50 of mammalian cell/ trypanosomes was regarded as significant if it was over 80. According to this criterium, seven extracts were highly selective towards trypanosomes. The CH2Cl2 extract of Alpinia oxyphylla showed IC50 values of 119.6 µg/ ml, 30.4 µg/ ml and 0.7 µg/ ml against HeLa, Cos7 and T. b. brucei respectively with SI of 170 and 43 between HeLa and T. b. brucei and Cos7 and T. b. brucei respectively. The MeOH extract of A. oxyphylla also was effective with IC50 values of 213.8 µg/ ml, 110.2 µg/ ml and 2.0 µg/ ml 62 against HeLa, Cos7 and T. b. brucei respectively. The SI was 107 and 55 between HeLa and T. b. brucei and Cos7 and T. b. brucei respectively. A. oxyphylla is basically an essential oil plant, so that we suspect the active principle to be based on the sesquiterpenes already known for their cytotoxic properties [92]. For Kadsura longipedunculata only the CH2Cl2 extract exhibited a significant selectivity. Here, the IC50 values of HeLa, Cos7 and T. b. brucei were 9.9 µg/ ml, 1.8 µg/ ml and 0.1 µg/ ml respectively, resulting in SI of 99 and 18 between HeLa and T. b. brucei and Cos7 and T. b. brucei respectively. Essential oil and lignans form the major natural compounds of K. longipedunculata [80,93]. The specific trypanocidal effect rather seems to be based on the lignans than on the more unspecific essential oil. Further studies would be necessary to confirm this assumption. For Arctium lappa only the CH2Cl2 extract showed a significant selectivity with IC50 values of 345.0 µg/ ml, 344.2 µg/ ml and 3.6 µg/ ml against HeLa, Cos7 and T. b. brucei respectively and SI of 96 between HeLa and T. b. brucei and Cos7 and T. b. brucei. In Panax ginseng and P. notoginseng the selectivity was again limited to the CH2Cl2 extract. P. ginseng gave IC50 values of 152.4 µg/ ml, 47.7 µg/ ml and 0.9 µg/ ml against HeLa, Cos7 and T. b. brucei respectively with SI of 169 and 53 between HeLa and T. b. brucei and Cos7 and T. b. brucei respectively. P. notoginseng demonstrated IC50 values of 263.0 µg/ ml, 6.4 µg/ ml and 0.9 µg/ ml with SI of 292 and 7 between HeLa and T. b. brucei and Cos7 and T. b. brucei respectively. Also an extremely active plant was Saposhnikovia divaricata. Here as well, lipophilic CH2Cl2 extract was selective with IC50 values of 410.1 µg/ ml, 45.9 µg/ ml and 5.1 µg/ ml against HeLa, Cos7 and T. b. brucei respectively and SI of 80 and 9 between HeLa and T. b. brucei and Cos7 and T. b. brucei respectively. The trypanocidal effects of A. lappa, P. ginseng, P. notoginseng and S. divaricata are based on the presence of highly reactive polyacetylenes, especially panaxynol. Only the methanolic extract of Coptis chinensis showed a significant selectivity, but not the dichloromethane extract. The IC50 values of 81.8 µg/ ml, 3.7 µg/ ml and 0.4 µg/ ml against HeLa, Cos7 and T. b. brucei respectively gave SI of 205 and 9 between HeLa and T. b. brucei and Cos7 and T. b. brucei respectively. Our analytical data confirmed berberine as the main 63 alkaloid of C. chinensis. The toxicity of C. chinensis is probably an effect of the DNA intercalation of its alkaloids into the DNA double helix of T. b. brucei [94,95]. The trypanocidal effect of berberine against different trypanosome species has been demonstrated previously. Merschjohann et al. [96] showed that T. congolense are sensitive to berberine at concentrations of 83 µM, while Rosenkranz and Wink [97] demonstrated a sensitivity of T. brucei to berberine at concentrations of only 0.5 µM. Recently, the effect of berberine against T. rhodesiense was also established by Freiburghaus et al. [98].T. rhodesiense was sensitive to 4.2 µg/ml. The significant differences in sensitivity of different trypanosome species to berberine could be of high interest regarding resistance mechanisms against mutagenic compounds. Berberine might due to its mutagenic activity never become a lead structure for the development of trypanocidal drugs, but the differences in sensitivity of these three trypanosome species might help to understand defence mechanisms against DNA intercalating substances. Traditional Chinese and European Medicine comprise promising plants that might be used for antiviral, antitrypanosomal and anticancer therapy. The promising discoveries of highly effective plants against viral hepatitis, trypanosomiasis and liver and intestinal cancer cells however require further research to establish new lead structures or their combinations for the treatment of these important diseases. 64 Table 3: Cytotoxicity against cancer cells, Cos7 fibroblasts, and antiviral activity against HBV and flaviviruses of water extracts obtained from 82 medicinal plants Antiumour Effect O Family Species IPMB / N GenBank Acanthaceae Amaranthaceae Andrographis paniculata Celosia cristata Bupleurum chinense Bupleurum marginatum Centella asiatica Cnidium monnieri Saposhnikovia divaricata Eleutherococcus senticosus Panax ginseng Panax notoginseng Areca catechu Cynanchum paniculatum Artemisia annua Artemisia capillaris Arctium lappa Centipeda minima Chrysanthemum indicum Chrysanthemum morifolium Eclipta prostata Senecio scandens Siegesbeckia orientalis Taraxacum officinale Berberis bealei Dysosma versipellis Epimedium koreanum Isatis indigotica (root) Isatis indigotica (leaf) Lonicera confusa Polygonatum kingianum Rhodiola rosea Platycladus orientalis Cyrtomium fortunei Ephedra sinica Equisetum hiemale Croton tiglium Abrus cantoniensis Acacia catechu Cassia tora P6838 / 04 P6848 / 14 P6844 / 10 P6845 / 11 P6849 / 15 P6854 / 20 P6902 / 68 P6919 / 79 P8088 / 81 P6887 / 53 P6840 / 06 P6858 / 24 P6841 / 07 P6842 / 08 P6839 / 05 P6850 / 16 P6851 / 17 P6852 / 18 P6863 / 29 P6905 / 71 P6906 / 72 P6908 / 74 P6883 / 49 P6862 / 28 P6865 / 31 P6877 / 43 P6878 / 44 P6880 / 46 P6892 / 58 P6920 / 84 P6891 / 57 P6859 / 25 P6864 / 30 P6866 / 32 P6856 / 22 P6835 / 01 P6836 / 02 P6847 / 13 JF949965 JF949970 JF950021 JF949968 JF950022 JF949973 JF949988 JF950028 JF950030 JF949975 JF949966 JF949967 JF949994 JF949971 JF949972 JF950000 JF949989 JF949990 JF950019 JF949996 JF950002 JF949981 JF949981 JF949982 JF950027 JF950011 JF949998 JF950001 JF950003 JF949964 JF949969 Apiaceae Araliaceae Arecaceae Asclepiadaceae Asteraceae Berberidaceae Brassicaceae Caprifoliaceae Convallariaceae Crassulaceae Cupressaceae Dryopteridaceae Ephedraceae Equisetaceae Euphorbiaceae Fabaceae Cos 7 IC50 (µg / ml) 255.6 263.9 15.6 350.6 325.8 339.7 153.0 130.5 151.7 182.3 16.6 220.7 288.6 201.9 355.5 55.6 320.9 760.4 291.7 114.2 159.2 156.9 270.0 1276.9 140.7 557.2 93.5 446.8 298.4 61.9 97.7 30.4 69.1 265.9 166.2 575.2 35.7 481.3 HeLa IC50 (µg / ml) 576.0 2773.5 339.3 838.1 1436.8 775.5 1024.7 430.0 2594.6 1574.9 378.1 693.9 775.5 561.7 516.3 207.2 583.4 1045.8 667.0 607.9 542.8 708.5 659.4 1274.8 280.2 2427.4 1223.5 812.2 2321.7 144.4 428.2 567.4 193.1 1058.2 1052.7 587.1 157.5 1519.3 65 Antiviral Effect a HepG2 IC50 Sk Hep1 IC50 LS 174T IC50 170 200 120 ND > 200 > 200 > 200 > 200 > 200 > 200 40 > 200 177 142 200 72 130 > 200 > 200 3.5 40 130 63 > 200 5 > 200 170 > 200 > 200 160 > 200 > 200 200 5 140 > 200 > 200 > 200 80 180 100 ND 40 > 200 200 125 140 > 200 21 130 50 30 5 0,5 8 180 30 50 100 147 60 3.5 32 > 200 98 > 200 130 110 155 > 200 150 > 200 50 100 25 0.5 > 200 > 200 100 ND 70 > 200 155 160 > 200 200 90 > 200 > 200 > 200 > 200 130 200 > 200 120 25 50 65 70 3.5 10 > 200 80 > 200 42 40 10 > 200 > 200 > 200 > 200 > 200 > 200 > 200 anti-BVDV Toxicity on EBTr cells 0 0 ++ ND ++++ ++++ ++ ++ 0 0 ++++ ++ ++++ ++ ++ ++ ++++ ++ ++ ++++ ++ ++ ND ++++ ++ 0 ++ ++ ++ ++ ++ ++ ++++ ++ ++++ ++ ++ 0 b anti-BVDV protection in EBTr cells 0 ++ 0 ND 0 0 0 ++ + 0 0 ++ 0 0 0 ++ 0 0 ++ ++ ++ ++ ND 0 0 0 ++ 0 0 ++ 0 ++ ++ 0 0 ++ ++ + c anti-HBV effect in Hep G2 2.2.15 ++ 0 ND ND 0 0 ++ 0 0 ND ND 0 ++ ++ 0 ND 0 0 0 ND ND 0 ND 0 ND 0 0 0 0 0 0 0 ND ND ++ 0 ++ ++ d Toxicity at effective doses ++ ND ND ND ND ND ++ ND 0 ND ND ND ++ ++ ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ++ ND ++ ++ Geraniaceae Ginkgoaceae Hypericaceae Iridaceae Lamiaceae Lauraceae Loranthaceae Lythraceae Magnoliaceae Melanthiaceae Myrsinaceae Myrtaceae Ophioglossaceae Orchidaceae Paeoniaceae Pedaliaceae Poaceae Polygonaceae Ranunculaceae Rosaceae Rubiaceae Rutaceae Saururaceae Schisandraceae Selaginellaceae Valerianaceae Verbenaceae Violaceae Zingiberaceae Desmodium styracifolium Glycyrrhiza inflata Spatholobus suberectus Sutherlandia frutescens Geranium wilfordii Pelargonium sidoides Ginkgo biloba Hypericum japonicum Belamcanda chinensis Mentha haplocalyx Prunella vulgaris Scutellaria baicalensis Cinnamomum cassia Taxillus chinensis Punica granatum Magnolia officinalis Paris polyphylla Lysimachia christinae Eucalyptus robusta Ophioglossum vulgatum Dendrobium loddigesii Paeonia lactiflora Harpagophytum procumbens Cymbopogon distans Fallopia japonica Polygonum aviculare Polygonum multiflorum Rheum officinale Coptis chinensis Rosa chinensis Rosa laevigata Sanguisorba officinalis Hedyotis diffusa Evodia lepta Evodia rutaecarpa Phellodendron chinense Houttuynia cordata Kadsura longipedunculata Selaginella tamariscina Patrinia scabiosaefolia Verbena officinalis Viola yezoensis Alpinia galanga Alpinia oxyphylla P6861 / 27 P6873 / 39 P6907 / 73 tba / 83 P6867 / 33 tba / 82 P6872 / 38 P6876 / 42 P6843 / 09 P6884 / 50 P6896 / 62 P6903 / 69 P6853 / 19 P6909 / 75 P6897 / 63 P6882 / 48 P6888 / 54 P6881 / 47 P6868 / 34 P6885 / 51 P6860 / 26 P6886 / 52 tba / 80 P6857 / 23 P6894 / 60 P6893 / 59 P6895 / 61 P6898 / 64 P6855 / 21 P6899 / 65 P6900 / 66 P6901 / 67 P6874 / 40 P6869 / 35 P6870 / 36 P6890 / 56 P6875 / 41 P6879 / 45 P6904 / 70 P6889 / 55 P6910 / 76 P6911 / 77 P6837 / 03 P6917 / 78 JF949976 JF950025 JF949991 JF949977 JF950005 JF949980 JF949995 JF949984 JF950013 JF950017 JF950023 JF949992 JF950014 JF950008 JF950010 JF949983 JF950009 JF949999 JF950026 JF949974 JF950004 JF950012 JF949987 JF950015 JF950024 JF950016 JF949979 JF949978 JF949986 JF950006 JF950007 JF950018 JF949985 JF950020 JF949993 - 333.5 583.9 16.6 857.6 225.8 15.2 450.8 151.8 222.1 285.7 21.5 46.4 453.9 181.7 8.6 73.0 38.4 152.1 94.1 344.0 104.0 148.2 242.9 257.7 39.8 82.6 61.3 51.5 118.3 24.3 93.6 20.5 158.7 419.2 1176.9 282.9 633.2 6.8 103.9 147.3 93.9 135.0 952.8 105.8 651.4 2288.0 174.1 1670.7 62.1 62.2 1717.0 445.5 1378.8 519.1 341.3 150.0 713.6 1023.2 152.4 451.5 42.6 431.4 15.8 1780.1 294.4 287.3 733.4 486.1 596.4 488.6 928.0 670.9 101.0 135.8 781.7 87.0 1542.7 971.0 185.6 750.3 2835.9 167.6 703.4 525.5 416.9 1459.2 2357.3 1802.2 66 > 200 > 200 100 > 200 80 200 > 200 165 > 200 70 100 80 180 > 200 100 ND 54 > 200 ND > 200 > 200 > 200 160 > 200 > 200 > 200 ND 200 10 ND 190 ND > 200 > 200 > 200 50 > 200 > 200 > 200 168 100 170 > 200 > 200 > 200 > 200 135 70 45 > 200 9 80 > 200 82 145 50 > 200 > 200 100 ND 168 > 200 ND > 200 70 > 200 190 > 200 > 200 > 200 ND 25 2 ND 135 ND > 200 20 25 10 135 20 > 200 87 168 200 > 200 > 200 150 185 70 > 200 200 45 > 200 100 > 200 > 200 80 120 > 200 155 60 ND 8 > 200 ND > 200 160 10 100 > 200 80 10 ND 200 18 ND 60 ND 5 > 200 100 85 5 20 200 35 117 140 > 200 155 0 0 ++ 0 ++ ++ 0 ++ ++ ++++ ++ ++ ++++ 0 ++++ ND ++++ ++ ND 0 ++ 0 ++ ++++ ++++ ++ ND ++ ++++ ND ++ ND ++ ++++ ++++ ++ 0 ++ 0 ++ ++ 0 0 0 0 0 0 0 ++ 0 + ++ 0 0 0 0 0 0 0 ND ++ 0 ND ++ ++ 0 ++ 0 ++ 0 ND 0 0 ND ++ ND ++ 0 ++ ++ ++ ++ ++ ++ 0 + ++ ++ 0 ++++ ND 0 ND 0 0 0 ++ ND ND ND ++ 0 ND ND ND 0 ND 0 0 ND 0 ++ 0 0 ND 0 ND ND 0 ND ++++ ++++ 0 ND 0 0 0 0 ND ND ++ 0 ND 0 ND ND ND ND ND ND ++ ND ND ND ++ ND ND ND ND ND ND ND ND ND ND ++ ND ND ND ND ND ND ND ND 0 0 ND ND ND ND 0 ND ND ND ++ ND a Toxicity on EBTr cells: 0, not toxic; ++, toxic at high concentrations; ++++, toxic in all concentrations. b Anti-BVDV protection in EBTr cells: 0, without effect; +, protection at high concentrations; ++, protection at low concentrations c Anti-HBV effect in Hep G2 2.2.15 cells: 0, without effect; ++, effect comparable to toxicity; ++++, high ability to reduce HBV DNA. d Toxicity at effective dose on Hep G2 2.2.15 cells: 0, not toxic; ++, effect comparable to reduction in HBV DNA. ND: Not determined 67 Table 4: Cytotoxicity against HeLa cancer cells, Cos7 fibroblasts and Trypanosoma brucei brucei of organic extracts obtained from 82 medicinal plants CH2Cl2 CH2Cl2 CH2Cl2 MeOH MeOH MeOH HeLa Cos 7 T. b. brucei Family Species IPMB / N GenBank HeLa Cos 7 T. b. brucei Acanthaceae Amaranthaceae Andrographis paniculata Celosia cristata Bupleurum chinense Bupleurum marginatum Centella asiatica Cnidium monnieri Saposhnikovia divaricata Eleutherococcus senticosus Panax ginseng Panax notoginseng Areca catechu Cynanchum paniculatum Artemisia annua Artemisia capillaris Arctium lappa Centipeda minima Chrysanthemum indicum Chrysanthemum morifolium Eclipta prostata Senecio scandens Siegesbeckia orientalis Taraxacum officinale Berberis bealei Dysosma versipellis Epimedium koreanum Isatis indigotica (root) Isatis indigotica (leaf) Lonicera confusa Polygonatum kingianum Rhodiola rosea Platycladus orientalis Cyrtomium fortunei Ephedra sinica Equisetum hiemale Croton tiglium Abrus cantoniensis Acacia catechu P6838 / 04 P6848 / 14 P6844 / 10 P6845 / 11 P6849 / 15 P6854 / 20 P6902 / 68 P6919 / 79 P8088 / 81 P6887 / 53 P6840 / 06 P6858 / 24 P6841 / 07 P6842 / 08 P6839 / 05 P6850 / 16 P6851 / 17 JF949965 JF949970 JF950021 JF949968 JF950022 JF949973 JF949988 JF950028 JF950030 JF949975 JF949966 JF949967 JF949994 JF949971 188.4 472.0 235.2 176.0 175.0 127.1 410.1 300.0 152.4 263.0 1023.3 395.6 107.9 93.5 345.0 63.3 152.1 104.7 136.0 87.1 67.4 64.9 37.0 45.9 61.4 47.7 6.4 117.0 114.2 34.5 29.4 344.2 10.4 63.5 16.8 55.2 17.0 16.2 14.0 14.9 5.1 13.5 0.9 0.9 22.5 53.1 8.1 10.6 3.6 2.2 16.0 Ratio HeLa/ T. b. brucei 11 9 14 11 13 9 80 22 169 292 45 7 13 9 96 29 10 P6852 / 18 JF949972 129.4 42.8 19.3 7 2 349.2 P6863 / 29 P6905 / 71 P6906 / 72 P6908 / 74 P6883 / 49 P6862 / 28 P6865 / 31 P6877 / 43 P6878 / 44 P6880 / 46 P6892 / 58 P6920 / 84 P6891 / 57 P6859 / 25 P6864 / 30 P6866 / 32 P6856 / 22 P6835 / 01 P6836 / 02 JF950000 JF949989 JF949990 JF950019 JF949996 JF950002 JF949981 JF949981 JF949982 JF950027 JF950011 JF949998 JF950001 JF950003 JF949964 - 266.4 268.6 101.5 232.8 93.8 213.9 48.7 196.4 321.5 226.5 279.6 164.1 121.7 572.4 95.3 125.6 422.9 494.4 164.1 112.0 143.5 17.7 177.1 13.3 49.9 3.5 42.3 0.6 58.9 53.9 74.6 21.8 132.1 41.8 35.7 225.9 129.4 31.5 38.1 13.1 7.9 17.5 5.9 39.5 4.2 2.9 45.3 16.2 52.6 43.9 17.7 37.1 20.9 30.9 86.5 14.5 13.1 7 21 13 13 16 5 12 68 7 14 5 4 7 15 5 4 5 34 12 3 11 2 10 2 1 0.8 14 0.01 3 1 1 1 3 2 1 2 9 2 329.7 299.3 237.5 636.7 149.7 385.2 257.5 674.3 274.2 923.5 1517.9 705.5 722.0 163.5 241.2 297.0 612.4 318.0 Apiaceae Araliaceae Arecaceae Asclepiadaceae Asteraceae Berberidaceae Brassicaceae Caprifoliaceae Convallariaceae Crassulaceae Cupressaceae Dryopteridaceae Ephedraceae Equisetaceae Euphorbiaceae Fabaceae O 68 Ratio Cos7/ T. b. brucei 6 2 5 4 4 2 9 4 53 7 5 2 4 3 96 5 4 28.8 77.2 120.8 111.9 44.7 17.9 999.5 17.3 319.0 469.6 118.1 39.3 51.2 51.9 2229.0 13.3 15.3 Ratio HeLa/ T. b. brucei 11 6 5 10 17 14 2 40 4 2 4 13 6 6 0.7 16 23 Ratio Cos7/ T. b. brucei 12 0.3 3 5 8 6 1 11 1 0.4 0.2 5 4 4 0.8 4.0 18 323.3 499.8 646.4 1147.0 773.0 251.1 1515.6 692.0 1427.9 1241.6 414.2 500.5 287.2 314.9 1467.7 219.1 355.7 344.7 28.4 358.7 576.0 392.8 120.0 1575.4 190.1 510.8 229.5 31.0 227.7 201.1 215.4 1813.0 54.2 287.2 166.7 24.9 14 6 186.1 126.2 84.4 485.3 35.3 54.9 30.7 324.4 90.6 118.9 1535.3 87.4 158.2 348.7 36.7 243.5 222.1 733.1 34.8 39.6 18.6 12.3 64.9 7.8 53.2 12.6 94.6 14.6 38.0 119.5 84.2 61.0 23.4 51.6 150.4 73.5 50.8 8 16 19 10 19 7 20 7 19 24 13 8 12 7 4 2 8 6 4.6 6 6 7 4 1.0 2 3 6 3 12 1 5 1 4 1 10 0.6 Geraniaceae Ginkgoaceae Hypericaceae Iridaceae Lamiaceae Lauraceae Loranthaceae Lythraceae Magnoliaceae Melanthiaceae Myrsinaceae Myrtaceae Ophioglossaceae Orchidaceae Paeoniaceae Pedaliaceae Poaceae Polygonaceae Ranunculaceae Rosaceae Rubiaceae Rutaceae Saururaceae Schisandraceae Selaginellaceae Valerianaceae Verbenaceae Violaceae Zingiberaceae Cassia tora Desmodium styracifolium Glycyrrhiza inflata Spatholobus suberectus Sutherlandia frutescens Geranium wilfordii Pelargonium sidoides Ginkgo biloba Hypericum japonicum Belamcanda chinensis Mentha haplocalyx Prunella vulgaris Scutellaria baicalensis Cinnamomum cassia Taxillus chinensis Punica granatum Magnolia officinalis Paris polyphylla Lysimachia christinae Eucalyptus robusta Ophioglossum vulgatum Dendrobium loddigesii Paeonia lactiflora Harpagophytum procumbens Cymbopogon distans Fallopia japonica Polygonum aviculare Polygonum multiflorum Rheum officinale Coptis chinensis Rosa chinensis Rosa laevigata Sanguisorba officinalis Hedyotis diffusa Evodia lepta Evodia rutaecarpa Phellodendron chinense Houttuynia cordata Kadsura longipedunculata Selaginella tamariscina Patrinia scabiosaefolia Verbena officinalis Viola yezoensis Alpinia galanga Alpinia oxyphylla P6847 / 13 P6861 / 27 P6873 / 39 P6907 / 73 tba / 83 P6867 / 33 tba / 82 P6872 / 38 P6876 / 42 P6843 / 09 P6884 / 50 P6896 / 62 P6903 / 69 P6853 / 19 P6909 / 75 P6897 / 63 P6882 / 48 P6888 / 54 P6881 / 47 P6868 / 34 P6885 / 51 P6860 / 26 P6886 / 52 JF949969 JF949976 JF950025 JF949991 JF949977 JF950005 JF949980 JF949995 JF949984 JF950013 JF950017 JF950023 JF949992 JF950014 JF950008 JF950010 JF949983 JF950009 JF949999 JF950026 1335.4 156.0 26.4 299.1 367.7 99.1 488.2 768.3 163.3 324.4 108.5 282.1 90.9 138.9 417.8 583.3 23.6 952.6 53.4 188.9 83.0 166.9 189.1 139.8 6.9 154.6 259.3 17.0 218.2 15.3 10.8 89.2 34.1 90.4 287.9 23.2 68.6 126.6 5.4 24.0 137.3 62.8 25.7 34.0 185.9 16.3 6.4 25.4 41.8 23.0 52.1 71.9 21.3 22.3 14.7 13.2 7.4 11.0 27.2 14.6 0.9 73.6 20.6 19.8 13.5 9.1 7 10 4 12 9 4 9 11 8 15 7 21 12 13 15 40 26 13 3 1 8 1 6 6 0.7 4 0.2 0.5 4 2 7 39 2 2 8 6 0.3 7 10 6 18 tba / 80 - 36.2 15.8 0.9 P6857 / 23 P6894 / 60 P6893 / 59 P6895 / 61 P6898 / 64 P6855 / 21 P6899 / 65 P6900 / 66 P6901 / 67 P6874 / 40 P6869 / 35 P6870 / 36 P6890 / 56 P6875 / 41 P6879 / 45 P6904 / 70 P6889 / 55 P6910 / 76 P6911 / 77 P6837 / 03 P6917 / 78 JF949974 JF950004 JF950012 JF949987 JF950015 JF950024 JF950016 JF949979 JF949978 JF949986 JF950006 JF950007 JF950018 JF949985 JF950020 JF949993 - 425.9 88.0 118.5 469.4 22.5 100.0 559.4 712.3 66.5 147.8 232.0 50.4 370.1 279.9 9.9 339.2 140.5 298.1 59.6 55.7 119.6 114.5 2.8 53.3 107.7 39.5 141.5 151.8 26.7 45.3 42.0 8.7 71.3 48.2 1.8 98.8 38.7 145.9 60.8 5.7 30.4 31.1 13.1 18.2 98.6 34.0 12.9 20.1 20.6 12.3 13.3 13.9 16.8 15.6 68.3 0.1 13.6 13.7 16.5 3.3 1.4 0.7 69 3 2 3 670.9 324.3 528.3 237.5 586.6 236.0 112.3 302.9 177.5 522.6 375.0 475.4 367.6 272.4 1213.4 211.2 49.1 35.0 1752.6 181.4 469.0 232.8 294.6 75.9 104.1 126.8 54.8 352.0 169.8 95.7 260.1 100.9 319.5 147.8 494.5 28.8 108.4 378.2 218.6 13.1 5.5 436.3 15.2 68.8 61.6 309.8 276.9 40.1 39.0 67.8 87.4 13.3 18.3 39.3 23.6 80.2 16.2 25.1 86.2 13.4 59.2 8.1 4.3 11.8 52.1 16.3 33.2 27.6 11.7 2 8 14 4 7 18 6 8 8 7 23 19 4 20 20 26 11 3 34 11 14 8 25 0.2 2 3 0.8 4 12 5 6 4 4 9 19 0.3 8 6 27 3 0.4 8 1 2 2 26 40 17 692.6 217.2 21.4 32 10 14 7 7 5 0.6 8 28 35 5 11 17 3 24 4 99 25 10 18 18 39 170 3 0.2 3 1 3 7 7 2 3 3 0.5 4 0.7 18 7 3 9 18 4 43 98.8 317.3 342.3 437.4 270.9 81.8 266.6 1855.4 158.5 796.1 350.7 297.4 487.6 575.2 86.1 393.9 159.4 334.7 297.5 111.7 213.8 17.6 19.5 226.5 48.8 35.3 3.7 36.7 1100.1 41.6 418.1 427.7 178.5 85.5 63.9 43.9 150.9 15.9 37.7 19.1 53.4 110.2 18.9 19.0 49.1 62.1 24.5 0.4 12.5 102.9 4.0 24.9 44.4 29.5 14.1 97.6 11.8 33.4 19.0 20.5 24.7 15.4 2.0 5 17 7 7 11 205 21 18 40 32 8 10 35 6 7 12 8 16 12 7 107 1 1 4 0.7 1 9 3 10 10 16 9 6 6 0.6 3 4 0.8 1 0.7 3 55 Origin and current area of use of the medicinal plants included in our study Family Acanthaceae Species Andrographis paniculata Amaranthaceae Celosia cristata Apiaceae Bupleurum chinense Bupleurum marginatum Centella asiatica Cnidium monnieri Saposhnikovia divaricata Araliaceae Eleutherococcus senticosus Panax ginseng China Panax ginseng Korea Panax notoginseng Arecaceae Areca catechu Asclepiadaceae Asteraceae Cynanchum paniculatum Artemisia annua Artemisia capillaris Arctium lappa Centipeda minima Chrysanthemum indicum Chrysanthemum morifolium Eclipta prostrata Senecio scandens Siegesbeckia orientalis 70 Origin Area of Use India, Sri Lanka, India SE Asia, East Asia India, SE Asia, Tropical Asia China, Africa, South America China East Asia, China China East Asia, China East Asia, India, East Asia, India, Sri Lanka, Sri Lanka, Australia, northern Australia, Melanesia, Papua Iran, Melanesia, New Guinea, Papua New Middle East, Guinea Africa China East Asia, China Central Asia Central Asia, East (steppe region) Asia, China Siberia, China, Siberia Korea, Japan Siberia, China, China Korea, Japan Siberia, China, Korea Korea, Japan Siberia, China, China Korea, Japan SE Asia, East Malaysia, Asia, India, Sri Philipines Lanka, Papua New Guinea SE Asia East Asia, SE Asia Asia, introduced worldwide worldwide Asia Asia Northern Hemisphere Europe, Asia (Europe, Asia, North America) Asia, Himalaya Asia India Asia Asia Asia Tropical Asia, Tropical Asia, East Asia, South South America America Asia Asia Tropical Asia Tropical Asia, East Asia, Africa Taraxacum officinale Berberidaceae Berberis bealei Brassicaceae Dysosma versipellis Epimedium koreanum Capsella bursa-pastoris Isatis indigotica (root) Isatis indigotica (leaf) Caprifoliaceae Convallariaceae Crassulaceae Cupressaceae Lonicera confusa Polygonatum kingianum Rhodiola rosea Platycladus orientalis Dryopteridaceae Cyrtomium fortunei Ephedraceae Equisetaceae Euphorbiaceae Fabaceae Ephedra sinica Equisetum hiemale Croton tiglium Abrus cantoniensis Acacia catechu Cassia tora Desmodium styracifolium Glycyrrhiza inflata Spatholobus suberectus Sutherlandia frutescens Geraniaceae Geranium wilfordii Northern Hemisphere (Europe, Asia, North America) Asia, introduced in America, Europe East Asia East Asia (Korea) Northern Hemisphere (Europe, Asia, North America) Central Asia (steppe region) Central Asia (steppe region) East Asia Asia Northern Hemisphere (Europe, Asia, North America) China, introduced in most of Asia Asia, introduced in America, Europe China Northern Hemisphere (Europe, Asia, North America) SE Asia Southern China East Asia, SE Asia East Asia, SE Asia, introduced to Middle and South America, Africa, Middle East SE Asia Central Asia (Mongolia, China) Tropical Asia South Africa East Asia 71 Europe, Asia, North America Asia, America, Europe East Asia, China East Asia, China Europe, Asia Central Asia, East Asia, China Central Asia, East Asia, China East Asia, China Asia Europe, Asia, North America Asia Asia East Asia Europe, Asia, North America East Asia, SE Asia East Asia, SE Asia East Asia, SE Asia Europe, Asia, America, Africa East Asia, SE Asia East Asia, Central Asia India, East Asia, SE Asia South Africa, Europe East Asia, China Pelargonium sidoides Ginkgoaceae Ginkgo biloba Hypericaceae Iridaceae Lamiaceae Hypericum japonicum Belamcanda chinensis Mentha haplocalyx Prunella vulgaris South Africa China Scutellaria baicalensis Lauraceae Cinnamomum cassia Loranthaceae Lythraceae Taxillus chinensis Punica granatum Magnoliaceae Melanthiaceae Myrsinaceae Myrtaceae Magnolia officinalis Paris polyphylla Lysimachia christinae Eucalyptus robusta Japan China China Northern Hemisphere (Europe, Asia, North America) Central Asia (Russia, Mongolia, China) Tropical Asia (India, East Asia, SE Asia) China Middle East, Himalaya Himalaya, China Himalaya, China China East Australia Ophioglossaceae Ophioglossum vulgatum Orchidaceae Paeoniaceae Pedaliaceae Dendrobium loddigesii Paeonia lactiflora Harpagophytum procumbens Poaceae Polygonaceae Cymbopogon distans Fallopia japonica (syn. Polygonum cuspidatum) Fallopia multiflora (syn. Polygonum multiflorum) Polygonum aviculare Rheum officinale Ranunculaceae Rosaceae Northern Hemisphere (Europe, Asia, North America) SE Asia China South Africa Himalaya, China East Asia East Asia Northern Hemisphere (Europe, Asia, North America) Asia Coptis chinensis Rosa chinensis Rosa laevigata China China SE Asia, China 72 South Africa, Europe Asia, Europe, North America East Asia, China East Asia, China East Asia, China Europe, Asia, North America East Asia, Central Asia India, East Asia, SE Asia East Asia, China Europe, Asia, America, Africa East Asia, China East Asia, China East Asia, China Europe, Asia, America, Africa, Australia Europe, Asia, North America East Asia, SE Asia East Asia South Africa, Europe East Asia, China East Asia, China East Asia, China Europe, Asia, North America Europe, Asia, North America East Asia, China East Asia, China Europe, Asia, North America Sanguisorba officinalis Rubiaceae Rutaceae Saururaceae Schisandraceae Selaginellaceae Valerianaceae Verbenaceae Violaceae Zingiberaceae Hedyotis diffusa Evodia lepta Evodia rutaecarpa Phellodendron chinense Houttuynia cordata Kadsura longipedunculata Selaginella tamariscina Patrinia scabiosaefolia Verbena officinalis Viola yezoensis Alpinia galanga Alpinia oxyphylla Northern Hemisphere (Europe, Asia, North America) East Asia East Asia East Asia Himalaya, China East Asia, SE Asia East Asia East Asia East Asia Europe East Asia SE Asia SE Asia 73 Europe, Asia, North America East Asia, China East Asia, China East Asia, China East Asia, China East Asia, SE Asia East Asia, China East Asia, China East Asia, China Europe, Asia, North America East Asia, China East Asia, SE Asia East Asia, SE Asia 3.5 References 1 Jiangsu New Medicine College Editorial Board (1995). A Grand Dictionary of Chinese Medicinal Herbs, 3rd Ed., Shanghai Science Technology Publishing Co., Shanghai, p. 2754. 2 Efferth T, Herrmann F, Tahrani A, and Wink M (2011). Cytotoxic activity towards cancer cells of arteanuine B, artemisitene, scopoletin and 1,8-cineole derived from Artemisia annua L. in comparison to artemisinin. Phytomedicine (in press) 3 Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JJ, Marschall M (2008). The antiviral activities of artemisinin and artesunate. Clin Infect Dis. 47, 804-811. 4 Efferth T, Li PC, Konkimalla VS, Kaina B (2007). From traditional Chinese medicine to rational cancer therapy. Trends Mol Med. 13, 353-361. 5 Wohlfarth C, Efferth T (2009). Natural products as promising drug candidates for the treatment of hepatitis B and C. Acta Pharmacol Sin. 30, 25-30. 6 Romero MR, Serrano MA, Vallejo M, Efferth T, Alvarez M, Marin JJ (2006). Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the bovine viral diarrhoea virus (BVDV). Planta Med. 72, 1169-1174. 7 Romero MR, Efferth T, Serrano MA, Castaño B, Macias RI, Briz O, Marin JJ (2005). Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an "in vitro" replicative system. Antiviral Res. 68, 75-83. 8 Youns M, Hoheisel JD, Efferth T (2010). Traditional Chinese medicines (TCMs) for molecular targeted therapies of tumours. Curr Drug Discov Technol. 7, 37-45. 9 van Wyk BE, Wink M (2004). Medicinal Plants of the World, BRIZA, Pretoria 10 Heinrich M, Leonti M, Nebel S, Peschel W (2005). "Local Food - Nutraceuticals": an example of a multidisciplinary research project on local knowledge. J Physiol Pharmacol 56 Suppl 1, 5-22. 11 Heinrich M, Lee Teoh H (2004). Galanthamine from snowdrop--the development of a modern drug against Alzheimer's disease from local Caucasian knowledge. J Ethnopharmacol 92, 147-162. 12 Tanikawa K (2004). Pathogenesis and treatment of hepatitis C virus-related liver diseases. Hepatobiliary Pancreat Dis Int. 3, 17-20. 13 Liang TJ, Rehermann B, Seeff LB, Hoofnagle JH (2000). Pathogenesis, natural history, treatment, and prevention of hepatitis C. Ann Intern Med. 132, 296-305. 14 McHutchison JG, Gordon SC, Schiff ER, Shiffman ML, Lee WM, Rustgi VK, Goodman ZD, Ling MH, Cort S, Albrecht JK (1998). Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group. N Engl J Med. 339, 1485-1492. 15 Coon JT, Ernst E (2004). Complementary and alternative therapies in the treatment of chronic hepatitis C: a systematic review. J Hepatol. 40, 491-500. 74 16 Buckwold VE, Beer BE, Donis RO (2003). Bovine viral diarrhea virus as a surrogate model of hepatitis C virus for the evaluation of antiviral agents. Antiviral Res. 60, 1-15. 17 Romero MR, Serrano MA, Efferth T, Alvarez M, Marin JJ (2007). Effect of cantharidin, cephalotaxine and homoharringtonine on "in vitro" models of hepatitis B virus (HBV) and bovine viral diarrhoea virus (BVDV) replication. Planta Med. 73, 552-558. 18 Kim TG, Kang SY, Jung KK, Kang JH, Lee E, Han HM, Kim SH (2001). Antiviral activities of extracts isolated from Terminalis chebula Retz., Sanguisorba officinalis L., Rubus coreanus Miq. and Rheum palmatum L. against hepatitis B virus. Phytother Res. 15, 718-20. 19 Pang R, Tao J, Zhang S, Zhu J, Yue X, Zhao L, Ye P, Zhu Y (2010). In vitro anti-hepatitis B virus effect of Hypericum perforatum L. J Huazhong Univ Sci Technolog Med Sci. 30, 98102. 20 Li Z, Li LJ, Sun Y, Li J (2007). Identification of natural compounds with anti-hepatitis B virus activity from Rheum palmatum L. ethanol extract. Chemotherapy. 53, 320-326. 21 Chiang LC, Ng LT, Liu LT, Shieh DE, Lin CC (2003). Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from Bupleurum species. Planta Med. 69, 705-709. 22 Pink R, Hudson A, Mouriès MA, Bending M (2005). Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 4, 727-740. 23 Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N (2002). Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet. 359, 2188-2194. 24 Hoet S, Opperdoes F, Brun R, Quetin-Leclerq J (2004). Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep. 21, 353-364. 25 Räz B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R (1997). The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 68, 139-147. 26 Kristjanson PM, Swallow BM, Rowlands GJ, Kruska RL, de Leeuw PN (1999). Measuring the costs of African animal trypanosomiasis, the potential benefits of control and returns to research. Agr Sys. 59, 79-98. 27 Fairlamb AH (2003). Chemotherapy of human African trypanosomiasis: current status and future prospects. Trends Parasitol. 19, 488-494. 28 Fairlamb AH (2003). Target discovery and validation with special reference to trypanothione. In Fairlamb AH, Ridley RG, Vial HJ eds. Drugs against parasitic diseases: R&D methodologies and issues. Ed. Geneva: WHO TDR. pp 107-118. 29 Croft SL (1997). The current status of antiparasitic chemotherapy. Parasitology. 114 Suppl, 3-15. 75 30 Ross CA, Sutherland DV (1997). Drug resistance in trypanosomatids. In: Hide G, Mottram JC, Coombs GH, Holmes PH, editors. Trypanosomiasis and leishmaniasis: biology and control. CAB international, Wallinford, Oxon. 259-269. 31 Newman DJ, Cragg GM, Snader KM (2003). Natural products as sources of new drugs over the period 1981-2002. J Nat Prod. 66, 1022-1037. 32 Legros D, Ollivier G, Gastellu-Etchegorry M, Paquet C, Burri C, Jannin J, Büscher P (2002). Treatment of human African trypanosomiasis--present situation and needs for research and development. Lancet Infect Dis. 2, 437-440. 33 Brun R, Schumacher R, Schmid C, Kunz C, Burri C (2001). The phenomenon of treatment failures in Human African Trypanosomiasis. Trop Med Int Health. 6, 906-914. 34 Marin JJ, Castaño B, Blazquez AG, Rosales R, Efferth T, Monte MJ (2010). Strategies for overcoming chemotherapy resistance in enterohepatic tumours. Curr Mol Med. 10, 467-485. 35 Wink, M (2010). Molecular modes of action of defensive secondary metabolites. Chapter 2. Annual Plant Reviews. 39, 21-161 36 Dr. Duke's Phytochemical and Ethnobotanical Databases http://www.ars-grin.gov/duke/plants.html last access: august 2011 37 Vallejo M, Castro MA, Medarde M, Macias RI, Romero MR, El-Mir MY, Monte MJ, Briz O, Serrano MA, Marin JJ (2007). Novel bile acid derivatives (BANBs) with cytostatic activity obtained by conjugation of their side chain with nitrogenated bases. Biochem Pharmacol. 73, 1394-1404. 38 Baltz T, Baltz D, Giroud C, Crockett J (1985). Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 4, 1273-1277. 39 Kniazeff AJ, Wopschall LJ, Hopps HE, Morris CS (1975). Detection of bovine viruses in fetal bovine serum used in cell culture. In Vitro. 11, 400-403. 40 Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 65, 55–63. 41 Korba BE, Gerin JL (1992). Use of a standardized cell culture assay to assess activities of nucleoside analogs against hepatitis B virus replication. Antiviral Res. 19, 55-70. 42 Fautz R, Husein B, Hechenberger C (1991). Application of the neutral red assay (NR assay) to monolayer cultures of primary hepatocytes: rapid colorimetric viability determination for the unscheduled DNA synthesis test (UDS). Mutat Res. 253, 173-179. 43 Balasubrahmanyam A, Baranwal VK, Lodha ML, Varma A, Kapoor HC (2000). Purification and properties of growth stage-dependent antiviral proteins from the leaves of Celosia cristata. Plant Sci. 154, 13-21. 44 Begam M, Kumar S, Roy S, Campanella JJ, Kapoor HC (2006). Molecular cloning and functional identification of a ribosome inactivating/antiviral protein from leaves of post76 flowering stage of Celosia cristata and its expression in E. coli. Phytochemistry. 67, 24412449. 45 Begam M, Narwal S, Roy S, Kumar S, Lodha ML, Kapoor HC (2006). An antiviral protein having deoxyribonuclease and ribonuclease activity from leaves of the post-flowering stage of Celosia cristata. Biochemistry (Mosc). 71 Suppl 1, S44-8, 3. 46 Gholizadeh A, Kohnehrouz BB, Santha IM, Lodha ML, Kapoor HC (2005). Cloning and expression of small cDNA fragment encoding strong antiviral peptide from Celosia cristata in Escherichia coli. Biochemistry (Mosc). 70, 1005-1010. 47 Gholizadeh A, Santha IM, Kohnehrouz BB, Lodha ML, Kapoor HC (2005). Cystatins may confer viral resistance in plants by inhibition of a virus-induced cell death phenomenon in which cysteine proteinases are active: cloning and molecular characterization of a cDNA encoding cysteine-proteinase inhibitor (celostatin) from Celosia cristata (crested cock's comb). Biotechnol Appl Biochem. 42, 197-204. 48 Gholizadeh A, Kapoor HC (2004). Modifications in the purification protocol of Celosia cristata antiviral proteins lead to protein that can be N-terminally sequenced. Protein Pept Lett. 11, 551-561. 49 Baranwal VK, Tumer NE, Kapoor HC (2002). Depurination of ribosomal RNA and inhibition of viral RNA translation by an antiviral protein of Celosia cristata. Indian J Exp Biol. 40, 1195-1197. 50 Lin YL, Shen CC, Huang YJ, Chang YY (2005). Homoflavonoids from Ophioglossum petiolatum. J Nat Prod. 68, 381-384. 51 Hayashi K, Kamiya M, Hayashi T (1995). Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta Med. 61, 237-241. 52 Lin TY, Liu YC, Jheng JR, Tsai HP, Jan JT, Wong WR, Horng JT (2009). Anti-enterovirus 71 activity screening of chinese herbs with anti-infection and inflammation activities. Am J Chin Med. 37, 143-158. 53 Lau KM, Lee KM, Koon CM, Cheung CS, Lau CP, Ho HM, Lee MY, Au SW, Cheng CH, Lau CB, Tsui SK, Wan DC, Waye MM, Wong KB, Wong CK, Lam CW, Leung PC, Fung KP (2008). Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol. 118, 79-85. 54 Ren X, Sui X, Yin J (2011). The effect of Houttuynia cordata injection on pseudorabies herpesvirus (PrV) infection in vitro. Pharm Biol. 49, 161-166. 55 Chou SC, Su CR, Ku YC, Wu TS (2009). The constituents and their bioactivities of Houttuynia cordata. Chem Pharm Bull (Tokyo). 57, 1227-1230. 56 Gonzalez O, Fontanes V, Raychaudhuri S, Loo R, Loo J, Arumugaswami V, Sun R, Dasgupta A, French SW (2009). The heat shock protein inhibitor Quercetin attenuates hepatitis C virus production. Hepatology. 50, 1756-1764. 77 57 Choi HJ, Song JH, Park KS, Kwon DH (2009). Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur J Pharm Sci. 37, 329-333. 58 Jung HJ, Sung WS, Yeo SH, Kim HS, Lee IS, Woo ER, Lee DG (2006). Antifungal effect of amentoflavone derived from Selaginella tamariscina. Arch Pharm Res. 29, 746-751. 59 Lee J, Choi Y, Woo ER, Lee DG (2009). Antibacterial and synergistic activity of isocryptomerin isolated from Selaginella tamariscina. J Microbiol Biotechnol. 19, 204-207. 60 Lee J, Choi Y, Woo ER, Lee DG (2009). Isocryptomerin, a novel membrane-active antifungal compound from Selaginella tamariscina. Biochem Biophys Res Commun. 379, 676-680. 61 Lee JS, Lee MS, Oh WK, Sul JY (2009). Fatty acid synthase inhibition by amentoflavone induces apoptosis and antiproliferation in human breast cancer cells. Biol Pharm Bull. 32, 1427-1432. 62 Gao LL, Yin SL, Li ZL, Sha Y, Pei YH, Shi G, Jing YK, Hua HM (2007).Three novel sterols isolated from Selaginella tamariscina with antiproliferative activity in leukemia cells. Planta Med. 73, 1112-1115. 63 Lee CW, Choi HJ, Kim HS, Kim DH, Chang IS, Moon HT, Lee SY, Oh WK, Woo ER (2008). Biflavonoids isolated from Selaginella tamariscina regulate the expression of matrix metalloproteinase in human skin fibroblasts. Bioorg Med Chem. 16, 732-738. 64 Rao K, Ch B, Narasu LM, Giri A (2010). Antibacterial activity of Alpinia galanga (L) Willd crude extracts. Appl Biochem Biotechnol. 162, 871-884. 65 Weerakkody NS, Caffin N, Lambert LK, Turner MS, Dykes GA (2011). Synergistic antimicrobial activity of galangal (Alpinia galanga), rosemary (Rosmarinus officinalis) and lemon iron bark (Eucalyptus staigerana) extracts. J Sci Food Agric. 91, 461-468. 66 Kaur A, Singh R, Dey CS, Sharma SS, Bhutani KK, Singh IP (2010). Antileishmanial phenylpropanoids from Alpinia galanga (Linn.) Willd. Indian J Exp Biol. 48, 314-317. 67 Tamura S, Shiomi A, Kimura T, Murakami N (2010). Halogenated analogs of 1'acetoxychavicol acetate, Rev-export inhibitor from Alpinia galanga, designed from mechanism of action. Bioorg Med Chem Lett. 20, 2082-2085. 68 Tamura S, Shiomi A, Kaneko M, Ye Y, Yoshida M, Yoshikawa M, Kimura T, Kobayashi M, Murakami N (2009). New Rev-export inhibitor from Alpinia galanga and structureactivity relationship. Bioorg Med Chem Lett. 19, 2555-2557. 69 Liu Y, Murakami N, Zhang S, Xu T (2007). Structure-activity relationships of 1'acetoxychavicol acetate homologues as new nuclear export signal inhibitors. Pharmazie. 62, 659-662. 70 Ye Y, Li B (2006). 1'S-1'-acetoxychavicol acetate isolated from Alpinia galanga inhibits human immunodeficiency virus type 1 replication by blocking Rev transport. J Gen Virol. 87, 2047-2053. 78 71 Miyazawa M, Nakamura Y, Ishikawa Y (2001). Insecticidal diarylheptanoid from Alpinia oxyphylla against larvae of Drosophila melanogaster. Nat Prod Lett. 15, 75-79. 72 Shin TY, Won JH, Kim HM, Kim SH (2001). Effect of Alpinia oxyphylla fruit extract on compound 48/80-induced anaphylactic reactions. Am J Chin Med. 29, 293-302. 73 He ZH, Ge W, Yue GG, Lau CB, He MF, But PP (2010). Anti-angiogenic effects of the fruit of Alpinia oxyphylla. J Ethnopharmacol. 132, 443-449. 74 Li GL, Zhu DY (1999). Two dichromenes from Evodia lepta. J Asian Nat Prod Res. 1, 337341. 75 Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, Bielenberg J (2008). Antiviral effects of Glycyrrhiza species. Phytother Res. 22, 141-148. 76 Zhang Y, Chen Y, Fan C, Ye W, Luo J (2010). Two new iridoid glucosides from Hedyotis diffusa. Fitoterapia. 81, 515-517. 77 Li C, Xue X, Zhou D, Zhang F, Xu Q, Ren L, Liang X (2008). Analysis of iridoid glucosides in Hedyotis diffusa by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal. 48, 205-211. 78 Lin CC, Ng LT, Yang JJ, Hsu YF (2002). Anti-inflammatory and hepatoprotective activity of peh-hue-juwa-chi-cao in male rats. Am J Chin Med. 30, 225-234. 79 Jiang RW, Zhou JR, Hon PM, Li SL, Zhou Y, Li LL, Ye WC, Xu HX, Shaw PC, But PP (2007). Lignans from Dysosma versipellis with inhibitory effects on prostate cancer cell lines. J Nat Prod. 70, 283-286. 80 Mulyaningsih S, Youns M, El-Readi MZ, Ashour ML, Nibret E, Sporer F, Herrmann F, Reichling J, Wink M (2010). Biological activity of the essential oil of Kadsura longipedunculata (Schisandraceae) and its major components. J Pharm Pharmacol. 62, 10371044. 81 Kim HJ, Chang EJ, Cho SH, Chung SK, Park HD, Choi SW (2002). Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora. Biosci Biotechnol Biochem. 66, 1990-1993. 82 Fuggetta MP, D'Atri S, Lanzilli G, Tricarico M, Cannavò E, Zambruno G, Falchetti R, Ravagnan G (2004). In vitro antitumour activity of resveratrol in human melanoma cells sensitive or resistant to temozolomide. Melanoma Res. 14, 189-196. 83 Kang JH, Park YH, Choi SW, Yang EK, Lee WJ (2003). Resveratrol derivatives potently induce apoptosis in human promyelocytic leukemia cells. Exp Mol Med. 35, 467-474. 84 Kim HJ, Chang EJ, Bae SJ, Shim SM, Park HD, Rhee CH, Park JH, Choi SW (2002). Cytotoxic and antimutagenic stilbenes from seeds of Paeonia lactiflora. Arch Pharm Res. 25, 293-299. 79 85 Loizzo MR, Tundis R, Menichini F, Saab AM, Statti GA, Menichini F (2008). Antiproliferative effects of essential oils and their major constituents in human renal adenocarcinoma and amelanotic melanoma cells. Cell Prolif. 41, 1002-1012. 86 Yang LQ, Singh M, Yap EH, Ng GC, Xu HX, Sim KY (1996). In vitro response of Blastocystis hominis against traditional Chinese medicine. J Ethnopharmacol. 55, 35-42. 87 Hirano H, Osawa E, Yamaoka Y, Yokoi T (2001). Gastric-mucous membrane protection activity of coptisine derivatives. Biol Pharm Bull. 24, 1277-1281. 88 Joshi PV, Shirkhedkar AA, Prakash K, Maheshwari VL (2011). Antidiarrheal activity, chemical and toxicity profile of Berberis aristata. Pharm Biol. (in press) 89 Liu X, Li G, Zhu H, Huang L, Liu Y, Ma C, Qin C (2011). Beneficial effect of berberine on hepatic insulin resistance in diabetic hamsters possibly involves in SREBPs, LXRalpha and PPARalpha transcriptional programs. Endocr J. (in press) 90 Dvorak Z (2010). Berberine: A multipotent remedy with unknown cellular target? Poult Sci. 89, 1787. 91 Patil JB, Kim J, Jayaprakasha GK (2010). Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway. Eur J Pharmacol. 645, 70-78. 92 Miyazawa M, Nakamura Y, Ishikawa Y (2000). Insecticidal sesquiterpene from Alpinia oxyphylla against Drosophila melanogaster. J Agric Food Chem. 48, 3639-3641. 93 Pu JX, Gao XM, Lei C, Xiao WL, Wang RR, Yang LB, Zhao Y, Li LM, Huang SX, Zheng YT, Sun HD (2008). Three new compounds from Kadsura longipedunculata. Chem Pharm Bull (Tokyo). 56, 1143-1146. 94 Kamath S, Skeels M, Pai A (2009). Significant differences in alkaloid content of Coptis chinensis (Huanglian), from its related American species. Chin Med. 4, 17. 95 Rosenkranz V, Wink M (2008). Alkaloids induce programmed cell death in bloodstream forms of trypanosomes (Trypanosoma b. brucei). Molecules. 13, 2462-2473. 96 Merschjohann, K.; Sporer, F.; Steverding, D.; Wink, M (2001). In vitro effect of alkaloids on bloodstream forms of Trypanosoma brucei and T. congolense. Planta Med. 67, 623-627. 97 Rosenkranz, V.; Wink, M (2008). Alkaloids induce programmed cell death in bloodstream forms of trypanosomes (Trypanosoma b. brucei). Molecules. 13, 2462-2473. 98 Freiburghaus, F.; Kaminsky, R.; Nkunya, M.H.H.; Brun, R (1996). Evaluation of African medicinal plants for their in vitro trypanocidal activity. J. Ethnopharmacol. 55, 1-11. 80 4. Cytotoxicity of 12 structurally diverse ginsenosides from Panax ginseng in HeLa cells is linked to membrane disturbance 4.1 Abstract Panax ginseng is widely regarded as an important herbal medicine with a broad range of pharmacological properties. We investigated the cytotoxicity of 12 structurally diverse ginsenosides to gain further insight in their mode of action. The monodesmosidic ginsenosides Rg3 and Rh2 with the sugar moiety attached to C3 exhibit a stronger cytotoxicity with IC50 values of 245 and 29 µg/ml, respectively than monodesmosidic ginsenosides with the sugar moiety attached to C6 or bidesmosidic ginsenosides. Only Rg3 and Rh2 behave as typical monodesmosidic saponins which can intercalate in cell membranes and interact with membrane proteins and cholesterol. The disturbance of membrane fluidity and permeability can lead to apoptosis and cell death. 4.2 Introduction Panax ginseng (Araliaceae) has been used in China, Korea, Japan and eastern Russia as a medicinal plant for several thousand years. Its first record was on Chinese oracle bones 1600 BC while the first surviving detailed description of its medicinal properties dates to the Han dynasty around 200 AD [1]. Since then ginseng root has always been regarded as one of the most precious herbal medicines known. Recently, it got worldwide attention due to its various medicinal properties. The main secondary metabolites of ginseng are ginsenosides, but polyacetylenes, fatty acids, polysaccharides and peptides are also present [2,3]. Today, 38 ginsenosides have been isolated from P. ginseng. Taking P. quinquefolius and P. notoginseng into account, 66 ginsenosides are presently known [4]. The ginsenosides Rb1, Rb2, Rc, Rd, Re and Rg1 contribute to over 90% of the total ginsenosides in P. ginseng while the other 32 ginsenosides are present as minor components [5]. Ginsenosides can be regarded as steroidal saponins with four trans-ring rigid steroid skeletons. Several structural types of ginsenosides are known, such as bidesmosidic and monodesmosidic ginsenosides and their aglycones. The bidesmosidic and monodesmosidic ginsenosides again differ according to the sugar moieties and the position of their attachment to the steroidal moiety. Sugars are attached to C3, C6 or C20 [6]. The structural diversity of ginsenosides is due to the variation of the sugar moieties, their chain length and the position 81 of glycoside attachment. Common sugars are glucose, maltose, fructose and sucrose. The position and number of hydroxyl groups on the steroidal moiety is variable as well. The structural elements influence the biological activity. Traditionally, P. ginseng has been used as a general tonic, while modern research revealed many more applications such as the positive influence on reaction time, concentration and mental fitness [7-10]. The ginsenosides Rg1 and Rb1 modulate the neurotransmission in the brain [11,12] while the ginsenosides Rb1, Rg1, Rg2 and Re prevent scopolamine-induced memory deficits by increasing the cholinergic activity [4,13-15]. Neuroprotective effects of the ginsenosides Rb1, Rg1, Rg3, and Rh2 were shown in several studies [16-20]. Effects on the cardiovascular system are also well documented. The ginsenosides Rg1 and Rg3 were shown to relax vascular smooth muscles [21,22] and to inhibit endothelin production [23], causing an antihypertensive effect. The ginsenosides Rb1, Re and Rg1 were shown to enhance the recovery of the brain and organs after damage [20,24]. Anti-atheriosclerotic and wound healing effects were demonstrated [25], which together with the inhibition of platelet aggregation [26] might be one reason for the traditionally assumed increase of life expectancy attributed to P. ginseng. Another aspect of P. ginseng is the stimulation of the immune system [27,28]. The ginsenoside Rb1 inhibits leukotriene release while Rg1 increases the activity of T-helper cells [24]. The ginsenosides Rb1, Rg1 and Rg3 further inhibit cytokine production, COX-2 gene expression and block histamine release [29-31]. P. ginseng was shown to lower the blood glucose level, thus having a positive effect on diabetes [32-34]. One of the most important aspects of P. ginseng, however, is the induction of apoptosis in tumour cells attributed to the ginsenosides Rg3 and Rh2 [35-38]. Several studies demonstrated that P. ginseng has cancer preventive effects [39-41]. In this study, we investigated the cytotoxicity of 12 selected ginsenosides (Fig. 1) in cancer cells (HeLa) representing all major groups with a special focus on mono- and bidesmosidic molecules and their possible interference with membrane fluidity and permeability. 82 Fig. 1: Ginsenosides Group I: Bidesmosidic saponins Ginsenoside Rd Ginsenoside Rc Ginsenoside Rb1 Ginsenoside Re Ginsenoside Rg1 Group II: Monodesmosidic saponins (C3-gly) Ginsenoside Rg3 Ginsenoside Rh2 Group III: Monodesmosidic saponins (C6-gly) Ginsenoside Rg2 Ginsenoside Rh1 Pseudoginsenoside F11 83 Group IV: Aglycones Protopanaxadiol Protopanaxatriol 4.3 Material and Methods Chemicals DMEM media, supplements, fetal bovine serum (FBS), trypsin-EDTA and dimethyl sulfoxide (DMSO) was purchased from Gibco Invitrogen; Germany. Ginsenosides of known purity were purchased in China by Wan Chuangxing, Tarim University, PR China. Methods Cytotoxicity HeLa (human cervical cancer) cells were cultured in DMEM complete medium supplemented with 10% FBS, 5% antibiotics (penicillin/ streptomycin) and 5% non-essential amino acids. Cultures were maintained in a humidified atmosphere of 5 % CO2 at 37 °C. Sample preparation Ginsenosides were dissolved in DMSO prior to the experiment. The test samples were serially diluted in medium, so that the final concentrations of DMSO did not exceed 0.05%. Doxorubicin was used as positive control. MTT assay The MTT viability assay [42] was used to determine the cytotoxicity of the ginsenosides. 2 x 104 cells/well were seeded in 96-well plates (Greiner Labortechnik, Frickenhausen), cultured for 24 h to 80% confluence before the test samples were added. Cells were incubated for 24 h before the medium was replaced by fresh medium containing 0.5 mg/ml MTT. After 4 h, the medium was discarded to be replaced with 100 µl DMSO. The absorbance was recorded at 570 nm with a Tecan Safire II Reader. 84 Statistical analysis The IC50 values were calculated from 9 data points per concentration using a four parameter logistic curve (SigmaPlot® 11.0). 4.4 Results The cytotoxicity of 12 ginsenosides with differing structures was analysed in the cervical cancer cell line HeLa. The commonly occurring ginsenosides Rb1, Rc, Re and Rg1, had IC50 values around 1.2 mg/ml. However, the ginsenoside Rd, another major ginsenosides had an IC50 value of 161 µg/ml, ten times lower than of the other main compounds. Rh2, protopanaxadiol and protopanaxatriol had IC50 values of HeLa IC50 [µg/ml] Bidesmosidic saponins Ginsenoside Rb1 Ginsenoside Rc Ginsenoside Rd Ginsenoside Re Ginsenoside Rg1 1373.3 1431.5 161.3 1291.8 1408.8 Monodesmosidic saponins: C3-gly Ginsenoside Rg3 Ginsenoside Rh2 245.7 29.1 Monodesmosidic saponins: C6-gly Ginsenoside Rg2 Ginsenoside Rh1 Pseudoginsenoside F11 1172.7 452.9 2332.9 Aglycones Protopanaxadiol Protopanaxatriol 13.2 31.6 below 30 µg/ml, indicating a high cytotoxicity (Tab. 1). 4.5 Discussion Ginsenosides are generally regarded as the main active secondary metabolites Reference substance Doxorubicin (positive control) 0.6 of ginseng. They are saponins with amphiphilic properties which can Table 1: Cytotoxic effects of ginsenosides exhibit three main modes of action. Monodesmosidic ginsenosides can intercalate into the biomembrane of a cell, complex membrane cholesterol and thus can change membrane fluidity and permeability. By modifying the lipid environment of ion channels, transporter proteins and receptors in the lipid bilayer of the cell membrane it is possible to modify the function of membrane proteins [43,44]. Membrane proteins are either in cholesterol rich or cholesterol poor parts of the biomembrane; the exact environment is crucial for their correct function [45]. Ginsenosides are able to interact with the polar head of the phospholipids and the C3-OH group of cholesterol through polar function groups such as hydroxyl groups of the sugar moieties. They are also able to intercalate into the hydrophobic interior of the bilayer with their lipophilic 85 steroidal part. In the biomembrane, they are able to displace cholesterol from the immediate environment of membrane proteins, thus increasing membrane fluidity and permeability. Any change in the close environment of the membrane proteins can facilitate conformational changes that can modulate the activity of the protein. In accordance with this observation, ginsenosides were shown to modify the activity of voltage-dependent and ligand-gated ion channels [16]. The steroidal structure of lipophilic ginsenoside aglycones facilitates diffusion across the cell membrane. Another mode of action is based on their structural similarities to steroid hormones. Thus they are likely to modify gene expression [43,46,47]. Their presence in the nucleus was shown by Wakabayashi et al. [48]; their ability to bind to the glucocorticoid receptor has also been demonstrated [49,50], leading to a modification of the transcription of mRNA and the protein synthesis. We selected 12 representative ginsenosides of the three general saponin types, the bidesmosides, the monodesmosides and the aglycones (Fig. 1). The monodesmosides were again subdivided into two groups with the sugar moiety attached to C3 or C6. The first group, the bidesmosidic saponins, contains the ginsenosides Rb1, Rc, Rd, Re and Rg1. The second group, the monodesmosidic saponins with the sugar moiety attached to C3, contains the ginsenosides Rg3 and Rh2. The third, also monodesmosidic group with the sugar moiety attached to C6, includes the ginsenosides Rg2, Rh1 and PF11, while the fourth group, the aglycones, comprises the protopanaxadiol and protopanaxatriol. The monodesmosidic ginsenosides Rg3 and Rh2 have glucopyranose sugar chains attached only to C3 similar to the situation in many other steroidal and triterpenoid saponins. The IC50 values of Rg3 and Rh2 with 245 and 29 µg/ml demonstrated strong cytotoxic activity. Although ginsenoside Rd is a bidesmosidic saponin, it acts more like the monodesmosidic ginsenosides Rg3 and Rh2. Its IC50 of 161 µg/ml is in the range of the IC50 values of Rg3 and Rh2. The strong cytotoxicity of ginsenoside Rd had already been reported by Yang et al. [37] with a similar IC50 of 150 µg/ml also in HeLa cells. Like the ginsenosides Rg3 and Rh2, ginsenoside Rd has a glucopyranose sugar chains on C3, but has also a one-molecule glucopyranose sugar chain on C20. We suppose a hydrolysis of the glucopyranose at C20, transforming the bidesmosidic ginsenoside Rd into a monodesmosidic molecule. Despite its originally bidesmosidic structure, we group the ginsenoside Rd for the discussion together with the monodesmosidic saponins Rg3 and Rh2 because of structural and cytotoxic 86 similarities. The same cleavage probably happens with the ginsenosides Re and Rg1, changing them into monodesmosidic ginsenosides of the group III. Due to the low cytotoxic activity of monodesmosidic ginsenosides with the sugar moiety on C6, this transformation is not visible in the cytotoxic results. Rd was found to induce apoptosis in HeLa cells through down-regulation of Bcl-2 expression [37], which explains the observed cytotoxicity (Tab. 1). Furthermore, it decreases MDR in MCF-7/ADR cells [51], which makes it a highly promising cancer drug. The monodesmosidic ginsenosides Rg3 and Rh2 have been regarded as potent anticancer drugs [38]. Mochizuki [52] reported a decrease of lung metastasis of B16-BL6 melanoma cells due to ginsenoside Rg3. Ginsenoside Rg3 has been shown to be angiosuppressive [53], thus adding another mode of action to suppress cancer growth Rh2 induces apoptosis through ligand-independent Fas activation [54] and arrests the cell cycle in the G1 phase [55]. This is in agreement with the substantial cytotoxicity of Rg3 and Rh2 against the cancer cell line HeLa (Tab. 1). The activity of the three ginsenosides Rd, Rg3 and Rh2 is connected to their sugar moiety on C3, leaving C6 free. The sugar moiety on C3 enables the molecule to be incorporated into the bilayer of the biomembrane next to cholesterol. This is not possible for either the bidesmosidic or monodesmosidic ginsenosides with the sugar moiety attached to C6 due to sterical reasons. We conclude that a monodesmosidic structure with the sugar moiety attached to C3 seems to be crucial for the cytotoxic effect of ginsenosides. The monodesmosidic ginsenosides Rg2, Rh1 and PF11, tested in group III, all showed a very low cytotoxicity. They were up to 80 times less cytotoxic than the ginsenosides with the sugar moiety attached to C3. The sugar moiety attached to C6 prevents the integration of the steroidal part into the bilayer. Ginsenosides with the sugar moiety attached to C6 such as Rg2 or Re and bidesmosidic ginsenosides such as Rb1 were shown to be active in the CNS [4,14]. Most likely they are specific ligands for receptor proteins involved in psychologic effects. A direct integration into the biomembrane does not seem to be necessary for this effect. 87 The bidesmosidic ginsenosides of group I were, as expected, inactive. Their bidesmosidic structures prevent their intercalation into the biomembrane. The aglycones protopanaxadiol and protopanaxatriol (group IV) showed strong cytotoxicity with IC50 values of 13 and 31 µg/ml, respectively. As aglycones, they are highly lipophilic, so that they can easily cross the cell membrane and enter the nucleus or other compartments in the cell. Their high cytotoxicity is probably based on their effects either on membrane proteins or on cell compartments such as the nucleus. Due to their structural similarity to steroidal hormones, they are likely to have an impact on gene transcription and might even provoke apoptosis. 88 Fig. 2: Cytotoxic effects of ginsenosides against HeLa cells Survival [%] 150 Ginsenoside Rb1 Ginsenoside Rc Ginsenoside Rd Ginsenoside Re Ginsenoside Rg1 100 50 2500 1250 625 312 156 78 39 20 10 5 2.5 1.25 0.63 0 Concentration [µg/ml] A: Cytotoxic effect of the ginsenoside group I Survival [%] 150 Ginsenoside Rg3 Ginsenoside Rh2 100 50 Concentration [µg/ml] B: Cytotoxic effect of the ginsenoside group II 89 312 156 78 39 20 10 5 2.5 1.25 0.63 0 Survival [%] 150 Ginsenoside Rg2 Ginsenoside Rh1 Pseudoginsenoside F11 100 50 5000 2500 1250 625 312 156 78 39 20 10 0 Concentration [µg/ml] C: Cytotoxic effect of the ginsenoside group III Survival [%] 150 Protopanaxatriol Protopanaxadiol 100 50 Concentration [µg/ml] D: Cytotoxic effect of the ginsenoside group IV 90 312 156 78 39 20 10 5 2.5 1.25 0.63 0 4.6 References 1 Chen CF, Chiou WF, Zhang JT (2008). Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium. Acta Pharmacol Sin. 29, 1103-1108. 2 Kiefer D, Pantuso T (2003). Panax ginseng. Am Fam Physician. 68, 1539-1542. 3 Lee FC (1992). Facts about ginseng, the elexir of life. Hollyn International Corp., Elizabeth, NJ. 4 Choi KT (2008). Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin. 29, 1109-1118. 5 Lee TK, Johnke RM, Allison RR, O’Brien KF, Dobbs LJ Jr (2005). Radioprotective potential of ginseng. Mutagenesis. 20, 237-243. 6 Shibata S, Tanaka O, Shoji J, Saito H (1985). Chemistry and pharmacology of Panax. In: Economic and Medicinal Plant Research (Eds. Wagner H, Hikino H and Farnsworth NR), Vol. 1, pp. 217- 284. Academic Press, New York. 7 Kennedy DO, Scholey AB, Wesnes KA (2002). Modulation of cognition and mood following administration of single doses of Ginkgo biloba, ginseng, and a ginkgo/ ginseng combination to healthy young adults. Physiol Behav. 75, 739-751. 8 Mahady GB, Gyllenhall C, Fong HH, Farnsworth NR (2000). Ginseng: a review of safety and efficacy. Nutr Clin Care. 3, 90-101. 9 Sorensen H, Sonne J (1996). A double-masked study of the effects of ginseng on cognitive functions. Curr Ther Res Clin E. 57, 959-968. 10 D’Angelo L, Grimaldi R, Caravaggi M, Marcoli M, Perucca E, Lecchini S, Frigo GM, Crema A (1986). A double-blind, placebo-controlled clinical study on the effect of a standardized ginseng extract on psychomotor performance in healthy volunteers. J Ethnopharmacol. 16, 15- 22. 11 Benishin CG (1992). Actions of ginsenoside Rb1 on choline uptake in central cholinergic nerve endings. Neurochem Int. 21, 1-5. 12 Tsang D, Yeung HW, Tso WW, Peck H (1985). Ginseng saponins: influence on neurotransmitter uptake in rat brain synaptosomes. Planta Med. 221-224. 13 Yamaguchi Y, Haruta K, Kobayashi H (1995). Effects of ginsenosides on impaired performance induced in the rat by scopolamine in a radial-arm maze. Psychoneuroendocrinology. 20, 645-653. 14 Yamaguchi Y, Higashi M, Kobayashi H (1996). Effects of ginsenosides on impaired performance caused by scopolamine in rats. Eur J Pharmacol. 312, 149-151. 15 Benishin CG, Lee R, Wang LC, Liu HJ (1991). Effects of ginsenoside Rb1 on central cholinergic metabolism. Pharmacology. 42:223-229. 91 16 Nah SY, Kim DH, Rhim H (2007). Ginsenosides: Are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev. 13, 381- 404. 17 López MV, Cuadrado MP, Ruiz-Poveda OM, Del Fresno AM, Accame ME (2007). Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim Biophys Acta. 1770, 1308-1316. 18 Radad K, Gille G, Moldzio R, Saito H, Ishige K, Rausch WD (2004). Ginsenosides Rb1 and Rg1 effects on survival and neurite growth of MPP+-affected mesencephalic dopaminergic cells. J Neural Transm. 111, 37-45. 19 Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W, Wang C, Liu K (2005). Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett. 374, 92-97. 20 Lim JH, Wen TC, Matsuda S, Tanaka J, Maeda N, Peng H, Aburaya J, Ishihara K, Sakanaka M (1997). Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci Res. 28, 191-200. 21 Kang SY, Kim SH, Schini VB, Kim ND (1995). Dietary ginsenosides improve endothelium-dependent relaxation in the thoracic aorta of hypercholesterolemic rabbit. Gen Pharmacol. 26, 483-487. 22 Kang SY, Schini-Kerth VB, Kim ND (1995). Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sci. 56, 1577-1586. 23 Nakajima S, Uchiyama Y, Yoshida K, Mizukawa H, Haruki E (1998). The effects of ginseng radix rubra on human vascular endothelial cells. Am J Chin Med. 26, 365-373. 24 Sun K, Wang CS, Guo J, Horie Y, Fang SP, Wang F, Liu YY, Liu LY, Yang JY, Fan JY, Han JY (2007). Protective effects of ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1 on lipopolysaccharide-induced microcirculatory disturbance in rat mesentery. Life Sci. 81, 509-518. 25 Sengupta S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung HW, Wong RN, Sasisekharan R, Fan TP (2004). Modulating angiogenesis: the yin and the yang in ginseng. Circulation. 110, 1219-1225. 26 Park HJ, Lee JH, Song YB, Park KH (1996). Effects of dietary supplementation of lipophilic fraction from Panax ginseng on cGMP and cAMP in rat platelets and on blood coagulation. Biol Pharm Bull. 19, 1434-1439. 27 Scaglione F, Weiser K, Alessandria M (2001). Effects of the standardized ginseng extract G115® in patients with chronic bronchitis: a nonblind, randomised, comparative pilot study. Clin Drug Invest [New Zealand] 21, 41-45. 28 Scaglione F, Ferrara F, Dugnani S, Falchi M, Santoro G, Fraschini F (1990). Immunomodulatory effects of two extracts of Panax ginseng C.A. Meyer. Drugs Exp Clin Res. 16, 537-542. 92 29 Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, Kim DH (2005). Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull. 28, 652-656. 30 Keum YS, Han SS, Chun KS, Park KK, Park JH, Lee SK, Surh YJ (2003). Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NFkappaB activation and tumor promotion. Mutat Res. 523-524, 75-85. 31 Ro JY, Ahn YS, Kim KH (1998). Inhibitory effect of ginsenoside on the mediator release in the guinea pig lung mast cells activated by specific antigen-antibody reactions. Int J Immunopharmacol. 20, 625-641. 32 Cho WC, Yip TT, Chung WS, Lee SK, Leung AW, Cheng CH, Yue KK (2006). Altered expression of serum protein in ginsenoside Re-treated diabetic rats defected by SELDI-TOF MS. J Ethnopharmacol. 108, 272- 279. 33 Lee WK, Kao ST, Liu IM, Chen JT (2006). Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wister rats. Clin Exp Pharmacol Physiol. 33, 27- 32. 34 Sotaniemi EA, Haapakosi E, Rautio A (1995). Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care. 18, 1373-1375. 35 Lee WH, Choi JS, Kim HY, Park JH, Park BD, Cho SJ, Lee SK, Surh YJ (2010). Potentiation of etoposide-induced apoptosis in HeLa cells by co-treatment with KG-135, a quality-controlled standardized ginsenoside formulation. Cancer Lett. 294, 74-81. 36 Park SE, Park C, Kim SH, Hossain MA, Kim MY, Chung HY, Son WS, Kim GY, Choi YH, Kim ND (2009). Korean red ginseng extract induces apoptosis and decreases telomerase activity in human leukemia cells. J Ethnopharmacol. 121, 304-312. 37 Yang ZG, Sun HX, Ye YP (2006). Ginsenoside Rd from Panax notoginseng is cytotoxic towards HeLa cancer cells and induces apoptosis. Chem Biodivers. 3, 187-197. 38 Shibata S (2001). Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci. 16 (Suppl), 28-37. 39 Yun TK (2003). Experimental and epidemiological evidence on non-organ specific cancer preventive effect of Korean ginseng and identification of active compounds. Mutat Res. 523524, 63-74. 40 Yun TK (2001). Panax ginseng—a non-organ-specific cancer preventive? Lancet Oncol. 2, 49-55. 41 Shin HR, Kim JY, Yun TK, Morgan G, Vainio H (2000). The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control. 11, 565-576. 42 Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 65, 55–63. 93 43 Wink M (2008). Evolutionary advantage and molecular modes of action of multicomponent mixtures in phytomedicine. Curr Drug Metab. 9, 996-1009. 44 Bastiaanse EM, Höld KM, Van der Laarse A (1997). The effect of membrane cholesterol content in ion transport processes in plasma membranes. Cardiovasc Res. 33, 272-283. 45 Schroeder F, Jefferson JR, Kier AB, Knittel J, Scallen TJ, Wood WG, Hapala I (1991). Membrane cholesterol dynamics: Cholesterol domains and kinetic pools. Proc Soc Exp Biol Med. 196, 235-252. 46 Wink M (2007). Bioprospecting: The search for bioactive lead structures from nature. In: Medicinal Plant Biotechnology. From Basic Research to Industrial Applications. Ed O Kayser and WJ Quax, Wiley-VCH, Weinheim, pp. 97-116. 47 Attele AS, Wu JA, Yuan CS (1999). Ginseng Pharmacology: multiple constituents and multiple actions. Biochem Pharmacol. 58, 1685-1693. 48 Wakabayashi C, Murakami K, Hasegawa H, Murata J, Saiki I (1998). An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun. 246, 725-730. 49 Chan RYK, Chen WF, Dong A, Guo D, Wong MS (2002). Estrogen-like activity of ginsenoside Rg1 derived from Panax notoginseng. J Clin Endocrinol Metab. 87, 3691-3695. 50 Lee YJ, Chung E, Lee YJ, Lee YH, Huh B, Lee SK (1997). Ginsenoside Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol. 133, 135-140. 51 Pokharel YR, Kim ND, Han HK, Oh WK, Kang KW (2010). Increased ubiquitination of multidrug resistance 1 by ginsenoside Rd. Nutr Cancer. 62, 252-259. 52 Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tono-Oka S, Samukawa KI, Azuma I (1995). Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)and 20(S)-ginsenoside-Rg3, of Red ginseng. Biol Pharm Bull. 18, 1197-1202. 53 Yue PYK, Wong DYL, Wu PK, Leung PY, Mak NK, Yeung HW, Liu L, Cai Z, Jiang ZH, Fan TPD, Wong RNS (2006). The angiosuppressive effects of 20(R)- ginsenoside Rg3. Biochem Pharmacol. 72,437-445. 54 Yi JS, Choo HJ, Cho BR, Kim HM, Kim YN, Ham YM, Ko YG (2009). Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption. Biochem Biophys Res Commun. 385, 154-159. 55 Choi S, Kim TW, Singh SV (2009). Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases. Pharm Res. 26, 2280-2288. 94 5. Antitrypanosomal properties of Panax ginseng CA Meyer – new possibilities for a remarkable traditional drug! 5.1 Abstract African trypanosomiasis is still a major health problem in many sub-Saharan countries in Africa. We investigated the effects of three preparations of Panax ginseng, P. notoginseng, isolated ginsenosides and the polyacetylene panaxynol on Trypanosoma brucei brucei and the human cancer cell line HeLa. Hexane extracts and the pure panaxynol were toxic and at the same time highly selective against T. b. brucei, while methanol extracts and 12 isolated ginsenosides were significantly less toxic and showed only weak selectivity. Panaxynol was cytotoxic against T. b. brucei at the concentration of 0.01 µg/ml with a selectivity index of 858, superior even to established anti-trypanosomal drugs. We suggest that the inhibition of trypanothione reductase which is only found in trypanosomes, might explain the observed selectivity. The high selectivity together with a cytotoxic concentration in the range of the bioavailability make panaxynol and other polyacetylenes in general very promising lead compounds for the treatment of African trypanosomiasis. 5.2 Introduction Protozoa and helminths still cause severe damage to the health of people and their properties in many tropical countries [1]. Nevertheless, suitable drugs are scarce since these diseases are often neglected by commercially oriented research and development [2], so that new and reliable drugs are hardly available. One of the most important parasitic diseases in sub-Saharan Africa is African trypanosomiasis, causing major health and economic problems. The parasites are protozoa of the genus Trypanosoma: Trypanosoma brucei rhodesiense and T. b. gambiense are causing human sleeping sickness while T. b. brucei is causing the cattle disease nagana. T. b. brucei, lacking human infectivity, is commonly used as a model for human sleeping sickness due to its morphological and biochemical similarities [1,3,4]. After becoming nearly extinct in the 1960s, sleeping sickness is again continually increasing due to various reasons. Endemic to 36 countries, 60 million people are threatened by its consequences. The WHO estimates 300 000 to 500 000 cases of human trypanosomiasis to 95 occur per year [5,6]. 46 million cattle are exposed to nagana, which causes annual costs of 1340 billion USD [7]. The medical situation is far from ideal with only four approved drugs: Suramin, pentamidine, melarsoprol and eflornithine. Diminazene is approved for the treatment of animals but not humans [3]. All of these drugs have strong side effects and several resistances were reported recently [8-10]. Thus, the discovery of new drugs is an urgent necessity [11-13]. The root of ginseng (Panax ginseng C. A. Meyer) has been used as a highly praised medicinal plant in China, Korea, Japan and eastern Russia since several thousand years. The first surviving records of its use are Chinese oracle bones from around 1600 BC. Later descriptions dating to the Han dynasty around 200 AD elaborate on its medicinal properties [14]. It is still regarded as the most valuable herbal medicine in the traditional medicinal concept of China, Korea and Japan. Research is ongoing worldwide to explain its various medical properties. Traditionally, P. ginseng from Korea is regarded to be of higher quality compared to the Chinese product. Korean red ginseng is a special preparation of P. ginseng where the root is steamed and boiled over several hours before drying it [15]. This method of preparation has a long history in Korea and is said to improve the pharmaceutical qualities of the ginseng root. Korean red ginseng was first mentioned in the Sonhoa Bongsa Goryeo Dogyoung in the year 1123 AD. Successively, Korean red ginseng is valued much higher and accordingly is much more expensive compared to the untreated, sundried root. The main compounds of ginseng are ginsenosides and polyacetylenes, while fatty acids, polysaccharides and peptides seem to be of minor importance [16,17]. Till now, 38 ginsenosides have been isolated from P. ginseng; by further adding P. quinquefolius and P. notoginseng, a total of 66 ginsenosides have been isolated [18]. The ginsenosides Rb1, Rb2, Rc, Rd, Re and Rg1 form over 90% of the total amount of ginsenosides in P. ginseng while the other 32 ginsenosides are present in only minor quantities [19]. Ginsenosides (Fig. 1, Tab. 1), generally regarded as the main pharmaceutical compounds of P. ginseng, are steroidal saponins with a four trans-ring rigid steroid skeleton and modified side chains at C3, C6 and C20 [20]. The chain length, site of attachment and the different sugar moieties result in a high diversity of structures. Common sugars are glucose, maltose, fructose and sucrose. The structural modifications influence on the biological activity and explain the 96 various effects described for P. ginseng. We focused especially on their individual effects on HeLa and T. b. brucei. The tested 12 ginsenosides can be sorted into four groups according to their structure as mono- or bidesmosidic saponins and depending on the C atom to which the sugar chain is linked (Fig. 1). These variations explain the strong differences in toxicity, since aglycones and monodesmosidic saponins are able to enter and modify the biomembrane while bidesmosidic saponins remain outside of the lipid bilayer [21]. Fig. 1: Ginsenosides Group I: Bidesmosidic saponins Ginsenoside Rd Ginsenoside Rc Ginsenoside Rb1 Ginsenoside Re Ginsenoside Rg1 Group II: Monodesmosidic saponins (C3-gly) Ginsenoside Rg3 Ginsenoside Rh2 97 Group III: Monodesmosidic saponins (C6-gly) Ginsenoside Rg2 Ginsenoside Rh1 Pseudoginsenoside F11 Group IV: Aglycones Protopanaxadiol Protopanaxatriol Table 1: Ginsenosides Compound: Ginsenoside Molecular Formula Molar Mass Bidesmosidic saponins Ginsenoside Rb1 Ginsenoside Rc Ginsenoside Rd Ginsenoside Re Ginsenoside Rg1 C54H92O23 C53H90O22 C48H82O18 C48H82O18 C42H72O14 1109.29 1079.27 947.15 947.15 801.01 Monodesmosidic saponins: C3-gly Ginsenoside Rg3 Ginsenoside Rh2 C42H72O13 C36H62O8 785.01 622.87 Monodesmosidic saponins: C6-gly Ginsenoside Rg2 Ginsenoside Rh1 Pseudoginsenoside F11 C42H72O13 C36H62O9 C41H70O14 785.01 638.87 786.99 Aglycones Protopanaxadiol Protopanaxatriol C30H52O3 C30H52O4 460.73 476.73 As a traditional tonic, P. ginseng has surprised scientists with a broad series of pharmaceutical effects [22]. One of the main applications could be confirmed by the positive effect on reaction time, concentration and mental fitness [23-25]. Many studies were conducted to 98 demonstrate the effects on the cardiovascular system [26,27]. Additionally, P. ginseng has positive effects on the immune system [28,29], lowered the blood glucose level and thus having a positive effect on diabetes [30-33]. One of the most important aspects of P. ginseng, however, is inhibition of tumour cell growth and induction of apoptosis [34,35]. Cancer preventive effects could be demonstrated by several studies both using extracts and pure ginsenosides [36,37]. Polyacetylenes (Fig. 2, Tab. 2) are the second major group of compounds found in P. ginseng. They are lipophilic molecules and constitute the main active group of compounds in the hexane extracts. In P. ginseng, panaxynol, panaxydol, panaxytriol and falcarindiol are the main polyacetylenes (Fig. 2). Polyacetylenes are not limited to the genus Panax, but are widely distributed in Apiaceae, Araliaceae and Asteraceae. Nearly all polyacetylenes found in food and medicinal plants (carrot, celeriac, parsnip, parsley and ginseng) are of the panaxynol type [32,38-48]. Panaxynol was discovered twice; the first isolation was performed by Takashi and Yoshikura [49], 1964, who named the molecule panaxynol. Bohlman et al. [50] isolated the same compound shortly afterwards, not knowing that it was already described and called it falcarinol. Unfortunately, both names became established in scientific literature and are used as synonyms, adding to the confusion. We give credit to the first isolation and will use the name panaxynol. Panaxynol is sensitive to heat and not stable in pure form or DMSO at room temperature while being relatively stable in organic solvents such as hexane and dichloromethane [51-53]. Polyacetylenes possess a surprisingly wide range of biological activities: They are direct antioxidants due to their CC triple bond [40,41], while at the same time up regulating the antioxidant response element (ARE) [54]. The triple bonds are reactive and can covalently bond to SH-groups of proteins [21]. Polyacetylenes are potent anti-inflammatory compounds [55-57]. The inhibition of lipoxygenases and the modulation of prostaglandin catabolism by inhibiting the prostaglandin-catabolizing enzyme 15-hydroxy-prostaglandin dehydrogenase seem to be the major mechanism [58-60]. However, the inhibition of the inducible nitric oxide synthase (iNOS) [61] and the inhibition of COX-1 [62] seem to be important as well. 99 Fig. 2: Polyacetylenes Panaxynol Falcarindiol Panaxytriol Panaxydol Table 2: Polyacetylene Compound: Polyacetylene Panaxynol Falcarindiol Panaxydol Panaxytriol Molecular Formula C17H24O C17H24O2 C17H24O2 C17H26O3 Molar Mass 244.37 260.37 260.37 278.39 Polyacetylenes were shown to be cytotoxic to various cancer cell lines [63-79]. Both in vitro and in the rat model an anticancer activity could be shown [80-82]. The effect of cancer drugs was shown to be enhanced in combination with polyacetylenes due to membrane effects and multiple attacks on proteins and other targets [83]. The antioxidant, the anti-inflammatory and the cytotoxic effects seem to be important and connected for cancer prevention by polyacetylenes. An anti-platelet-aggregation effect by regulating the levels of cGMP and TXA2 to inhibit platelet aggregation induced by thrombin was shown, too [84-86]. Panaxynol causes allergic contact dermatitis and irritant skin reactions while related polyacetylenes do not seem to be allergenic [51,87-89]. 100 Polyacetylenes are toxic to a wide range of organisms: Crustaceans were sensitive in the brine shrimp assay [76]. Antiviral activity was also demonstrated [90]. Antifungal and spore germination inhibiting properties are well known [46,91-96], as are the effects against bacteria and mycoplasma [97-102]. Interestingly, polyacetylenes possess high antimalarial activities in vitro and in vivo [103,104], whereas medium antiprotozoal activities were demonstrated for some rare polyacetylenes of Tanzanian medicinal plants in vitro [105]. The mode of action, however, was not established by these authors. We studies the effects of different ginseng preparations as well as of 12 pure ginsenosides and panaxynol on African trypanosomiasis, revealing a new, very promising application for this important medicinal plant. 5.3 Material and Methods Chemicals and plant material DMEM media, supplements, fetal bovine serum (FBS), trypsin-EDTA and dimethyl sulfoxide (DMSO) were purchased from Gibco Invitrogen (Germany). The positive controls diminazene (D7770, ≥90% purity), DL-α-difluoromethylornithine (D193, ≥97% purity), metronidazole (M3761, analytical purity), ornidazole (O5879, analytical purity), suramin (S2671, ≥95% purity) were purchased from Sigma-Aldrich, Germany. Chinese Panax ginseng C. A. Meyer was bought in a store specialized on P. ginseng in China (P8088). Korean Panax ginseng C. A. Meyer (P8086) and red Panax ginseng C. A. Meyer (P8087) (6 years old; land of origin Korea) were purchased from Cheong Kwan Jang ginseng store in Korea. Panax notoginseng (Burkill) F. H. Chen (P6887) was provided by Prof. Dr. T. Efferth, Johannes Gutenberg University, Mainz. Ginsenosides and panaxynol were purchased in China by Wan Chuangxing, Tarim University, PR China. Genetic identification of plant material P. ginseng and P. notoginseng were authenticated by visual and microscopic identification and by DNA barcoding. DNA was isolated from dried plant material; their chloroplast rbcL gene was amplified and sequenced. The obtained sequences were authenticated with sequences obtained from sample species of the Botanical Garden of Heidelberg and databases. Voucher specimens of the plant material were deposited at the Department of Biology, 101 Institute of Pharmacy and Molecular Biotechnology, Heidelberg University (P. ginseng China: IPMB number P8088, GenBank accession number JF950028; P. ginseng Korea: IPMB number P8086, GenBank accession number JF950029; P. ginseng Red IPMB number P8087; P. notoginseng IPMB number P6887, GenBank accession number JF950030). Extract preparation 100 g of dried fine milled root powder was exhaustively extracted in a Soxhlet Extractor first with hexane, then dichloromethane and finally methanol under moderate heat for 20 h each. The solvents were removed with a rotavapour. The resulting residues were dried in oil vacuum and stored under exclusion of light at -40 °C. The yield of the hexane extracts were 0.46 g, 0.48 g, 0.47 g and 0.35 g dry extract. The yield of the dichloromethane extracts were 0.31 g, 0.39 g, 0.33 g and 0.28 g dry extract. The yield of the methanol extracts were 9.87 g, 9.75 g, 9.99 g and 8.76 g dry extract for P. ginseng (Korea), P. ginseng (China), P. notoginseng and P. ginseng (red) respectively. Prior to the experiments the remaining solvent was evaporated and the extract solved in DMSO before being applied to the cells. This was performed prior to each experiment to minimize the error due to the instability of polyacetylenes in DMSO. Mass spectrometry GLC-MS: GLC-MS analysis6 was done on a 5890 Series II Gas Chromatograph (Hewlett-Packard, Palo Alto, California, USA) coupled to a Finnigan SSQ 7000 Mass Spectrometer (Thermo Finnigan, Bremen, Germany). The head pressure of the 30 meter long capillary column with an inner diameter of 0.25 mm and an OV-1 bonded phase layer of 0.25 micrometer (Ohio Valley Speciality Company Marietta, Ohio, USA) was 100 kPa Helium. The temperature of the split injector (split ratio 1:30) was 250 deg C. Oven temperature was kept at 120 deg C for 1 min isotherm at the start. Then the temperature was raised at a rate of 6 deg C/min up to 300 deg/C and kept isotherm for 10 min. The Quadrupol Mass Spectrometer was operated in MID mode (m/z =40-500), ion source temperature was 175 deg C, electron energy 70 eV. The datasystem (Xcalibur version 1.3, Thermo Finnigan) was started after a delay time of 5 min. 2 mikro l samples of solutions in hexane were analysed. 6 Experiments performed by Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany: Frank Sporer 102 HPLC-MS: Mass spectrometry7 was performed on a VG Quattro II system form Micromass provided with ESI source at a negative scan mode under the parameters Capillary: 3.00 kV, HV Lens: 0.50 kV, Cone: 40 V. Drying and nebulising gas N2. Source temp. 120 oC. Scan range: 400-1200. Ginsenosides were identified using pure authentic compounds. HPLC was performed on a Merck-Hitachi L-6200A system with 1 mL/min step gradient flow rate. The used stationary phase was an RP18e column (LiChrospher, 250-4mm, 5 µm, Darmstadt, Germany). Data were processed using MassLynx 4.0 software. HPLC and LC-MS were used to analyse ginseng preparations, extracts and the purity of ginsenosides and polyacetylenes. Cell culture Trypanosomes: T. b. brucei TC 221 derived from stock 427 and were originally obtained from Prof. Peter Overath (Max-Plank Institut für Biologie, Tübingen) by Dr. D. Steverding; they were cultured in the IPMB since 1999. HeLa and T. b. brucei culture: HeLa (cervical cancer) cell lines were maintained in DMEM complete media (L-glutamine supplemented with 10% heat-inactivated fetal bovine serum, 5% penicillin/ streptomycin and 5% non-essential amino acids). Cells were grown at 37 °C in a humidified atmosphere of 5% CO2. Bloodstream forms of T. b. brucei cells were grown in BALTZ medium [106], supplemented with 20% inactivated fetal bovine serum (FBS) and 0.001% β-mercaptoethanol. DMEM media, supplements, fetal bovine serum (FBS), trypsin-EDTA and dimethyl sulfoxide (DMSO) were purchased from Gibco Invitrogen (Germany). All experiments were performed with cells in the logarithmic growth phase. MTT assay: Cytotoxicity was determined in triplicate using the 3-(4.5-dimethylthiazol-2-yl)-2.5diphenyltetrazolium bromide (MTT) cell viability assay [107]. Extracts, ginsenosides and panaxynol were dissolved in dimethylsulfoxide (DMSO) and serially diluted in medium into ten different concentrations. A 100 µl sample containing medium was dispensed into each well. The concentration of the solvent, DMSO, did not exceed 0.05% in the medium that contained the highest concentration tested. Controls included wells with untreated cells and without cells. Cells (2 x 104 cells/well) were seeded in 96-well plates (Greiner Labortechnik). 7 Experiments performed by Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany: Ahmad Tahrani 103 Cells were cultured for 24 h to 80% confluence before treating them with the test samples. After incubation for 24 h the medium was replaced with fresh medium containing 0.5 mg/ml MTT. 4 h later the formed formazan crystals were dissolved in 100 µl DMSO; the absorbance was detected at 570 nm with a Tecan Safire II Reader. Doxorubicin was used as positive control for HeLa cells, artemisinin, diminazene, DL-α-difluoromethylornithine, metronidazole, ornidazole and suramin were used as positive control for T. b. brucei. Cell viability of T. b. brucei was additionally confirmed and evaluated using microscopical techniques. Screening: T. b. brucei was compared to HeLa cells and the Selectivity index (SI) was calculated as: SI: ratio of the IC50 value of mammalian cells divided by the IC50 value of trypanosomes. Statistical analysis: The results were obtained as means and standard errors of triplicates repeated at least three times for each measurement point. The IC50 values were calculated using a four parameter logistic curve (SigmaPlot® 11.0) representing 50% reduction of viability compared to the positive control. Table 3: Relative abundance of polyacetylenes detected in the Panax extracts via GLC-MS P. ginseng Korea P. ginseng China P. ginseng Red P. notoginseng C6H14 CH2Cl2 CH4O C6H14 CH2Cl2 CH4O C6H14 CH2Cl2 CH4O C6H14 CH2Cl2 CH4O Panaxynol 9.4 % trace - 10.9 % trace - 30.7 % trace - 7.8 % trace - Peak 2 60.1 % trace - 67.7 % trace - 5.9 % trace - 20.4 % trace - Peak 3 2.6 % - - 1.9 % - - 20.4 % trace - 21.7 % trace - Table 4: Relative abundance of ginsenosides detected in the Panax extracts via HPLC-MS P. ginseng Korea P. ginseng China C6H14 CH2Cl2 CH4O C6H14 CH2Cl2 CH4O C6H14 CH2Cl2 CH4O C6H14 CH2Cl2 CH4O Rd - - ND - - 3.9 % - ND 3.4 % - - Rg1 - 2.2 % ND - 1.4 % 1.3 % - ND 10 % - 0.4 % PF11 Rg2 - 0.3 % 0.5 % - ND ND ND - trace trace 0.8 % 1.7 % trace 1.5 % - ND ND ND 2% 1.8 % 0.3 % - 0.3 % - Rb1 - - ND - - 6.4 % - ND 6% - - Rc - - ND ND ND ND - trace 2.1 % 5.2 % 4.5 % trace trace - ND ND ND ND 0.5 % 3% 0.9 % - - - 3.2 % 28.8 % 1.1 % trace 4.3 % 16.1 % 1.4 % 6.9 % - - trace - - - - - trace - - trace - - - - - - - - - - - - - Rh1 Re Rg3 Rh2 Protopanaxa diol Protopanaxat riol P. ginseng Red 104 P. notoginseng 5.4 Results The GLC-MS data of the four hexane extracts revealed that panaxynol is one of the main polyacetylenes and present in all extracts (Fig. 3,4, Tab. 3). The RI (OV-1) was similar to the one published previously [108]. The second major polyacetylene is an unidentified polyacetylene similar in structure to panaxynol. The MS spectrum shows the close structural relationship to panaxynol (Fig. 4). The third major polyacetylene also of the panaxynol type is present in significant amounts only in the hexane extract of P. notoginseng and the red P. ginseng. The HPLC-MS data of the extracts showed that ginsenosides are the major compounds of the methanol extracts. They appear only in traces in the dichloromethane extracts and are completely absent in the hexane extracts (Tab. 4). The major ginsenosides of all four ginseng variations are the ginsenosides Rd, Rg1, Rb1 and Re while the exact amount of the ginsenosides varies significantly. Three variations of P. ginseng (origin China, origin Korea and red ginseng from Korea), P. notoginseng, panaxynol and 12 ginsenosides were tested against the human cancer cell line HeLa and T. b. brucei. Suramin, DL-α-difluoromethylornithine and diminazene plus three further drugs were used as control substances in comparison to P. ginseng extracts, 12 isolated ginsenosides and panaxynol (Tab. 5,6). Suramin and DL-α-difluoromethylornithine are established drugs for the treatment of human trypanosomiasis, while diminazene is licensed for veterinary treatment only [109,110]. The lipophilic hexane and dichloromethane extracts of the P. ginseng varieties and P. notoginseng showed a remarkably selective cytotoxicity against T. b. brucei, while the polar methanol extracts were significantly less toxic and less selective (Tab. 5; Fig. 5-8). The cytotoxicity of the hexane extracts against T. b. brucei and HeLa cells was 0.1 to 2.6 µg/ml and 52.9 to 1085.9 µg/ml, respectively. The resulting selectivity index was between 101 and 529, while the selectivity index of the polar methanol extracts was only between 1 and 4 (Tab. 5). The effects of the pure compounds of P. ginseng were even more remarkable. The polyacetylene panaxynol showed a toxicity of 0.01 µg/ml against T. b. brucei and 8.58 µg/ml against HeLa, giving a substantially high selectivity index of 858 (Tab. 6; Fig. 9). 105 Table 5: Cytotoxic effects of the hexane, dichloromethane and methanol extracts of four Panax drugs Panax ginseng China Panax ginseng Korea Panax ginseng Red Panax notoginseng T. b. brucei IC50 [µg/ml] HeLa IC50 [µg/ml] T. b. brucei IC50 [µg/ml] HeLa IC50 [µg/ml] C6H14 C6H14 CH2Cl2 CH2Cl2 2.1 506.1 241.0 0.9 152.4 0.6 138.6 231.0 3.3 0.1 52.9 529.0 0.4 150.3 Ratio (HeLa/ T. b. brucei) 375.7 Ratio (HeLa/ T. b. brucei) T. b. brucei IC50 [µg/ml] HeLa IC50 [µg/ml] CH4O CH4O 169.3 319.0 1427.9 4.4 173.1 52.4 1075.0 1317.9 1.2 3.1 279.3 90.0 782.7 1310.6 1.6 0.9 263.0 469.6 1241.6 Ratio (HeLa/ T. b. brucei) 292.2 Table 6: Cytotoxic effect of panaxynol and ginsenosides Cytotoxic effect of polyacetylenes HeLa IC50 [µg/ml] 8.58 Ratio Panaxynol T. b. brucei IC50 [µg/ml] 0.01 Cytotoxic effects of ginsenosides T. b. brucei IC50 [µg/ml] HeLa IC50 [µg/ml] Ratio Bidesmosidic saponins Ginsenoside Rb1 Ginsenoside Rc Ginsenoside Rd Ginsenoside Re Ginsenoside Rg1 411.1 157.3 71.9 974.5 1003.4 1373.3 1431.5 161.3 1291.8 1408.8 3.3 9.1 2.2 1.3 1.4 Monodesmosidic saponins: C3-gly Ginsenoside Rg3 Ginsenoside Rh2 37.0 21.3 245.7 29.1 6.6 1.3 Monodesmosidic saponins: C6-gly Ginsenoside Rg2 Ginsenoside Rh1 Pseudoginsenoside F11 240.3 295.8 2181.0 1172.7 452.9 2332.9 4.8 1.5 1.0 Aglycones Protopanaxadiol Protopanaxatriol 12.4 11.5 13.2 31.6 1.0 2.7 T. b. brucei IC50 [µg/ml] 98.0 0.1 11.7 18.8 18.8 4.7 HeLa IC50 [µg/ml] 451.8 170.6 1502.6 1180.5 849.8 1317.1 Ratio Cytotoxicity of control compounds Artemisinin Diminazene DL-α-difluoromethylornithine Metronidazole Ornidazole Suramin 106 (HeLa/ T. b. brucei) 858.00 (HeLa/ T. b. brucei) (HeLa/ T. b. brucei) 4.6 1706.0 128.4 62.7 45.2 280.2 2.6 Compared to this, the established drugs against human trypanosomiasis, DL-αdifluoromethylornithine and suramin have only a selectivity index of 128 and 277, respectively. The selectivity index of panaxynol is with 858 three times higher than the one of the standard drug suramin with 277. Only diminazene, which is not licensed for the treatment of humans, showed a higher selectivity index of approximately 1706 as compared to panaxynol (Tab. 6). The 12 ginsenosides had a toxicity range from 11.5 to 2181.0 µg/ml for T. b. brucei and 13.2 to 2332.9 µg/ml for HeLa with selectivity indices between 1 and 9 (Tab. 6; Fig. 10-13). 5.5 Discussion Due to the high importance of P. ginseng in Asian medicine, we chose to investigate three types of P. ginseng: P. ginseng with the origin of China, P. ginseng with the origin of Korea and Red ginseng from Korea. Additionally, we decided to compare these three varieties of P. ginseng with P. notoginseng. Being closely related, it also contains ginsenosides as well as polyacetylenes. Just as in P. ginseng, its main polyacetylene is panaxynol. Our HPLC-MS results confirm that ginsenosides are mainly present in the methanol extracts; tiny amounts could also be found in the dichloromethane extracts, while none were present in the hexane extracts (Tab. 4). Our GLC-MS data demonstrated that polyacetylenes with panaxynol as main representative are major compounds of the hexane extracts of all ginseng variations (Fig. 3). Red ginseng is traditionally believed to be of higher efficacy than the untreated root. Certain ginsenosides are said to be degraded, while others are concentrated [36,111]. Yun [36] describes the monodesmosidic ginsenosides Rh1, Rh2, Rg3 and Rg5 as the major saponin components of red ginseng, while our results showed that they occur only in low amounts. Contrary to this, the bidesmosidic ginsenosides Rb1, Rd, Re and Rg1 were most abundant in our red ginseng (Tab. 4). These findings show that unlike to the common opinion, bidesmosidic saponins are not necessarily degraded but can survive the preparation process of red ginseng unaltered, which explains the similar cytotoxicity of the methanol extracts of the four ginseng variations. The preparation method of steaming and boiling seems to be less aggressive than commonly thought and thus also allows the survival of the other group of sensitive molecules, the polyacetylenes. 107 Polyacetylenes, especially panaxynol, are commonly assumed to be instable in heat treatment and so we supposed that the effect of the treated red ginseng should be reduced compared to the untreated root. However, the results showed an enhanced activity both against HeLa cells and T. b. brucei of the hexane extract of red ginseng. Additionally, our GLC-MS data showed that panaxynol and other polyacetylenes are present in all four hexane extracts (Fig. 3,4). This demonstrates that no significant loss of activity occurred by the treatment to transform the fresh ginseng into the red ginseng. P. notoginseng is valued as an important drug with similar medicinal properties as P. ginseng in Chinese Medicine. Our experiments showed comparable results, suggesting that it can be used under certain circumstances as a substitute. No differences were seen in the cytotoxicity of the methanol and dichloromethane extracts between all four ginseng variations. The activity of the methanol extracts was with IC50 values of around 1300 µg/ml comparable to that of the bidesmosidic ginsenosides of group I, which are also the main compounds detected by mass spectrometry in these extracts (Tab. 4-6). While the ginsenosides and methanol extracts showed no selectivity and no remarkable cytotoxicity towards T. b. brucei, panaxynol and the hexane extracts were not only highly cytotoxic, but also extremely selective towards T. b. brucei. Panaxynol was superior to all licensed drugs applied in the treatment of African trypanosomiasis (Tab. 6). We conclude that the polyacetylenes, especially panaxynol are the active principle in ginseng against T. b. brucei. The general cytotoxic mechanism of panaxynol is well understood. The hydrophobic molecule can easily penetrate the cells. There, the loss of water at the C3 hydroxyl group forms an extremely stable carbocation. This carbocation is a very reactive alkylating agent towards SH and amino groups in proteins and other biomolecules Fig. 14: Glutathione disulfide (a) and trypanothione disulfide (b) after Bond et al., 1999 [117] [21,40,41,112]. One example is the inactivation of Na+ channels [113]. 108 The reason for the selectivity of panaxynol against T. b. brucei seems to be based on several mechanisms working together. The most important target seems to be the inhibition of the trypanothione reductase. This enzyme is specific for trypanosomastids, while mammalian cells use the glutathione reductase instead. These enzymes are members of the FADdependent NADPH oxidoreductase family. They are dimeric molecules and protect the cell against reactive oxygen species formed during the aerobic metabolism [110,114-116]. The two enzymes are able to distinguish their substrates trypanothione disulfide and glutathione disulfide by the factor 1000 because of differences in size and charge. Glutathione disulfide is smaller and -2 charged at physiological pH, while trypanothione disulfide is +1 charged with a hydrophobic body of seven methylene groups (Fig. 14). The trypanothione disulfide binding site in the trypanothione reductase is larger with a negatively charged glutamate side chain and a hydrophobic cleft for the polyamine moiety (Fig. 15). Contrary to this, the glutathione reductase has a positively charged, smaller active centre [110,118]. The panaxynol carbocation can enter the active centre of the trypanothione reductase due to its positive charge and lipophilic chain. There, it can bind to the active centre and block the enzyme. This is not possible with the glutathione reductase where it is repelled because of its positive charge. Fig. 15: Trypanothione reductase with binding site after Bond et al., 1999 [117] There, the CC triple bonds of the carbocation can form irreversible bonds with the active centre. Additionally, panaxynol is known to modify AMP levels in mammalian cells by direct inhibition of the mitochondrial respiration resulting in a significant reduction of ATP in the cells [75,118,119]. The immediate consequence is a cell cycle arrest [42,120,121]. Thus, fast proliferating cells are especially sensitive to panaxynol, as was demonstrated by several investigations [69,112,122-124]. This is probably happening in rapidly proliferating T. b. brucei as well. Trypanosomes require specific sterols for their cell viability and are extremely sensitive to ergosterol biosynthesis inhibitors [125-127]. Polyacetylenes, on the other side, have been 109 shown to inhibit the cholesterol acyltransferase (ACAT) [128-130]. We suggest that the observed selectivity of panaxynol is based on these three mechanisms, while the most important one seems to be the inhibition of the trypanothione reductase. For future drug developments, the bioavailability of panaxynol is crucial. This was already established by Christensen and Brandt [40], who demonstrated that the oral uptake of 300, 600 and 900 ml carrot juice with 13.3 mg panaxynol/l resulted in a maximum serum concentration of 2.5 ng/ml. The amount of panaxynol in P. ginseng is 5 times higher than in carrots, lowering the necessary amount of drug to obtain sufficient serum concentration levels [53,131]. This concentration is already in the active range demonstrated in our experiments, making panaxynol and other polyacetylenes in general very promising compounds for the treatment of African trypanosomiasis. 110 Fig. 3: GLC-profiles of hexane extracts (TIC) Hexane extracts: A: Panax ginseng (Korea) B: Panax ginseng (China) C: Panax notoginseng D: Panax ginseng (Red) Major peaks: 1: Panaxynol 2: unidentified polyacetylene of panaxynol type 3: unidentified polyacetylene 111 Fig. 4: MS-spectra of polyacetylenes 1: MS of panaxynol 2: MS of unidentified polyacetylene of panaxynol type 3: MS of unidentified polyacetylene 112 Fig. 5: Cytotoxic effects of the hexane and methanol extracts of P. ginseng (Korea) against T. b. brucei and HeLa cells. 150 Hexane Hexane Methanol Methanol 5000 2500 1250 625 313 156 9.8 Concentration [µg/ml] 78 0 5000 2500 625 1250 313 78 156 39 9.8 19.5 4.9 2.4 1.2 0.6 0.3 0.15 0.075 0 50 39 50 100 19.5 100 Survival [%] Survival [%] 150 Concentration [µg/ml] A: Cytotoxic effect of P. ginseng (Korea) extracts against T. b. brucei B: Cytotoxic effect of P. ginseng (Korea) extracts against HeLa cells Fig. 6: Cytotoxic effects of the hexane and methanol extracts of P. ginseng (China) against T. b. brucei and HeLa cells. 150 Hexane Hexane Methanol Methanol Survival [%] 5000 2500 1250 625 313 9.8 Concentration [µg/ml] 156 0 5000 2500 1250 625 313 156 78 39 19.5 9.8 4.9 2.4 1.2 0.6 0.3 0.15 0.075 0 50 78 50 100 39 100 19.5 Survival [%] 150 Concentration [µg/ml] A: Cytotoxic effect of P. ginseng (China) extracts against T. b. brucei B: Cytotoxic effect of P. ginseng (China) extracts against HeLa cells Fig. 7: Cytotoxic effects of the hexane and methanol extracts of P. notoginseng against T. b. brucei and HeLa cells. 150 Hexane Hexane Methanol Methanol Concentration [µg/ml] A: Cytotoxic effect of P. notoginseng extracts against T. b. brucei B: Cytotoxic effect of P. notoginseng extracts against HeLa cells 113 5000 2500 1250 625 313 156 9.8 Concentration [µg/ml] 78 0 5000 2500 1250 625 313 156 78 39 19.5 9.8 4.9 2.4 1.2 0.6 0.3 0.15 0.075 0 50 39 50 100 19.5 100 Survival [%] Survival [%] 150 Fig. 8: Cytotoxic effects of the hexane and methanol extracts of P. ginseng (Red) against T. b. brucei and HeLa cells. 150 Hexane Hexane Methanol Methanol 5000 2500 1250 625 313 156 9.8 Concentration [µg/ml] 78 0 5000 2500 625 1250 313 78 156 39 9.8 19.5 4.9 2.4 1.2 0.6 0.3 0.15 0.075 0 50 39 50 100 19.5 100 Survival [%] Survival [%] 150 Concentration [µg/ml] A: Cytotoxic effect of P. ginseng (Red) extracts against T. b. brucei B: Cytotoxic effect of P. ginseng (Red) extracts against HeLa cells Fig. 9: Panaxynol 150 150 Panaxynol 100 Survival [%] 50 50 Concentration [µg/ml] 50 25 12.5 6.4 3.2 1.6 0.8 0.1 0.4 0 0.5 0.25 0.125 0.064 0.032 0.016 0.008 0.004 0.002 0.001 0 100 0.2 Survival [%] Panaxynol Concentration [µg/ml] A: Cytotoxic effect of panaxynol against T. b. brucei B: Cytotoxic effect of panaxynol against HeLa cells Fig. 10: Ginsenosides group I Ginsenoside Rb1 Ginsenoside Rc Ginsenoside Rd Ginsenoside Re Ginsenoside Rg1 150 100 Survival [%] 50 100 50 Concentration [µg/ml] A: Cytotoxic effect of the ginsenoside group I against T. b. brucei B: Cytotoxic effect of the ginsenoside group I against HeLa cells 114 2500 1250 625 312 156 78 39 20 10 5 0.63 Concentration [µg/ml] 2.5 0 2500 1250 625 312 156 78 39 20 10 5 2.5 1.25 0.63 0 Ginsenoside Rb1 Ginsenoside Rc Ginsenoside Rd Ginsenoside Re Ginsenoside Rg1 1.25 Survival [%] 150 Fig. 11: Ginsenosides group II 150 Ginsenoside Rg3 Ginsenoside Rh2 Ginsenoside Rg3 Ginsenoside Rh2 Survival [%] 100 50 100 50 312 156 78 39 20 10 5 0.63 312 156 78 39 20 10 5 2.5 1.25 0.63 2.5 0 0 1.25 Survival [%] 150 Concentration [µg/ml] Concentration [µg/ml] A: Cytotoxic effect of the ginsenoside group II against T. b. brucei B: Cytotoxic effect of the ginsenoside group II against HeLa cells Fig. 12: Ginsenosides group III 150 Ginsenoside Rg2 Ginsenoside Rh1 Pseudoginsenoside F11 Ginsenoside Rg2 Ginsenoside Rh1 Pseudoginsenoside F11 Survival [%] 5000 2500 1250 625 312 10 156 0 5000 2500 1250 625 312.5 156.25 78.12 39.06 19.53 9.76 0 50 78 50 100 39 100 20 Survival [%] 150 Concentration [µg/ml] Concentration [µg/ml] A: Cytotoxic effect of the ginsenoside group III against T. b. brucei B: Cytotoxic effect of the ginsenoside group III against HeLa cells Fig. 13: Ginsenoside group IV 150 Protopanaxatriol Protopanaxadiol Protopanaxatriol Protopanaxadiol Survival [%] 100 50 100 50 Concentration [µg/ml] Concentration [µg/ml] A: Cytotoxic effect of the ginsenoside group IV against T. b. brucei B: Cytotoxic effect of the ginsenoside group IV against HeLa cells 115 312 156 78 39 20 10 5 0.63 312 156 78 39 20 10 5 2.5 1.25 0.63 2.5 0 0 1.25 Survival [%] 150 5.6 References 1 Pink R, Hudson A, Mouriès MA, Bending M (2005). Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov. 4, 727-740. 2 Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N (2002). Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet. 359, 2188-2194. 3 Hoet S, Opperdoes F, Brun R, Quetin-Leclerq J (2004). Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep. 21, 353-364. 4 Räz B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R (1997). The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 68, 139-147. 5 WHO/CDS/CSR/ISR/2000.1: WHO report on global surveillance of epidemic-prone infectious diseases, World Health Organisation (2000) http://www.who.int/csr/resources/publications/surveillance/en/a_tryps.pdf Last access: June 2011 6 Barrett MP (1999). The fall and rise of sleeping sickness. Lancet. 353, 1113-1114. 7 Kristjanson PM, Swallow BM, Rowlands GJ, Kruska RL, de Leeuw PN (1999). Measuring the costs of African animal trypanosomiasis, the potential benefits of control and returns to research. Agr Sys. 59, 79-98. 8 Fairlamb AH (2003). Chemotherapy of human African trypanosomiasis: current status and future prospects. Trends Parasitol. 19, 488-494. 9 Croft SL (1997). The current status of antiparasitic chemotherapy. Parasitology. 114 Suppl, 3-15. 10 Ross CA, Sutherland DV (1997). Drug resistance in trypanosomatids. In: Hide G, Mottram JC, Coombs GH, Holmes PH, editors. Trypanosomiasis and leishmaniasis: biology and control. CAB international, Wallinford, Oxon. 259-269. 11 Newman DJ, Cragg GM, Snader KM (2003). Natural products as sources of new drugs over the period 1981-2002. J Nat Prod. 66, 1022-1037. 12 Legros D, Ollivier G, Gastellu-Etchegorry M, Paquet C, Burri C, Jannin J, Büscher P (2002). Treatment of human African trypanosomiasis--present situation and needs for research and development. Lancet Infect Dis. 2, 437-440. 13 Brun R, Schumacher R, Schmid C, Kunz C, Burri C (2001). The phenomenon of treatment failures in Human African Trypanosomiasis. Trop Med Int Health. 6, 906-914. 14 Chen CF, Chiou WF, Zhang JT (2008). Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium. Acta Pharmacol Sin. 29, 1103-1108. 116 15 Wu JN (2005). Panax ginseng. In An illustrated Chinese Materia Medica. Oxford University Press, New York; 460-461. 16 Kiefer D, Pantuso T (2003). Panax ginseng. Am Fam Physician. 68, 1539-1542. 17 Lee FC (1992). Facts about ginseng, the elexir of life. Hollyn International Corp., Elizabeth, NJ. 18 Choi KT (2008). Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin. 29, 1109-1118. 19 Lee TK, Johnke RM, Allison RR, O’Brien KF, Dobbs LJ Jr (2005). Radioprotective potential of ginseng. Mutagenesis. 20, 237-243. 20 Shibata S, Tanaka O, Shoji J, Saito H (1985). Chemistry and pharmacology of Panax. In: economic and medicinal plant research (Eds. Wagner H, Hikino H and Farnsworth NR), Vol. 1, pp. 217- 284. Academic Press, New York. 21 Wink M (2008). Evolutionary advantage and molecular modes of action of multicomponent mixtures in phytomedicine. Curr Drug Metab. 9, 996-1009. 22 Mahady GB, Gyllenhall C, Fong HH, Farnsworth NR (2000). Ginseng: a review of safety and efficacy. Nutr Clin Care. 3, 90-101. 23 Kennedy DO, Scholey AB, Wesnes KA (2002). Modulation of cognition and mood following administration of single doses of Ginkgo biloba, ginseng, and a ginkgo/ ginseng combination to healthy young adults. Physiol Behav. 75, 739-751. 24 Sorensen H, Sonne J (1996). A double-masked study of the effects of ginseng on cognitive functions. Curr Ther Res Clin E. 57, 959-968. 25 D’Angelo L, Grimaldi R, Caravaggi M, Marcoli M, Perucca E, Lecchini S, Frigo GM, Crema A (1986). A double-blind, placebo-controlled clinical study on the effect of a standardized ginseng extract on psychomotor performance in healthy volunteers. J Ethnopharmacol. 16, 15-22. 26 Nakajima S, Uchiyama Y, Yoshida K, Mizukawa H, Haruki E (1998). The effect of ginseng radix rubra on human vascular endothelial cells. Am J Chin Med. 26, 365-373. 27 Kang SY, Schini-Kerth VB, Kim ND (1995). Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sci. 56, 1577-1586. 28 Scaglione F, Ferrara F, Dugnani S, Falchi M, Santoro G, Fraschini F (1990). Immunomodulatory effects of two extracts of Panax ginseng C A Meyer. Drugs Exp Clin Res. 16, 537-542. 29 Scaglione F, Weiser K, Alessandria M (2001). Effects of the standardized ginseng extract G115® in patients with chronic bronchitis: a nonblind, randomised, comparative pilot study. Clin Drug Investig [New Zealand] 21, 41-45. 117 30 Cho WC, Yip TT, Chung WS, Lee SK, Leung AW, Cheng CH, Yue KK (2006). Altered expression of serum protein in ginsenoside Re-treated diabetic rats defected by SELDI-TOF MS. J Ethnopharmacol. 108, 272- 279. 31 Lee WK, Kao ST, Liu IM, Chen JT (2006). Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wister rats. Clin Exp Pharmacol Physiol. 33, 27-32. 32 Lee SW, Kim K, Rho MC, Chung MY, Kim YH, Lee S, Lee HS, Kim YK (2004). New polyacetylenes, DGAT inhibitors from the roots of Panax ginseng. Planta Med. 70, 197-200. 33 Sotaniemi EA, Haapakosi E, Rautio A (1995). Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care. 18, 1373-1375. 34 Park SE, Park C, Kim SH, Hossain MA, Kim MY, Chung HY, Son WS, Kim GY, Choi YH, Kim ND (2009). Korean red ginseng extract induces apoptosis and decreases telomerase activity in human leukemia cells. J Ethnopharmacol. 121, 304- 312. 35 Yang ZG, Sun HX, Ye YP (2006). Ginsenoside Rd from Panax notoginseng is cytotoxic towards HeLa cancer cells and induces apoptosis. Chem Biodivers. 3, 187-197. 36 Yun TK (2003). Experimental and epidemiological evidence on non-organ specific cancer preventive effect of Korean ginseng and identification of active compounds. Mutat Res. 523524, 63-74. 37 Shin HR, Kim JY, Yun TK, Morgan G, Vainio H (2000). The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control. 11, 565-576. 38 Huang HQ, Zhang X, Shen YH, Su J, Liu XH, Tian JM, Lin S, Shan L, Zhang WD (2009). Polyacetylenes from Bupleurum longiradiatum. J Nat Prod. 72, 2153-2157. 39 Liu JH, Lee CS, Leung KM, Yan ZK, Shen BH, Zhao ZZ, Jiang ZH (2007). Quantification of two polyacetylenes in radix ginseng and roots of related Panax species using a gas chromatography-mass spectrometric method. J Agric Food Chem. 55, 8830-8835. 40 Christensen LP, Brandt K (2006). Bioactive polyacetylenes in food plants of the Apiaceae family: Occurrence, bioactivity and analysis. J Pharmaceut Biomed Anal. 41, 683-693. 41 Brandt K , Christensen LP, Hansen-Møller J, Hansen SL, Haraldsdottir J, Jespersen L, Purup S, Kharazmi A, Barkholt V, Frøkiær H, Kobæk-Larsen M (2004). Health promoting compounds in vegetables and fruits: A systematic approach for identifying plant components with impact on human health. Trends Food Sci Tech. 15, 384-393. 42 Kuo YC, Lin YL, Huang CP, Shu JW, Tsai WJ (2002). A tumor cell growth inhibitor from Saposhnikovae divaricata. Cancer Invest. 20, 955-964. 43 Christensen LP (1992). Acetylenes and related compounds in Anthemideae. Phytochemistry. 31, 7-49. 44 Christensen LP, Lam J (1990). Acetylenes and related compounds in Cynareae. Phytochemistry. 29, 2753-2785. 118 45 Christensen LP, Lam J (1991). Acetylenes and related compounds in Heliantheae. Phytochemistry. 30, 11-49. 46 Hansen L, Boll PM (1986). Polyacetylenes in Araliaceae: Their chemistry, biosynthesis and biological significance. Phytochemistry. 25, 285-293. 47 Shim SC, Koh HY, Han BH (1983). Polyacetylenes from Panax ginseng roots. Phytochemistry. 22, 1817-1818. 48 Popzawski J, Wrobel JT, Glinka T (1980). Panaxydol, a new polyacetylenic epoxide from Panax ginseng roots. Phytochemistry. 19, 1539-1541. 49 Takashi M, Yoshikura M (1964). Studies on the components of Panax ginseng C. A. Meyer. 3. On the ethereal extract of ginseng radix alba. (3). On the structure of a new acetylene derivative “panaxynol”. Yakugaku Zasshi. 84, 757-759. 50 Bohlmann F, Niedballa U, Rode KM (1966). New polyines with a C17-chain. Chem Ber. 99, 3552-3558. 51 Leonti M, Casu L, Raduner S, Cottiglia F, Floris C, Altmann KH, Gertsch J (2010). Falcarinol is a covalent cannabinoid CB1 receptor antagonist and induces pro-allergic effects in skin. Biochem Pharmacol.79, 1815-1826. 52 Kidmose U, Hansen SL, Christensen LP, Edelenbos M, Larsen E, Nørbæk R (2004). Effects of genotype, root size, storage, and processing on bioactive compounds in organically grown carrots (Daucus carota L.). J Food Sci. 69, 388-394. 53 Hansen L, Purup S, Christensen LP (2003). Bioactivity of falcarinol and the influence of processing and storage on its content in carrots (Daucus carota L). J Sci Food Agr. 83, 10101017. 54 Halim M, Yee DJ, Sames D (2008). Imaging induction of cytoprotective enzymes in intact human cells: coumberone, a metabolic reporter for human AKR1C enzymes reveals activation by panaxytriol, an active component of red ginseng. J Am Chem Soc. 130, 14123-14128. 55 Resch M, Heilmann J, Steigel A, Bauer R (2001). Further phenols and polyacetylenes from the rhizomes of Atractylodes lancea and their anti-inflammatory activity. Planta Med. 67, 437-442. 56 Pereira RLC, Ibrahim T, Lucchetti L, da Silva AJR, Gonçalves de Moraes VL (1999). Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Immunopharmacology 43, 31–37. 57 Alanko J, Kurahashi Y, Yoshimoto T, Yamamoto S, Baba K (1994). Panaxynol, a polyacetylene compound isolated from oriental medicines, inhibits mammalian lipoxygenases. Biochem Pharmacol. 48, 1979-1981. 58 Schneider I, Bucar F (2005). Lipoxygenase inhibitors from natural plant sources. Part 1: Medicinal plants with inhibitory activity on arachidonate 5-lipoxygenase and 5lipoxygenase/cyclooxygenase. Phytother Res. 19, 81-102. 119 59 Schneider I, Bucar F (2005). Lipoxygenase inhibitors from natural plant sources. Part 2: Medicinal plants with inhibitory activity on arachidonate 12-lipoxygenase, 15-lipoxygenase and leukotriene receptor antagonists. Phytother Res. 19, 263-272. 60 Fujimoto Y, Sakuma S, Komatsu S, Sato D, Nishida H, Xiao YQ, Baba K, Fujita T (1998). Inhibition of 15-hydroxyprostaglandin dehydrogenase activity in rabbit gastric antral mucosa by panaxynol isolated from oriental medicines. J Pharm Pharmacol. 50, 1075-1078. 61 Wang CN, Shiao YJ, Kuo YH, Chen CC, Lin YL (2000). Inducible nitric oxide synthase inhibitors from Saposhnikovia divaricata and Panax quinquefolium. Planta Med. 66, 644-647. 62 Prior RM, Lundgaard NH, Light ME, Stafford GI, van Staden J, Jäger AK (2007). The polyacetylene falcarindiol with COX-1 activity isolated from Aegopodium podagraria L. J Ethnopharmacol. 113, 176-178. 63 Yang MC, Seo DS, Choi SU, Park YH, Lee KR (2008). Polyacetylenes from the roots of cultivated-wild ginseng and their cytotoxicity in vitro. Arch Pharm Res. 31, 154-159. 64 Young JF, Duthie SJ, Milne L, Christensen LP, Duthie GG, Bestwick CS (2007). Biphasic effect of falcarinol on CaCo-2 cell proliferation, DNA damage and apoptosis. J Agric Food Chem. 55, 618-623. 65 Ito A, Cui B, Chávez D, Chai HB, Shin YG, Kawanishi K, Kardono LB, Riswan S, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (2001). Cytotoxic polyacetylenes from the twigs of Ochanostachys amentacea. J Nat Prod. 64, 246-248. 66 Setzer WN, Green TJ, Whitaker KW, Moriarity DM, Yancey CA, Lawton RO, Bates RB (1995). A cytotoxic diacetylene from Dendropanax arboreus. Planta Med. 61, 470-471. 67 Setzer WN, Gu X, Wells EB, Setzer MC, Moriarity DM (2000). Synthesis and cytotoxic activity of a series of diacetylenic compounds related to falcarindiol. Chem Pharm Bull (Tokyo). 48, 1776-1777. 68 Kim JS, Lim YJ, Im KS, Jung JH, Shim CJ, Lee CO, Hong J, Lee H (1999). Cytotoxic polyacetylenes from the marine sponge Petrosia sp. J Nat Prod. 62, 554-559. 69 Nakano Y, Matsunaga H, Saita T, Mori M, Katano M, Okabe H (1998). Antiproliferative constituents in Umbelliferae plants II. Screening for polyacetylenes in some Umbelliferae plants, and isolation of panaxynol and falcarindiol from the root of Heracleum moellendorffii. Biol Pharm Bull. 21, 257-261. 70 Bernart MW, Cardellina JH 2nd, Balaschak MS, Alexander MR, Shoemaker RH, Boyd MR (1996). Cytotoxic falcarinol oxylipins from Dendropanax arboreus. J Nat Prod. 59, 748-753. 71 Ebermann R, Alth G, Kreitner M, Kubin A (1996). Natural products derived from plants as potential drugs for the photodynamic destruction of tumor cells. J Photochem Photobiol B. 36, 95-97. 72 Miyazawa M, Shimamura H, Bhuva RC, Nakamura S, Kameoka H (1996). Antimutagenic activity of falcarindiol from Peucedanum praeruptorum. Agric Food Chem. 44, 3444-3448. 120 73 Matsunaga H, Katano M, Yamamoto H, Fujito H, Mori M, Takata K (1990). Cytotoxic activity of polyacetylene compounds in Panax ginseng C. A. Meyer. Chem Pharm Bull (Tokyo). 38, 3480-3482. 74 Matsunaga H, Katano M, Yamamoto H, Mori M, Takata K (1989). Studies on the panaxytriol of Panax ginseng C. A. Meyer. Isolation, determination and antitumor activity. Chem Pharm Bull (Tokyo). 37, 1279-1281. 75 Matsunaga H, Saita T, Nagumo F, Moil M, Katano M (1995). A possible mechanism for the cytotoxicity of a polyacetylenic alcohol, panaxytriol inhibition of mitochondrial respiration. Cancer Chemother Pharmacol 35, 291-296. 76 Cunsolo F, Ruberto G, Amico V, Piattelli M (1993). Bioactive metabolites from Sicilian marine fennel, Crithmum maritimum. J Nat Prod. 56, 1598-1600. 77 Fujimoto Y, Satoh M, Takeuchi N, Kirisawa M (1991). Cytotoxic acetylenes from Panax quinquefolium. Chem Pharm Bull (Tokyo). 39, 521-523. 78 Fujimoto Y, Satoh M (1988). A new cytotoxic chlorine-containing polyacetylene from the callus of Panax ginseng. Chem Pharm Bull (Tokyo). 36, 4206-4208. 79 Ahn BZ (1988). Beziehung zwischen Struktur und cytotoxischer Aktivitat von PanaxydolAnalogen gegen L 12 10 Zellen. Arch. Pharm. (Weinheim) 321, 6143. 80 Kobaek-Larsen M, Christensen LP, Vach W, Ritskes-Hoitinga J, Brandt K (2005). Inhibitory effects of feeding with carrots or (-)-falcarinol on development of azoxymethaneinduced preneoplastic lesions in the rat colon. J Agric Food Chem. 53, 1823-1827. 81 McLellan EA, Bird RP (1988). Aberrant crypts: potential preneoplastic lesions in the murine colon. Cancer Res. 48, 6187-6192. 82 McLellan EA, Bird RP (1988). Specificity study to evaluate induction of aberrant crypts in murine colons. Cancer Res. 48, 6183-6186. 83 Matsunaga H, Katano M, Saitai T, Yamamoto H, Mori M (1994). Potentiation of cytotoxicity of mitomycin C by a polyacetylenic alcohol, panaxytriol. Cancer Chemother Pharmacol 33, 291-297. 84 Park HJ, Rhee MH, Park KM, Nam KY, Park KH (1995). Effect of non-saponin fraction from Panax ginseng on cGMP and thromboxane A2 in human platelet aggregation. J Ethnopharmacol. 49, 157-162. 85 Kuo SC, Teng CM, Lee JC, Ko FN, Chen SC, Wu TS (1990). Antiplatelet components in Panax ginseng. Planta Med. 56, 164-167. 86 Teng CM, Kuo SC, Ko FN, Lee JC, Lee LG, Chen SC, Huang TF (1989). Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochim Biophys Acta. 990, 315-320. 121 87 Murdoch SR, Dempster J (2000). Allergic contact dermatitis from carrot. Contact Dermatitis. 42, 236. 88 Hausen BM, Bröhan J, König WA, Faasch H, Hahn H, Bruhn G (1987). Allergic and irritant contact dermatitis from falcarinol and didehydrofalcarinol in common ivy (Hedera helix L.). Contact Dermatitis. 17, 1-9. 89 Hansen L, Hammershoy O, Boll PM (1986). Allergic contact dermatitis from falcarinol isolated from Schefflera arboricola. Contact Dermatitis. 14, 91-93. 90 Hudson JB (1989). Plant photosensitizers with antiviral properties. Antiviral Res. 12, 55-74. 91 Rahman AA, Cho SC, Song J, Mun HT, Moon SS (2007). Dendrazawaynes A and B, antifungal polyacetylenes from Dendranthema zawadskii (Asteraceae). Planta Med. 73, 10891094. 92 Olsson K, Svensson R (1996). The influence of polyacetylenes on the susceptility of carrots to storage diseases. J Phytopathology. 144, 441-447. 93 Harding VK, Heale JB (1980). Isolation and identification of the antifungal compounds accumulating in the induced resistance response of carrot root slices to Botrytis cinerea. Physiol Mol Plant Pathol. 17, 277-289. 94 Harding VK, Heale JB (1981). The accumulation of inhibitory compounds in the induced resistance response of carrot root slices to Botrytis cinerea. Physiol Mol Plant Pathol. 18, 7-15. 95 Garrod B, Lewis BG (1978). Cis-heptadeca-1,9-diene-4,6-diyne-3,8-diol, an antifungal polyacetylene from carrot root tissue. Physiol Mol Plant Pathol. 13, 241-246. 96 Kemp MS (1978). Falcarindiol: An antifungal polyacetylene from Agopodium podagraria. Phytochemistry. 17, 1002. 97 Schinkovitz A, Stavri M, Gibbons S, Bucar F (2008). Antimycobacterial polyacetylenes from Levisticum officinale. Phytother Res. 22, 681-684. 98 Lechner D, Stavri M, Oluwatuyi M, Pereda-Miranda R, Gibbons S (2004). The antistaphylococcal activity of Angelica dahurica (Bai Zhi). Phytochemistry. 65, 331-335. 99 Rollinger JM, Zidorn C, Dobner MJ, Ellmerer EP, Stuppner H (2003). Lignans, phenylpropanoids and polyacetylenes from Chaerophyllum aureum L. (Apiaceae). Z Naturforsch C. 58, 553-557. 100 Bae EA, Han MJ, Baek NI, Kim DH (2001). In vitro anti-Helicobacter pylori activity of panaxytriol isolated from ginseng. Arch Pharm Res. 24, 297-299. 101 Kobaisy M, Abramowski Z, Lermer L, Saxena G, Hancock REW, Towers GHN (1997). Antimycobacterial Polyynes of Devil’s Club (Oplopanax horridus), a North American Native Medicinal Plant. J Nat Prod. 60, 1210-1213. 102 Muir AD, Cole AL, Walker JR (1982). Antibiotic compounds from New Zealand plants. I. Falcarindiol, an anti-dermatophyte agent from Schefflera digitata. Planta Med. 44, 129-133. 122 103 Tobinaga S, Sharma MK, Aalbersberg WG, Watanabe K, Iguchi K, Narui K, Sasatsu M, Waki S (2009). Isolation and identification of a potent antimalarial and antibacterial polyacetylene from Bidens pilosa. Planta Med. 75, 624-628. 104 Oliveira FQ, Andrade-Neto V, Krettli AU, Brandão MG (2004). New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. J Ethnopharmacol. 93, 39-42. 105 Senn M, Gunzenhauser S, Brun R, Séquin U (2007). Antiprotozoal polyacetylenes from the Tanzanian medicinal plant Cussonia zimmermannii. J Nat Prod. 70, 1565-1569. 106 Baltz T, Baltz D, Giroud C, Crockett J (1985). Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 4, 1273-1277. 107 Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 65, 55–63. 108 Nunes IS, Faria JM, Figueiredo AC, Pedro LG, Trinidade H, Barroso JG (2009). Menthol and geraniol biotransformation and glycosylation capacity of Levisticum officinale hairy roots. Planta Med 75, 387-391. 109 Barrett MP, Boykin DW, Brun R, Tidwell RR (2007). Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br J Pharmacol. 152, 1155-1171. 110 Fairlamb AH (2003). Target discovery and validation with special reference to trypanothione. In Fairlamb AH, Ridley RG, Vial HJ eds. Drugs against parasitic diseases: R&D methodologies and issues. Ed. Geneva: WHO TDR. pp 107-118. 111 Yun TK (2001). Panax ginseng—a non-organ-specific cancer preventive? Lancet Oncol. 2, 49-55. 112 Purup S, Larsen E, Christensen LP (2009). Differential effects of falcarinol and related aliphatic C17-polyacetylenes on intestinal cell proliferation. J Agr Food Chem. 57, 8290-8296. 113 Choi SJ, Kim TH, Shin YK, Lee CS, Park M, Lee HS, Song JH (2008). Effects of a polyacetylene from Panax ginseng on Na+ currents in rat dorsal root ganglion neurons. Brain Res. 1191, 75-83. 114 Krauth-Siegel RL, Bauer H, Schirmer RH (2005). Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new targets in trypanosomes and malariacausing plasmodia. Angew Chem Int Ed Engl. 44, 690-715. 115 Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985). Trypanothione: a novel bis (glutathionyl) spermidine cofactor for glutathione reductase in trypanosomatids. Science 227, 1485-1487. 116 Fairlamb AH, Cerami A (1985). Identification of a novel, thiol-containing co-factor essential for glutathione reductase enzyme activity in trypanosomatids. Mol Biochem Parasitol. 14, 187-198. 123 117 Bond CS, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WH (1999). Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 7, 81-89. 118 Hao W, Xing-Jun W, Yong-Yao C, Liang Z, Yang L, Hong-Zhuan C (2005). Upregulation of M1 muscarinic receptors expressed in CHOm1 cells by panaxynol via cAMP pathway. Neurosci Lett. 383, 121-126. 119 Kim YS, Jin SH, Kim SI, Hahn DR (1989). Studies on the mechanism of cytotoxicities of polyacetylenes against L1210 cells. Arch Pharm Res. 12, 207-213. 120 Kim JY, Lee KW, Kim SH, Wee JJ, Kim YS, Lee HJ (2002). Inhibitory effect of tumor cell proliferation and induction of G2/M cell cycle arrest by panaxytriol. Planta Med. 68, 119122. 121 Moon J, Yu SJ, Kim HS, Sohn J (2000). Induction of G1 cell cycle arrest and p27KIP1 increase by panaxydol isolated from Panax ginseng. Biochem Pharmacol. 59, 1109-1116. 122 Hai J, Lin Q, Lu Y, Zhang H, Yi J (2007). Induction of apoptosis in rat C6 glioma cells by panaxydol. Cell Biol Int. 31, 711-715. 123 Zidorn C, Jöhrer K, Ganzera M, Schubert B, Sigmund EM, Mader J, Greil R, Ellmerer EP, Stuppner H (2005). Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem. 53, 2518-2523. 124 Sohn J, Lee CH, Chung DJ, Park SH, Kim I, Hwang WI (1998). Effect of petroleum ether extract of Panax ginseng roots on proliferation and cell cycle progression of human renal cell carcinoma cells. Exp Mol Med. 30, 47-51. 125 Gerpe A, Odreman-Nuñez I, Draper P, Boiani L, Urbina JA, González M, Cerecetto H (2007). Heteroallyl-containing 5-nitrofuranes as new anti-Trypanosoma cruzi agents with a dual mechanism of action. Bioorg Med Chem. 16, 569-577. 126 Urbina JA (2002). Chemotherapy of Chagas disease. Curr Pharm Des. 8, 287-295. 127 Harmon MA, Scott TC, Li Y, Boehm MF, Phillips MA, Mangelsdorf DJ (1997). Trypanosoma brucei: effects of methoprene and other isoprenoid compounds on procyclic and bloodstream forms in vitro and in mice. Exp Parasitol. 87, 229-236. 128 Rho MC, Lee HS, Lee SW, Chang JS, Kwon OE, Chung MY, Kim YK (2005). Polyacetylenic compounds, ACAT inhibitors from the roots of Panax ginseng. J Agric Food Chem. 53, 919-922. 129 Kwon BM, Nam JY, Lee SH, Jeong TS, Kim YK, Bok SH (1996). Isolation of cholesteryl ester transfer protein inhibitors from Panax ginseng roots. Chem Pharm Bull (Tokyo). 44, 444-445. 124 130 Kwon BM, Ro SH, Kim MK, Nam JY, Jung HJ, Lee IR, Kim YK, Bok SH (1997). Polyacetylene analogs, isolated from hairy roots of Panax ginseng, inhibit Acyl-CoA : cholesterol acyltransferase. Planta Med. 63,552-553. 131 Kitagawa I, Yoshikawa M, Yoshihara M, Hayashi T, Taniyama T (1983). Chemical studies of crude drugs (1). Constituents of Ginseng radix rubra. Yakugaku Zasshi. 103, 612622. 125 6. Carlina oxide – a natural polyacetylene from Carlina acaulis (Asteraceae) with potent antitrypanosomal and antimicrobial properties! 6.1 Abstract Carlina acaulis (Asteraceae) has a long history of medicinal use in Europe due to its antimicrobial properties. The strong activity of Carlina oxide, the main compound of the essential oil of C. acaulis against two MRSA strains, Streptococcus pyogenes, Pseudomonas aeruginosa, Candida albicans and C. glabrata was confirmed. A strong and selective activity against Trypanosoma brucei brucei with an IC50 of 1.0 µg/ mL and a SI of 446 compared to human HeLa cells was recorded. The selective toxicity of Carlina oxide makes it a promising lead compound for the development of drugs to treat African trypanosomiasis and multiresistant gram positive bacteria. 6.2 Introduction Parasites are still a major cause of diseases in most tropical countries. Especially protozoa and helminths are responsible for great damage to the health of people and their domestic animals [1]. However, suitable drugs are rare: Between 1975 and 1999, only 13 drugs were developed against tropical diseases, compared to 1300 new drugs in total against other health disorders [2]. The situation improved slightly since 2000; yet, a reliable cure for tropical diseases is often missing. African trypanosomiasis is a parasitic disease in sub-Saharan Africa causing major health and economic problems. The parasites are protozoa of the genus Trypanosoma: Trypanosoma brucei rhodesiense and T. b. gambiense are causing human sleeping sickness while T. b. brucei is responsible for the cattle disease nagana. T. b. brucei is commonly used as a model for human sleeping sickness due to its morphological and biochemical similarity but lack of infectivity for the human researcher [1,3,4]. Since 1970 sleeping sickness is increasing due to various factors. Nowadays, it is endemic in 36 countries and 60 million people are threatened. The WHO estimates that 300 000 to 500 000 cases of human trypanosomiasis occur per year [5,6]. 46 million cattle are exposed to trypanosomes, resulting in annual costs of 1340 billion USD [7]. 126 Currently, only four drugs are approved: Suramin, pentamidine, melarsoprol and eflornithine. Diminazene is approved for the treatment of animals but not humans [3]. Unfortunately, these drugs have strong side effects and several cases of resistance were reported recently [8-10]. Thus, the discovery of new drugs is urgently required [11-13]. Carlina acaulis (Asteraceae) is originated in central Europe and has a long history as a medicinal plant with diuretic, stomachic, antimicrobial and antihelminthic properties [1416]. The same effects have been reported for C. acanthifolia, a close relative and legal substitute for C. acaulis. The main compounds of Carlina spp. are inulin (18-20%), flavonoids and an essential oil (2%) with 80% Carlina oxide [1719]. We selected Carlina oxide (Fig.1), the main F ig 1: Carlina oxide compound of the essential oil of C. acaulis (Asteraceae) and tested it for its antitrypanosomal activity in comparison with known antibacterial and antifungal properties. 6.3 Material and Methods Chemicals All chemicals were purchased from Gibco Invitrogen, Germany. The positive controls diminazene (D7770, ≥90% purity), DL-α-difluoromethylornithine (D193, ≥97% purity), metronidazole (M3761, analytical purity), ornidazole (O5879, analytical purity), suramin (S2671, ≥95% purity) were purchased from Sigma-Aldrich, Germany. Plant material Dried C. acaulis root was purchased from Caesar & Loretz GmbH, Hilden, Germany (669a Radix Carlinae, Lot: 81805079). Voucher specimen (P8082) was stored at the IPMB, Heidelberg. Identity was confirmed according to visual and microscopic characteristics. 127 Extract preparation8 100 g of dried C. acaulis root powder was exhaustively extracted with first hexane, then dichloromethane and finally methanol under moderate heat using a reflux condenser. 100 g root powder gave 1.39 g dry hexane extract, 0.84 g dry dichloromethane extract and 6.9 g dry methanol extract. Extracts were concentrated using a rotation evaporator. The highly condensed extracts were stored at -40 °C under exclusion of light. Prior to the experiments the extracts were vacuum dried, powdered and dissolved in DMSO. Test organisms Trypanosomes: T. b. brucei TC 221 derived from stock 427 and was originally obtained from Prof. Peter Overath (Max-Plank Institut für Biologie, Tübingen) to Dr. D. Steverding; they were cultured at the IPMB since 1999. Gram- positive bacteria9: Methicillin-resistant Staphylococcus aureus (MRSA ATCC 10442), vancomycine resistant Enterococcus (VRE VanB ATCC 31299) and Streptococcus pyogenes (ATCC12344) in addition to two clinical isolates; MRSA 1000/93 and VRE 902291 were used in antimicrobial tests. Gram-negative bacteria9: Escherichia coli (ATCC 25922), Klebsiella pneumonia (ATCC 700603) and Pseudomonas aeruginosa (ATCC 27853) were employed as representatives of gram-negative bacteria. Fungi9: Candida albicans (ATCC 90028) and Candida glabrata (ATCC MYA 2950) were selected as representatives of fungi with pathogen potential. All microorganism cultures were supplied by Medical Microbiology Lab., Hygiene Institute, Heidelberg University, Germany. 8 Experiments performed by Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany: Frank Sporer 9 Experiments performed by Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany: Razan Hamoud 128 Methods HeLa and T. b. brucei culture Human HeLa cells were grown at 37 °C in a humidified atmosphere of 5 % CO2 in DMEM complete media (L-glutamine supplemented with 10 % heat-inactivated fetal bovine serum, 5% penicillin/ streptomycin and 5% non-essential amino acids). T. b. brucei cells were cultured in BALTZ medium [20]. The experiments were performed during the logarithmic growth phase of the cells. MTT assay Cell viability was determined according to the 3-(4.5-dimethylthiazol-2-yl)-2.5- diphenyltetrazolium bromide (MTT) cell viability assay [21]. Extracts and Carlina oxide were dissolved prior to the experiment in dimethylsulfoxide (DMSO). Ten different concentrations were obtained by serial dilution in medium, so that the highest concentration of DMSO did not exceed 0.05%. Cells were (2 x 104 cells/well) were seeded in 96-well plates (Greiner Labortechnik), cultured for 24 h till 80% confluence was reached before the test samples were applied. The medium was replaced after 24 h incubation with fresh medium containing 0.5 mg/mL MTT. 4 h later, the medium was replaced by 100 µL DMSO to dissolve the formazan crystals. The absorbance was detected at 570 nm with a Tecan Safire II Reader. Diminazene, DL-α-difluoromethylornithine, metronidazole, ornidazole and suramin were used as positive control; cell viability of T. b. brucei was additionally evaluated using microscopical techniques. Screening Cytotoxicity in T. b. brucei was compared to HeLa cells and an SI index was calculated. SI index: ratio of the IC50 value of mammalian cells divided by the IC50 value of trypanosomes. Statistical analysis The results are shown as means and standard errors of at least three times repeated triplicates for each measurement. The IC50 values were calculated using a four parameter logistic curve (SigmaPlot® 11.0) representing 50% reduction of viability compared to the positive control. 129 Bacterial and fungal cultures10 Columbia with 5% sheep blood (BD) was used for bacterial subculturing and MBC determination. Mueller-Hinton Broth (MHB) and Brain Heart Infusion (BHI) (Fluka) were used for bacterial inoculum dilutions and MIC determination. All bacterial cultures were incubated at 37 °C for 24 h. CHROMagar Candida (BD) was used for fungal sub-culturing and MMC determination. Sabouraud Dextrose Broth (SDB) (Oxid) was used for fungal inoculum dilutions and MIC determination. All fungal cultures were incubated at 25 °C for 48 h. Inoculum preparations10 One or two bacterial or fungal colonies from an 18-24 h agar plate were suspended in saline to a turbidity matching 0.5 McFarland ≈ 1x 108 CFU/mL (bacteria) and ≈ 1x 106 CFU/mL (fungi), 100 µL of the bacterial suspension was diluted 1:100 with 9900 µL broth to 1x106 CFU/mL and 1000 µL of the fungal suspension was diluted 1:10 with 9000 µL broth to 1x105 CFU/mL [22]. Well Diffusion Test11 Colombia medium with 5% sheep blood and CHROMagar Candida were inoculated with 1 x 106 CFU/mL of bacterial and fungal suspensions, respectively. Wells with a diameter of 6 mm were cut out and filled with 40 µL of the extract. DMSO was used as a negative control; ampicillin, vancomycin and nystatin were used as positive controls. Zones of inhibition were recorded at 37 °C after 24 h (bacteria) and at 25 °C after 48 h (fungi). Determination of Minimum Inhibitory concentration (MIC) and Minimum Microbiocidal concentration (MMC)11 Micro dilution method was used to determine MIC as described by CLSI [22]. The plant extract was first dissolved in 5% DMSO to the concentration of 8 mg/mL, and then diluted two fold with MHB (bacteria) and SDB (fungi) in 96-well plates to obtain a range of concentrations between 0.015 and 8 mg/mL. Carlina oxide was dissolved in DMSO to a concentration 1.25 mg/mL and diluted two fold to obtain a range of concentration between 7 and 125 µg/mL. The bacterial and fungal suspensions of 1 x 106 CFU/mL were then added 10 Experiments performed by Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany: Razan Hamoud 11 Experiments performed by Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany: Razan Hamoud 130 and the plates were incubated at 37 °C for 24 h (bacteria) and at 25 °C for 48 h (fungi). The first well that showed no visible turbidity matching with a negative control was defined as MIC. Each test was performed in duplicate. 3 µL of each clear well (with no visible turbidity) were incubated in appropriate agar media and incubated under the appropriate conditions for bacteria and fungi. MMC was determined as the concentration that did not result in growth on agar. Isolation and identification of Carlina oxide12 As starting material a hexane extract of the milled drug was used. Carlina oxide was isolated via column chromatography on silica gel (70-230 mesh, Merck KGaA, Darmstadt, Germany). Eluation was achieved by increasing polarity of a hexane-ethylacetate gradient. GLC-MS analysis was carried out on a Hewlett-Packard gas chromatograph (GLC 5890 II), coupled to a Finnigan SSQ 7000 Quadrupol Mass Spectrometer (Thermo-Finnigan, Bremen, Germany). The head pressure of the GLC column was 15 kPa Helium, the temperature program 40300 °C at a rate of 4 °C/ min. For injection the sample was solved in hexane. 2 µL samples were injected with the carrier gas helium at a flow rate of 2 mL/ min in split mode (split ratio 1:30) at the injector temperature of 250°C. The MS spectrum was recorded at the electron energy 70 eV operated in EI mode with the ion source at 175°C. The purity and identity of isolated Carlina oxide were confirmed by GLC-MS. The mass fragmentation pattern of the isolated pure compound was identical with that of the previously published data of Carlina oxide (benzyl-2-furylacetylene) [17]. The published retention index for Carlina oxide (RI=1613.1) on a HP-5MS phase was in good correlation with our retention index (RI=1614) obtained by using an OV-5 column with the same dimensions (30 m x 0.25 mm ID, film thickness 0.25 µm; Ohio Valley Specialty, Marietta, OH, USA). LC-MS analysis of C. acaulis extracts13 Mass spectrometry was performed on a VG Quattro II system from Micromass provided with ESI source at positive scan mode under the parameters: Capillary: 3.5 kV, HV Lens: 0.5 kV, Cone: 30 V. Drying and nebulising gas N2. Source temperature 120 oC. Scan range: 100-700. HPLC was performed on a Merck-Hitachi L-6200A system with 1 mL/min flow rate under a water/0.5% formic acid/ ACN gradient; split 10%. The stationary phase was an RP18e column 12 Experiments performed by Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany: Frank Sporer 13 Experiments performed by Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany: Ahmad Tahrani 131 (LiChrospher, 250-4mm, 5 µm, Darmstadt, Germany). Data were processed using MassLynx 4.0 software. 6.4 Results Table 1: Cytotoxicity of Carlina acaulis extracts and Carlina oxide Carlina acaulis Hexane extract DCM extract MeOH extract Carlina oxide Controls Diminazene DL-αDifluoromethylornithine Metronidazole Ornidazole Suramin T. b. brucei IC50 [µg/mL] 3.7 4.5 698.1 1.0 HeLa IC50 [µg/mL] 1722.4 1995.0 1236.0 446.0 Ratio (HeLa/ T. b. brucei) 465.5 443.3 1.7 446.0 0.1 11.7 170.6 1502.6 1706.0 128.4 18.8 18.8 4.7 1180.5 849.8 1317.1 62.7 45.2 280.2 Fig 2: Cytotoxic effect of C. acaulis and Carlina oxide 120 HeLa T. b. brucei 100 100 80 80 Survival [%] Survival [%] 120 60 40 HeLa T. b. brucei 60 40 20 20 0 0 0.37 0.75 1.5 3 6 12 24 49 98 195 390 0.75 780 1560 3130 6250 12500 1.5 3 6 12 24 49 98 195 390 780 1560 3130 6250 1250025000 -20 -20 Concentration [µg/mL] Concentration [µg/mL] A: Cytotoxic effect of Carlina oxide B: Cytotoxic effect of a hexane extract of C. acaulis 120 120 HeLa T. b. brucei Survival [%] Survival [%] 100 80 60 40 HeLa T. b. brucei 100 80 60 40 20 20 0 0 0.75 1.5 3 6 12 24 49 98 195 390 780 0.098 1560 3130 6250 12500 0.195 0.39 0.78 1.56 3.13 6.25 -20 -20 Concentration [mg/mL] Concentration [µg/mL] C: Cytotoxic effect of a dichloromethane extract of C. acaulis D: Cytotoxic effect of a methanol extract of C. acaulis 132 12.5 25 50 The isolated Carlina oxide had 100% purity. The hexane extract contained seven times more Carlina oxide than the dichloromethane extract while no Carlina oxide could be detected in the methanol extract (Fig. 3, 4). The cytotoxic effects of the hexane, dichloromethane and methanol extracts of C. acaulis were tested against the human cell line HeLa and T. b. brucei. In addition, cytotoxicity of the main compound of the essential oil of C. acaulis, Carlina oxide, was determined. The lipophilic hexane and dichloromethane extracts showed similar cytotoxicity as Carlina oxide while the polar methanol extract was significantly less active (Tab. 1; Fig. 2). The IC50 values for both hexane and dichloromethane extract in T. b. brucei are 3.7 µg/mL and 4.5 µg/mL while they are 1722.4 µg/mL and 1995.0 µg/mL for HeLa. The resulting SI is 465 and 443 respectively. Pure Carlina oxide has an IC50 value for T. b. brucei of 1.0 µg/mL while the IC50 value for HeLa cells is 446.0 µg/mL, giving a SI of 446. In comparison to the positive control substance suramin, one of four licensed drugs against African human trypanosomiasis, the SI of Carlina oxide is approximately twice as high. Only diminazene, which is licensed only for the treatment of animals, has a higher SI than Carlina oxide (Tab. 1). The antimicrobial activity of extracts from C. acaulis is illustrated in table 2. The hexane extract of C. acaulis has a strong activity against both strains of fungi with MIC values of 0.25 mg/mL and 0.5 mg/mL. It achieved an MIC between 0.125 mg/mL against Streptococcus pyogenes and 4 mg/mL against the clinical isolate VRE 902291; a weak antimicrobial activity was found against gram negative bacteria with an MIC between 4 and 8 mg/mL. Carlina oxide exhibited strong antimicrobial activity against all the strains of bacteria and fungi even against the multiresistant strains and the clinical isolates, MIC range was between 15 and 60 µg/mL. 6.5 Discussion The essential oil of C. acanthifolia with Carlina oxide as major compound has antimicrobial, anti-inflammatory, anti-ulcer and antioxidant activities [14]. Strong effects against the gram positive bacteria Bacillus subtilis, Enterococcus faecalis and Staphylococcus aureus, against the gram negative bacteria Klebsiella pneumoniae and against the fungi Candida albicans and Aspergillus niger have been reported [14]. The main compound of the essential oil, Carlina oxide, was isolated for the first time in 1889, making it one of the oldest known polyacetylenes [23]. 133 Table 2: Bacterial and fungal test results Carlina acaulis hexane extract Microorganism Carlina oxide Ampicilline Vancomycine Nystatine Inhibition zone (mm) 80 mg/mL MIC mg/mL MMC mg/mL MIC µg/mL MMC µg/mL Inhibition zone (mm) 1 mg/mL MIC µg/mL MMC µg/mL Inhibition zone (mm) MIC µg/mL MMC µg/mL Inhibition zone (mm) MIC µg/mL MMC µg/mL G+ MRSA ATCC 10442 5.1±0.1 2 4 15 60 14.5±0.5 25 >25 10.0±0.2 0.8 12.5 NT NT NT G+ MRSA 1000/93 4.8±0.1 0.5 1 15 60 13.5±0.5 50 >50 NT 7 12.5 NT NT NT G+ VRE ATCC 31299 4.8±0.1 2 8 60 125 15 1 7 NT 25 >50 NT NT NT G+ VRE 902291 4.8±0.1 4 >4 60 125 NA NA NA NA NA NA NT NT NT G+ Streptococcus pyogenes ATCC 12344 6.1±0.1 0.125 0.2 15 30 25.0±1.0 0.05 0.1 15.0±1.0 0.1 0.4 NT NT NT G- Escherichia coli ATCC 25922 4.8±0.1 8 >8 60 >60 14 12.5 25 NA NA NA NT NT NT G- Klebsiella pneumonia ATCC 700603 3.1±0.1 4 >4 60 >60 - 25 25 NT 25 50 NT NT NT G- Pseudomonas aeruginosa ATCC 27853 4.1±0.1 4 >4 60 >60 NA NA NA NA NA NA NT NT NT Fungi Candida albicans ATCC 90028 7.7±0.1 0.25 0.5 15 30 NT NT NT NT NT NT 10±1.2 0.2 0.4 Fungi Candida glabrata ATCC MYA 2950 10 0.5 1 15 30 NT NT NT NT NT NT 12±1 0.2 0.2 NT; Not tested, NA; Not active 134 The exact chemical constitution of Carlina oxide was established in 1933 [24]. Other polyacetylenes and the biogenesis of Carlina oxide were studied in the 1960s [25,26]. Our results confirm the previous findings that the essential oil of Carlina has an important potential to inhibit and kill bacteria and fungi as compared with standard antimicrobial drugs. Carlina oxide was more active against all the strains than the oil. The highest antimicrobial activity of Carlina extract and Carlina oxide was recorded against S. pyogenes, Candida albicans and C. glabrata, respectively. Carlina oxide showed significant activity against the gram positive MRSA strains ATCC 10442 and 1000/93. The MIC was in both cases with 15 µg/ ml below that of Ampicilline with 25 and 50 µg/mL, respectively, while vancomycine showed stronger activities with 0.8 µg/mL and 7 µg/mL, respectively. Only a weak activity was exerted by Carlina extract and Carlina oxide against Gram negative strains of bacteria, especially Pseudomonas aeruginosa, that are well known to be insensitive to essential oils in general and a wide range of antibiotics [27,28]. The previous results lead us to the conclusion that Carlina has a significant antimicrobial activity compared to the antimicrobial drugs used in this study. In view of the low cytotoxicity for human cells Carlina oxide might be an interesting candidate for the treatment of multiresistant bacteria. For the first time the high activity of both Carlina extracts and Carlina oxide against T. b. brucei was recorded. Carlina oxide was active against T. b. brucei at IC50 1.0 µg/mL, while being cytotoxic to HeLa at IC50 446.0 µg/mL. The hexane and dichloromethane extracts also showed significant cytotoxicity against T. b. brucei at IC50 3.7 µg/mL and 4.5 µg/mL, respectively while the activity against HeLa was significantly less toxic at IC50 1722.4 µg/mL and 1995.0 µg/mL, respectively. The high SI of 465 to 443 of the extracts and the SI of 446 of Carlina oxide make it a very promising lead structure for the development of antitrypanosomal drugs. The SI of Carlina oxide is with 446 even higher than the one of suramin with a SI of 280, one of four licensed drugs for the treatment of African trypanosomiasis. We suggest that Carlina oxide inhibits trypanothione reductase, an enzyme specific for trypanosomastids. Mammalian cells use the glutathione reductase instead, which could 135 explain the different sensitivity to Carlina oxide. Both enzymes belong to the FAD-dependent NADPH oxidoreductase family which are essential for the protection of the cell against reactive oxygen species [29-32]. The enzymes are highly selective regarding their substrates trypanothione disulfide and glutathione disulfide. The larger trypanothione disulfide is +1 charged, while the smaller glutathione disulfide is -2 charged. The binding site of the trypanothione reductase contains a negatively charged glutamate side chain together with a hydrophobic cleft for the polyamine moiety, while the active centre of the glutathione reductase is smaller and positively charged [30,33]. Carlina oxide seems to fit into the active centre of the trypanothione reductase because of its lipophilic side chain and the electropositive C-atom of the furan ring. Inside of the cleft, the CC triple bond can form irreversible links to the SH groups of the active centre, thus blocking the enzyme. Due to its size and electropositively charged C-atom, Carlina oxide seems to be unable to enter the active centre of the glutathione reductase. This proposed mechanism needs to be experimentally confirmed in future studies. 136 Fig 3: GLC- profile of a hexane extract of C. acaulis and isolated Carlina oxide analysed by GLC-MS Fig 4: Carlina oxide [1] in hexane, dichloromethane and methanol extracts of C. acaulis analysed by LC-MS 137 6.6 References 1 Pink R, Hudson A, Mouriès MA, Bending M (2005). Opportunities and challenges in antiparasitic drug discovery. Nature Reviews Drug Discovery. 4, 727-740. 2 Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N (2002). Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet. 359, 2188-2194. 3 Hoet S, Opperdoes F, Brun R, Quetin-Leclerq J (2004). Natural products active against African trypanosomes: a step towards new drugs. Natural Products Review. 21, 353-364. 4 Räz B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R (1997). The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense and T. b. gambiense) in vitro. Acta Trop. 68, 139-147. 5 WHO/CDS/CSR/ISR/2000.1: WHO report on global surveillance of epidemic-prone infectious diseases, World Health Organisation (2000). http://www.who.int/csr/resources/publications/surveillance/en/a_tryps.pdf Accessed June 30, 2011 6 Barrett MP (1999). The fall and rise of sleeping sickness. Lancet. 353, 1113-1114. 7 Kristjanson PM, Swallow BM, Rowlands GJ, Kruska RL, de Leeuw PN (1999). Measuring the costs of African animal trypanosomiasis, the potential benefits of control and returns to research. Agr Sys. 59, 79-98. 8 Fairlamb AH (2003). Chemotherapy of human African trypanosomiasis: current status and future prospects. Trends Parasitol. 19, 488-494. 9 Croft SL (1997). The current status of antiparasitic chemotherapy. Parasitology. 114 (Suppl), 3-15. 10 Ross CA, Sutherland DV (1997). Drug resistance in trypanosomatids. In: Hide G, Mottram JC, Coombs GH, Holmes PH, editors. Trypanosomiasis and leishmaniasis: biology and control. CAB international, Wallinford, Oxon. 259-269. 11 Newman DJ, Cragg GM, Snader KM (2003). Natural products as sources of new drugs over the period 1981-2002. J Nat Prod. 66, 1022-1037. 12 Legros D, Ollivier G, Gastellu-Etchegorry M, Paquet C, Burri C, Jannin J, Büscher P (2002). Treatment of human African trypanosomiasis--present situation and needs for research and development. Lancet Infect Dis. 2, 437-440. 13 Brun R, Schumacher R, Schmid C, Kunz C, Burri C (2001). The phenomenon of treatment failures in human African trypanosomiasis. Trop Med Int Health. 6, 906-914. 14 Dordević S, Petrović S, Dobrić S, Milenković M, Vucićević D, Zizić S, Kukić J (2007). Antimicrobial, anti-inflammatory, anti-ulcer and antioxidant activities of Carlina acanthifolia root essential oil. Journal of Ethnopharmacology. 109, 458-463. 138 15 van Wyk BE, Wink C, Wink M (2004). Medicinal Plants of the World. Briza, Pretoria, South Africa, p. 87. 16 Wichtl M (2002). Teedrogen und Phytopharmaca. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, Germany, pp114-115. 17 Djordjevic S, Petrovic S, Ristic M, Djokovic D (2005). Composition of Carlina acanthifolia root essential oil. Chemistry of Natural Compounds. 41, 410-412. 18 Vitkova A, Evstatieva L (2002). Plants rich in inulin from family Asteraceae. Godishnik na Sofiskiya Universitet “Sv. Kliment Okhridski”, Kniga 2. Botanika. 92, 107-111. 19 Chalchat JC, Dordević S, Gorunović M (1996). Composition of the essential oil from the root of Carlina acaulis L. Asteraceae. Journal of Essential oil Research. 8, 577-578. 20 Baltz T, Baltz D, Giroud C, Crockett J (1985). Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 4, 1273-1277. 21 Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immun. Methods. 65, 55–63. 22 CLSI (Clinical and Laboratory Standards Institute). Methods for dilution antimicrobial susceptibility testing of anaerobic bacteria. In: Approved Standards. 7th ed. Wayne: Pennsylvania, 2007: M11–A7. 23 Semmler FW (1889). Zusammensetzung des aetherischen Oels der Eberwurzel (Carlina acaulis L.). Chemiker Zeitung. 13, 1158. 24 Gilman H, van Ess PR, Burtner RR (1933). The constitution of Carlina oxide. Journal of the American Chemical Society. 55, 3461-3463. 25 Bohlmann F, Rode KM (1967). Die Polyine der Gattung Carlina L. Chemische Berichte. 100, 1507-1514. 26 Bohlmann F, von Kap-herr W (1966). Polyacetylenverbindungen, XCII. Zur Biogenese des Carlinaoxyds. Chemische Berichte. 99, 148-150. 27 Cosentino S, Tuberoso CLG, Pisano B, Satta M, Mascia V, Arzedi E, Palmas F (1999). InVitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology. 29, 130-135. 28 Nair R, Vaghasiya Y, Chanda S (2007). Antibacterial activity of Eucalpytus citriodora HK. oil on few clinically important bacteria. African Journal of Biotechnology 7, 025-026. 29 Krauth-Siegel RL, Bauer H, Schirmer RH (2005). Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new targets in trypanosomes and malariacausing plasmodia. Angewandte Chemie International Edition. 44, 690-715. 139 30 Fairlamb AH (2003). Target discovery and validation with special reference to trypanothione. In Fairlamb AH, Ridley RG, Vial HJ eds. Drugs against parasitic diseases: R&D methodologies and issues. Ed. Geneva: WHO TDR. pp 107-118. 31 Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985). Trypanothione: a novel bis (glutathionyl) spermidine cofactor for glutathione reductase in trypanosomatids. Science 227, 1485-1487. 32 Fairlamb AH, Cerami A (1985). Identification of a novel, thiol-containing co-factor essential for glutathione reductase enzyme activity in trypanosomatids. Molecular and Biochemical Parasitology. 14, 187-198. 33 Bond CS, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WH (1999). Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 7, 81-89. 140 7. Synergistic Interactions of Saponins and Monoterpenes in HeLa cells, Cos7 cells and in Erythrocytes 7.1 Abstract In phytomedicine complex extracts consisting of phenolics, monoterpenes or saponins are traditionally used. It is often impossible to attribute the biological activity of an extract to one or few compounds. As an explanation of the superior activity of extracts, a synergistic effect of combinations of active compounds has been suggested. Since lipophilic monoterpenes or saponins targeting the biomembrane usually accompany polar polyphenols in phytomedical preparations, we decided to investigate their effect as single substances and in combination to gain further insight into potential synergistic effects of herbal medicine. Combinations of the monoterpenes α-pinene, thymol and menthol with the monodesmosidic saponins digitonin, aescin, glycyrrhizic acid and Quillaja saponin demonstrated strong synergistic activity. The IC50 of haemolysis was lowered by a factor of 10 to 100 from 316 µg/ml to 2 µg/ml for aescin, 157 µg/ml to 11 µg/ml for Quillaja saponins and 20 µg/ml to 3 µg/ml for digitonin when combined with thymol. A similar significant synergistic cytotoxicity occurred both in HeLa and Cos7 cells by combining the α-pinene, thymol and menthol with the saponins. The IC50 of glycyrrhizic acid was lowered by a factor 100 from around 300 µg/ml to around 1 to 10 µg/ml and the IC50 of aescin, digitonin and Quillaja saponins about the factor 10. Monoterpenes and monodesmosidic saponins have a common target, the biomembrane, which is present in all animal, fungal and bacterial cells. Disturbance of membrane fluidity and permeability is the mode of action. This activity is non-specific which makes it extremely difficult for bacteria and fungi to develop resistance. This explains the overall success of these molecules as defence chemicals in the plant kingdom. The synergistic effect of combinations of saponins with monoterpenes opens a complete new field of possible applications in medicine to overcome resistance in multidrug resistant microbial and human cell. 7.2 Introduction In approximately 90% of medicinal plants used in phytomedicine a single active compound which could explain the activity of the extract could not be detected. The most common groups of natural products found in plants are polyphenols, flavonoids and terpenoids ranging from monoterpenes to saponins [1]. While phenolic compounds are the most common natural products, saponins are still produced by more than 50% of the plants [2,3]. 141 Fig. 1: Saponins Fig. 2: Monoterpenes Because the mode of action of complex mixtures from herbal medicines cannot be attributed to a single compound in most cases, additive or even synergistic interactions of combinations are postulated [4]. Synergy is present if the “effect seen by a combination of substances is greater than would have been expected from a consideration of individual contributions” [5]. In this context it is important to distinguish between polyvalence and synergy. Synergy means that several compounds acting on one target have an enhanced effect, while in polyvalence a range of activity on several targets results in an overall effect [6]. In Western medicine, research has traditionally been focused on single compounds to treat a specific disease (mono-target therapy), while many traditional systems apply a mixture of herbs to treat the patient. In traditionally used herbal infusions available in European pharmacies, mixtures of several herbs are still common. This is also true for the two important medicinal systems of Asia, the Ayurvedic medicine and the Traditional Chinese medicine (TCM). Especially in TCM, herbal mixtures of 10 or more herbs are common [7,8]. It has been assumed that these mixtures act synergistically to enhance the healing effect while minimizing the side effects. Several studies have been conducted to show this mode of action 142 of TCM [9,10]. High throughput screening of these traditional medicine combinations offers a new approach to potentially effective drug formulations [11]. Synergy is important to explain the efficacy and mode of action of herbal medicine and should not be neglected in the discovery of new treatments [12-14]. In recent years a change of attitude towards complex extracts and mixtures of drugs (multi-target therapies) both in phytomedicine and in modern drug therapy has taken place [15,16]. Examples include the use of drug combinations in the treatment of HIV or in cancer therapy [17]. Several recent publications treat the phenomenon of synergy in phytomedicine; mainly focusing on the effect of extracts but hardly explaining the detailed mode of action [18-20]. Several scientifically proven examples of synergy exist however. In this context, two examples are especially interesting. The effect of the essential oil of Zingiber officinalis in the treatment of ulcer could be related to four molecules which in combination are 66 times more effective than the sum of the individual compounds [21]. The other example is a double-blind, crossover trial of 20 volunteers treated with Panax ginseng and Ginkgo biloba. A stronger improvement of the cognitive performance was detected in combination as compared to the single treatments [22]. The influence of the saponins of P. ginseng is most likely responsible for an increased uptake of flavonoids from G. biloba, explaining the detected effect. It is striking that most publications on synergy either deal with the combination of anti cancer drugs with saponins or the combination of monoterpenes with antibiotics. Saponins are well known to modify the cell membrane and thus facilitate the uptake of chemotherapeutics. Several well documented cases exist where this combination leads to synergistic effects effective against tumour cells [23-26]. The second, equally important synergistic combination between therapeutics and natural products is between antibiotics and monoterpenes. Here as well the synergy is explained by the modification of the cell membrane by monoterpenes to increase the uptake of antibiotics into the bacteria cell. Several studies document this synergistic interaction [27-32]. Combinations of monoterpenes and saponins have not been analysed for a potential synergistic effect. Biomembranes, which are present in animals, fungal and bacterial cells are the main target of both monoterpenes and saponins. Monoterpenes interact with the lipophilic side chain of phospholipids or cholesterol and thus increase the membrane fluidity and 143 permeability. Another target for monoterpenes is the lipophilic core of proteins. The lipophilic moiety of monodesmosidic saponins forms complexes with cholesterol while at the same time the hydrophilic part interacts with membrane proteins, thus modifying the membrane fluidity and the conformation of membrane proteins [14,33]. At higher concentrations saponins act as detergents which can lyse cell membranes. To gain further insight into the potential synergistic effect in herbal medicine, we decided to investigate the effects of combinations of monoterpenes and saponins on cancer cells and biomembranes. We used haemolysis of erythrocytes as a model for the physical membrane effects and cytotoxicity against the two cancer cell lines HeLa and Cos7 to monitor the effects on living cells. 7.3 Material and methods Chemicals Aescin (E1378; ≥95%), digitonin (D141, pure), glycyrrhizic acid (50531; ≥95%), saponin from Quillaja bark (S4521; 20-35% sapogenin), menthol (M2772; ≥99%), thymol (T0501; ≥99.5%), α-pinene (268070; ≥99%) and 3- (4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT; M2128; ≥98%) were purchased from Sigma-Aldrich GmbH, Germany. Defibrinated sheep blood was purchased from Oxoid Deutschland GmbH, Germany. DMEM media, supplements, fetal bovine serum (FBS), trypsin-EDTA and dimethyl sulfoxide (DMSO) were purchased from Gibco Invitrogen; Germany. Methods In the haemolysis assay 1 ml sample in isotonic sodium chloride solution was mixed carefully with 1 ml defibrinated sheep blood, incubated for 30 min at 37 °C and centrifuged at 10000 rpm for 5 min. The supernatant which contains haemoglobin after haemolysis was detected photometrically at 554 nm. Controls included water and isotonic sodium chloride solution. Cos7 (African green monkey epithelial kidney cells) and HeLa (cervical cancer) cell lines were maintained in DMEM complete media (L-glutamine supplemented with 10 % heatinactivated fetal bovine serum, 5% penicillin/ streptomycin and 5% non-essential amino acids). Cells were grown at 37 °C in a humidified atmosphere of 5 % CO2. All experiments were performed with cells in the logarithmic growth phase. 144 The 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) cell viability assay [34] was used to determine the cytotoxicity of monoterpenes and saponins in the cancer cell lines HeLa and Cos7. The pure compounds were dissolved in dimethylsulfoxide (DMSO) and serially diluted in medium into ten different concentrations. A 100 µl sample containing medium was dispensed into each well. The concentration of DMSO did not exceed 0.05% in the medium that contained the highest concentration of compound tested. Cells (2 x 104 cells/ well) were seeded in 96-well plates (Greiner Labortechnik) and cultured for 24 h to 80% confluence before treating them with the test samples. The test samples were replaced with fresh medium containing 0.5 mg/ml MTT after 24 h incubation. 4 h later the formed formazan crystals were dissolved in 100 µl DMSO; the absorbance was detected at 570 nm with a Tecan Safire II Reader. Experiments were repeated at least three times with triplicates of each measurement point. Controls included wells with not treated cells, wells without cells and the cytotoxic compound doxorubicin (IC50 0.6 µg/ ml). IC50 values were calculated using a four parameter logistic curve (SigmaPlot® 11.0) representing 50% reduction of viability or 50% haemolysis compared to the positive control. Results were expressed as mean and standard error. Williamson [35] compared the different methods to distinguish synergy from other effects with the result that the FIC index, usually represented in the isobole method of Berenbaum [36] is the method of choice to demonstrate synergy. Drug interaction was classified as either synergistic, additive, indifferent, or antagonistic based on the fractional inhibitory concentration (FIC) index. The fractional effect (FE) of two compounds is calculated from the effect caused by two compounds in combination in relation to the effect of one compound alone: FEa = IC50 a+b / IC50 a; FEb = IC50 a+b / IC50 b. By plotting these values against each other the isobologram showing the areas of synergy is obtained. The FIC index is the sum of both FE indexes. According to Berenbaum [36], FIC ≤ 1.0 signifies synergy, FIC = 1.0 an additive effect and FIC ≥ 1.0 antagonism. Schelz [37] regards FIC ≤ 0.5 as synergy, FIC > 0.5 to 1.0 as additive, FIC = 1.0 to 4.0 as indifferent and FIC ≥ 4.0 as antagonism. We follow the second perspective. 145 7.4 Results Haemolysis The three saponins aescin, digitonin and Quillaja saponin have substantial haemolytic properties with IC50 values between 316, 20 and 157 µg/ml, respectively. The monoterpene thymol exhibits a much lower haemolytic activity with an IC50 value of 763 µg/ml (Tab. 1). These three saponins were combined with thymol to investigate an influence on the haemolytic efficacy of saponins (Fig. 3). The combination of ascending concentrations of saponins with a low constant concentration of thymol corresponding to its IC30 value increased the haemolytic activity dramatically. All three combinations produced FIC values between 0.01 and 0.1, indicating a very strong synergistic effect (Tab. 1). The monoterpenes α-pinene and menthol could not be tested in the haemolytic assay since their solubility was too poor to reach the concentrations necessary for a haemolytic effect. Table 1: Synergistic haemolytic activities of saponins and monoterpenes. *The concentration of thymol was kept constant at IC30, while the saponins were serially diluted. Compound FIC Aescin Digitonin Quillaja saponin Thymol Erythrocytes IC50 [µg/ ml] 316.5 20.3 157.5 763.3 Combination Aescin + thymol* Digitonin + thymol * Quillaja saponin + thymol * 2.3 3.6 11.5 0.011 0.184 0.088 Cytotoxicity Cos7 and HeLa cells were treated with a dilution series of the saponins aescin, digitonin, glycyrrhizic acid and Quillaja saponin (containing 20-35 % quillajic acid) (Fig. 1) and the monoterpenes α-pinene, menthol and thymol (Fig. 2). The cytotoxic activities of aescin, digitonin and Quillaja saponin were similar with IC50 values between 12.2 µg/ml and 41.3 µg/ml (Tab. 2). Glycyrrhizic acid was an exception with a 10 times lower cytotoxicity of 311.8 and 313.4 µg/ml respectively (Tab. 2). The monoterpenes α-pinene and menthol showed a medium cytotoxicity with IC50 values between 243.0 µg/ml and 357.9 µg/ml, while 146 thymol was four times more toxic with 82.5 µg/ml and 83.6 µg/ml respectively in Cos7 and HeLa cells (Tab. 2). Table 2: Cytotoxic activities of saponins and monoterpenes Compound Aescin Digitonin Glycyrrhizic acid Quillaja saponin α-Pinene Menthol Thymol HeLa IC50 [µg/ ml] 41.3 12.2 313.4 33.5 357.9 243.0 83.6 Cos7 IC50 [µg/ ml] 37.4 14.7 311.8 23.4 337.5 319.9 82.5 In a consecutive experiment, Cos7 cells were treated with a dilution series of the saponins aescin, digitonin, glycyrrhizic acid and Quillaja saponin in combination with α-pinene and thymol. In HeLa cells menthol was employed as a combination partner. Cos7 cells were extremely sensitive to the combinations aescin, digitonin, glycyrrhizic acid and Quillaja saponins with thymol with IC50 values between 0.1 µg/ml and 1.0 µg/ml; while the combinations of the saponins with α-pinene were 10 times less active (Tab. 3, Fig. 4). In HeLa cells the combinations aescin, digitonin, glycyrrhizic acid and Quillaja saponins with thymol and menthol had IC50 values between 4.9 µg/ml and 35.7 µg/ml, while the combinations of the saponins with α-pinene were again up to 10 times less active (Tab. 3). Table 3: Synergistic cytotoxic effects of saponins and monoterpenes; monoterpenes were applied at their corresponding IC50 concentration. ND = not determined Compound HeLa IC50 [µg/ ml] 51.3 ND 7.7 4.9 7.6 213.6 ND 25.4 35.7 Aescin + α-pinene Aescin + thymol Digitonin + α-pinene Digitonin + thymol Digitonin + menthol Glycyrrhizic acid + α-pinene Glycyrrhizic acid + thymol Quillaja saponin + α-pinene Quillaja saponin + thymol 147 FIC 1.387 0.651 0.465 0.657 1.278 0.828 1.491 Cos7 IC50 [µg/ ml] 11.1 1.0 1.8 0.1 ND 18.6 0.7 0.7 0.7 FIC 0.330 0.039 0.788 0.013 0.115 0.001 0.033 0.039 For Cos7 cells FIC values between 0.001 and 0.3 were found while HeLa cells showed FIC values between 0.4 and 1. Menthol, thymol and α-pinene were combined with each other in varying concentrations in HeLa cells. These combinations were not synergistic and FIC values of the different combinations ranged between 0.5 and 1.0, signifying an additive effect (Tab. 4, Fig. 5). Table 4: Synergistic cytotoxic effects of monoterpenes combined at their corresponding IC50 concentrations Compound HeLa IC50 [µg/ ml] 150.0 38.5 89.1 115.1 19.2 62.1 Menthol + α-pinene Menthol + thymol α-Pinene + menthol α-Pinene + thymol Thymol + menthol Thymol + α-pinene FIC 1.036 0.619 0.615 1.697 0.309 0.916 7.5 Discussion Saponins and monoterpenes are a highly variable class of molecules found all over the plant kingdom. So far, approximately 2500 monoterpenes and 5000 saponins are known today [33]. They play an important role in plant defence against bacteria, fungi and herbivores. Mankind has long learned to use these plants for the treatment of various diseases, such as the common cold and infections. Several studies were conducted showing the synergistic effect of monoterpenes on bacterial membranes [31,32,38-40], but so far no combination with saponins has been tested. Saponins on the other hand have been studied for their supportive effect in cancer chemotherapy where they seem to facilitate the absorption of cytotoxic drugs [25,41,42]. By enhancing the membrane permeability they also facilitate the absorption of proteins [43] and antibiotics [44], often with a synergistic effect. Our haemolysis experiment revealed a synergistic effect of the combination of monoterpenes and saponins (Tab. 1). The enhanced haemolysis is primarily a physical membrane effect by making membranes leaky. The combinations of thymol with saponins were far more active than one substance alone. Sheep erythrocytes are an excellent model for studying the 148 haemolytic effect of natural products on natural biomembranes. Their biomembranes are not a simple lipid bilayer but contain also proteins and a sugar-coat on their surface. The major difference to common cells however is the absence of a nucleus, which excludes apoptosis as explanation for the shown effects. In a second set of experiments the cell lines HeLa and Cos7 were treated with saponins in combination with monoterpenes. Interestingly, HeLa and Cos7 were up to 10 times more sensitive than erythrocytes. Combinations of monoterpenes and saponins exhibited synergistic cytotoxic effects (Tab. 2, 3). Fig.6: Biomembrane as target for saponins and monoterpenes after Wink 2008 [14] Both saponins and monoterpenes act on the same biological target, the biomembrane (Fig. 6). Due to their completely different chemical structures, their mode of action differs. Saponins, especially the biologically active monodesmosides with only one sugar moiety intercalate with their lipophilic part in the lipid bilayer of the membrane while their hydrophilic part, the sugar chain, remains outside. Accordingly, saponins are able to change the membrane fluidity and make it leaky. 149 Monoterpenes, on the other hand, are small, lipophilic molecules that can easily penetrate the lipid bilayer of the biomembrane. Because of their lipophily they can accumulate within the bilayer and increase its fluidity. Thymol is a phenol which can dissociate to a phenolate ion under physiological conditions. In this case the polar part will drive the molecule to the membrane borders, whereas the lipopophilic parts will dive into the bilayer. This may explain the different activity of thymol as compared to the less polar menthol and α-pinene. When saponins and monoterpenes are combined, however, the effect is triggered to new levels of synergistic interactions. While monoterpenes are weakening the biomembrane, saponins form little pores that eventually cause the rupture of the membrane. The exact nature of the saponins does not seem to be of primary importance as long as they are monodesmosides. The more molecules of monoterpenes are incorporated into the membrane, the less stable it becomes, potentiating the effect of low doses of saponins. It is not necessary for a plant to produce a specific saponin in combination with a specific monoterpene to evoke lytic action against biomembranes. Although the physicochemical mechanism is relatively simple and nonspecific it is highly efficient. Furthermore it is nearly impossible for bacteria and fungi to develop resistances against this synergetic interaction. This explains the overall success and abundance of these molecules in the plant kingdom as defence compounds [45]. The synergistic effect of saponins with monoterpenes opens a complete new field of possible applications. The efficacy of the treatment of antibiotic resistant bacterial infections could be improved by combining antibiotics with monoterpenes and saponins. A combination therapy of both monoterpenes and saponins together with cancer chemotherapeutics could also be another option worth of consideration. 150 Fig. 3: Haemolytic effect of saponins in combination with monoterpenes. The concentration of thymol was kept constant at IC30, while the saponin was serially diluted. 120 Aescin Thymol Thymol + Aescin 100 Haemolysis [%] 80 60 40 2000 500 1000 425 400 375 350 325 300 275 250 225 200 125 62.5 31.25 7.81 15.63 3 3.905 2.5 2.75 2 2.25 1.5 1.75 0.75 0.19 0.375 0.09 0.02 0.047 0.01 0 0.005 20 -20 Concentration [µg/ ml] A: Haemolytic effect of aescin in combination with thymol 120 Digitonin Thymol Thymol + Digitonin 100 Haemolysis [%] 80 60 40 20 -20 Concentration [µg/ ml] B: Haemolytic effect of digitonin in combination with thymol 151 2000 1000 500 425 400 375 350 325 300 275 250 225 200 100 50 25 20 22.5 17.5 15 12.5 6.25 3.13 1.6 0.7 0.35 0.25 0.125 0.06 0 120 Quillaja saponin Thymol Thymol + Quillaja saponin 100 Haemolysis [%] 80 60 40 20 -20 Concentration [µg/ ml] C: Haemolytic effect of Quillaja saponin in combination with thymol 152 2000 950 1000 900 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 125 62.5 31.25 15.63 7.81 2.3 3.905 1.2 0.6 0 Fig. 4: Cytotoxicity of saponins in combination with monoterpenes in Cos7 cells. The concentration of the monoterpene was kept constant at IC50, while the saponin was serially diluted. 120 Aescin Thymol Thymol + Aescin 100 Survival [%] 80 60 40 20 0 0.781 1.562 3.125 6.25 12.5 25 50 100 200 400 -20 Concentration [µg/ ml] A: Effect of aescin in combination with thymol against Cos7 cells 120 Digitonin Thymol Thymol + Digitonin 100 Survival [%] 80 60 40 20 0 0.117 0.234 0.468 0.937 1.875 3.75 7.5 15 30 60 -20 Concentration [µg/ ml] B: Effect of digitonin in combination with thymol against Cos7 cells 153 100 200 400 140 Glycyrrhizic Acid Thymol Thymol + Glycyrrhizic Acid 120 Survival [%] 100 80 60 40 20 0 0.781 1.562 3.125 6.25 12.5 25 50 100 200 400 Concentration [µg/ ml] C: Effect of glycyrrhizic acid in combination with thymol against Cos7 cells 140 Quillaja saponin Thymol Thymol + Quillaja saponin 120 Survival [%] 100 80 60 40 20 0 0.781 1.562 3.125 6.25 12.5 25 50 100 -20 Concentration [µg/ ml] D: Effect of Quillaja saponin in combination with thymol against Cos7 cells 154 200 400 Fig. 5: Cytotoxicity of monoterpene combinations in HeLa cells. One monoterpene was kept constant at IC50, while the other was serially diluted. 120 α-Pinene Menthol Menthol + α-Pinene 100 Survival [%] 80 60 40 20 0 1.171 2.441 4.882 9.765 19.531 39.062 78.125 156.25 312.5 625 1250 -20 Concentration [µg/ ml] A: Effect of α-pinene in combination with menthol against HeLa cells 120 α-Pinene Thymol Thymol + α-Pinene 100 Survival [%] 80 60 40 20 0 0.781 1.562 3.125 6.25 12.5 25 50 100 200 -20 Concentration [µg/ ml] B: Effect of α-pinene in combination with thymol against HeLa cells 155 400 625 1250 120 Thymol Menthol Menthol + Thymol 100 Survival [%] 80 60 40 20 0 0.781 1.171 2.343 4.687 9.375 18.75 37.5 75 -20 Concentration [µg/ ml] C: Effect of thymol in combination with menthol against HeLa cells 156 150 300 600 7.6 References 1 Wink M (2005). Die Verwendung pflanzlicher Vielstoffgemische in der Phytotherapie: eine evolutionäre Sichtweise. Phytotherapie. 5, 33-39. 2 Hänsel R, Sticher O (2007). Pharmacognosie – Phytopharmazie, 8th ed., Springer, Heidelberg. 3 van Wyk BE, Wink M (2004). Medicinal Plants of the World, BRIZA, Pretoria. 4 Wittstock U, Gershenzon J (2002). Constitutive plant toxins and their role in defence against herbivores and pathogens. Curr Opin Plant Biol. 5, 300-307. 5 Heinrich M, Barnes J, Gibbons S, Williamson EM (2004). Fundamentals of pharmacognosy and phytotherapy. Churchill Livingstone, London, p. 161. 6 Houghton P, Mukherjee PK (2009). Evaluation of herbal medicinal products: Perspectives on quality, safety and efficacy. Pharmaceutical Press, London, p. 88. 7 Hou JP, Jin Y (2005). The healing power of Chinese herbs and medicinal recipes. Haworth Press, New York. 8 Xue CC, O’Brien K (2003). Modalities in Chinese medicine. In: A Comprehensive Guide to Chinese Medicine, Ed PC Leung. World Scientific Publishing, Singapore, p. 25. 9 Gong X, Sucher NJ (2002). Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Phytomedicine. 9, 478-484. 10 Sheehan MP, Atherton DJ (1992). A controlled trial of traditional Chinese plants in widespread non-exhudative atopic eczema. Br J Dermatol. 126, 179-184. 11 Ulrich-Merzenich G, Panek D, Zeitler H, Vetter H, Wagner H (2010). Drug development from natural products: exploiting synergistic effects. Indian J Exp Biol. 48, 208-219. 12 Wagner H, Ulrich-Merzenich G (2009). Synergy research: approaching a new generation of phytopharmaceuticals. Part I. Phytomedicine. 16, 97–107. 13 Wagner H (1999). New approaches in phytopharmacological research. Pure Appl Chem. 71, 1649-1654. 14 Wink M (2008). Evolutionary advantage and molecular modes of action of multicomponent mixtures in phytomedicine. Curr Drug Metab. 9, 996-1009. 15 Wagner H (2004). Natural products chemistry and phytomedicine research in the new millennium: new developments and challenges. ARKIVOC VII, 277-284. 16 Wagner H (2006). Multitarget therapy—the future of treat- ment for more than just functional dyspepsia. Phytomedicine. 13, 122–129. 17 Volberding PA, Deeks SG (2010). Antiretroviral therapy and management of HIV infection. Lancet. 376, 49-62. 157 18 Jia J, Zhu F, Ma X, Cao Z, Li Y, Chen YZ (2009). Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 8, 111-128. 19 Ma XH, Zheng CJ, Han LY, Xie B, Jia J, Cao ZW, Li YX, Chen YZ (2009). Synergistic therapeutic actions of herbal ingredients and their mechanisms from molecular interaction and network perspectives. Drug Discov Today. 14, 579-588. 20 Gilbert B, Ferreira Alves L (2003). Synergy in plant medicines. Curr Med Chem. 10, 13-20. 21 Beckstrom-Sternberg SM, Duke JA (1994). Potential for synergistic action of phytochemicals in spices, In: Spices, Herbs and Edible Fungi. Ed. Charalambous, G. Elsevier, Amsterdam, p. 210-233. 22 Kennedy DO, Scholey AB, Wesnes KA (2001). Differential, dose dependent changes in cognitive performance following acute administration of a Ginkgo biloba/Panax ginseng combination to healthy young volunteers. Nutr Neurosci. 4, 399-412. 23 Fuchs H, Bachran D, Panjideh H, Schellmann N, Wenig A, Melzig MF, Sutherland M, Bachran C (2009). Saponins as tool for improved targeted tumor therapies. Curr Drug Targets. 10, 140-151. 24 Bachran C, Bachran S, Sutherland M, Bachran D, Fuchs H (2008). Saponins in tumor therapy. Mini Rev Med Chem. 8, 575-584. 25 Heisler I, Sutherland M, Bachran C, Hebestreit P, Schnitger A, Melzig MF, Fuchs H (2005). Combined application of saponin and chimeric toxins drastically enhances the targeted cytotoxicity on tumor cells. J Control Release. 106, 123-137. 26 Gee JM, Wortley GM, Johnson IT, Price KR, Rutten AA, Houben GF, Penninks AH (1996). Effects of saponins and glycoalkaloids on the permeability and viability of mammalian intestinal cells and on the integrity of tissue preparations in vitro. Toxicol In Vitro. 10, 117128. 27 Palaniappan K, Holley RA (2010). Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol. 140, 164-168. 28 Gallucci MN, Oliva M, Casero C, Dambolena J, Luna A, Zygadlob J, Demoa M (2009). Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr. 24, 348-354. 29 Hemaiswarya S, Doble M (2009). Synergistic interaction of eugenol with antibiotics against gram negative bacteria. Phytomedicine. 16, 997-1005. 30 Aiyegoro O, Afolayan A, Okoh A (2009). Synergistic interaction of Helichrysum pedunculatum leaf extracts with antibiotics against wound infection associated bacteria. Biol Res. 42, 327-338. 31 Mulyaningsih S, Sporer F, Zimmermann S, Reichling J, Wink M (2010). Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of 158 Eucalyptus globulus against antibiotic-susceptible and antibiotic resistant pathogens. Phytomedicine. 17, 1061-1066. 32 Mulyaningsih S, Youns M, El-Readi MZ, Ashour ML, Nibret E, Sporer F, Herrmann F, Reichling J, Wink M (2010). Biological activity of the essential oil of Kadsura longipedunculata (Schisandraceae) and its major components. J Pharm Pharmacol. 62, 10371044. 33 Wink M (2007). Bioprospecting: The search for bioactive lead structures from nature. In: Medicinal Plant Biotechnology. From Basic Research to Industrial Applications. Ed O Kayser and WJ Quax, Wiley-VCH, Weinheim, pp. 97-116. 34 Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immun Methods. 65, 55–63. 35 Williamson EM (2001). Synergy and other interactions in phytomedicines. Phytomedicine. 8, 401-409. 36 Berenbaum M (1989). What is synergy? Pharmacol Rev. 41, 93-141. 37 Schelz Z, Molmar J, Hohmann J (2006). Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77, 279-285. 38 Pei RS, Zhou F, Ji BP, Xu J (2009). Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J Food Sci. 74, 379-383. 39 Braga PC, Sasso MD, Culici M, Alfieri M (2007). Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans. Fitoterapia. 78, 396-400. 40 Didry N, Dubreuil L, Pinkas M (1994). Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Hel. 69, 25-28. 41 Kim SM, Lee SY, Cho JS, Son SM, Choi SS, Yun YP, Yoo HS, Yoon DY, Oh KW, Han SB, Hong JT (2010). Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostrate cancer cells via inhibition of NF-κB. Eur J Pharmacol. 631, 1-9. 42 Gaidi G, Correia M, Chauffert B, Beltramo JL, Wagner H, Lacaille-Dubois MA (2002). Saponins-mediated potentiation of cisplatin accumulation and cytotoxicity in human colon cancer cells. Planta Med. 68, 70-72. 43 Hebestreit P, Melzig MF (2003). Cytotoxic activity of the seeds from Agrostemma githago var. githago. Planta Med. 69, 921-925. 44 De Lucca AJ, Bland JM, Boue S, Vigo CB, Cleveland TE, Walsh TJ (2006). Synergism of CAY-1 with amphotericin B and itraconazole. Chemotherapy. 52, 285-287. 45 Wink M (1988). Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet. 75, 225-233. 159 8. General conclusion and outlook The acceptance and availability of Traditional Chinese Medicine has increased tremendously in Europe and North America in recent years. However, the identity of these drugs is not always guaranteed. The correct authentication is accordingly a necessity prior to all serious research on this topic. We successfully used DNA barcoding to authenticate 66 TCM drugs tested in our study. Only one adulteration could be detected where Arctium lappa was wrongly labelled Fraxinus rhynchophylla. In the process of our project, we became aware of both the advantages and the limitations the use of the rbcL gene offers for authentication of herbal medicine drugs. We could show that DNA barcoding offers a fast, reliable way of authentication and is superior to chemical profiling because of its practicability even for unidentified plant species. Adding to our survey several important European medicinal plants, we screened the dichloromethane, methanol and water extracts of altogether 82 plants used in phytomedicine for their antiviral, antitrypanosomal and anticancer properties. Several plants showed extremely exciting results in their activities, so that we decided to focus in our further research on the antitrypanosomal properties of Panax ginseng where our screening results were especially promising. Being widely regarded as an important medicinal drug with a broad range of pharmacological properties, we decided to take a closer look at the natural products known from P. ginseng. The pharmacological effects are mostly attributed to the ginsenosides, a highly variable group of saponins. Accordingly, we investigated the individual effects of 12 pure ginsenosides to gain a better understanding of their mode of action. We could show that their cytotoxic effect is linked to membrane disturbance. The position of the sugar moieties and the resulting ability to be incorporated into the lipid bilayer of the cell membrane are responsible for the huge differences we could detect in their cytotoxic effects. The monodesmosidic ginsenosides Rg3 and Rh2 with the sugar moiety attached to C3 demonstrated a far higher cytotoxicity than monodesmosidic ginsenosides with the sugar moiety attached to C6 or bidesmosidic ginsenosides. The antitrypanosomal activity of P. ginseng however was not due to the ginsenosides, and so we decided to investigate the other important group of natural products present in P. ginseng, 160 the polyacetylenes. This proved to be an extremely exciting research field. We detected that the hexane extracts and one of their major compounds, panaxynol, expressed an extreme selectivity in their cytotoxicity against trypanosomes. Panaxynol was cytotoxic against Trypanosoma brucei brucei at the IC50 concentration of 0.01 µg/ml with a selectivity index of 858. This selectivity is even superior to the established antitrypanosomal drugs like suramin with a selectivity index of only 280. We suggest that the inhibition of the trypanothione reductase, essential for the resistance of the parasite against oxidative stress and unique to trypanosomes, is the primary principle of this selectivity. Being aware of the great potential of polyacetylenes like panaxynol against trypanosomes, we decided to investigate another polyacetylene plant, Carlina acaulis. The main compound of the essential oil of C. acaulis, Carlina oxide, differs fundamentally in its chemical structure from panaxynol. However, we could again detect a strong and selective activity against T. b. brucei with an IC50 of 1.0 µg/ ml and a selectivity index of 446. We suggest a similar mode of action as in panaxynol as explanation for this selectivity. Our previous results obtained from the activity of ginsenosides had shown us the efficacy, but also the structure dependency of the membrane effects of saponins. Thus, we decided to explore this effect further and to investigate possible synergistic interactions found in the multiple compound mixtures that form the natural defence system of plants. Saponins and monoterpenes are the two groups of natural products whose activity is based on their effect on the cell membrane. Since they are almost omnipresent in those plants commonly applied in phytomedicine, we wanted to know if there is more to it than just a coincidence. We combined several monoterpenes with different saponins and explored their effect on biomembranes modelled by erythrocytes and living cells. Our results were truly astonishing. The combination of a monoterpene with a saponin lowered the dosis necessary for haemolysis up to the factor 100 compared to the single substances. The same effect could be detected in living cells. Since both groups of natural products target the same structure of the cell, the biomembrane, but are completely different in their structure, they work together synergistically by enhancing their activity far above a simple additive effect. We conclude that the potential of traditional medicinal systems such as traditional Chinese Medicine as a source for novel lead compounds is far from being exhausted. If even a well 161 know drug like ginseng can offer such astonishing results, how much more can be detected in unexplored or forgotten medicinal plants? Being part of the so-called neglected diseases, the research on and discovery of new drugs against sleeping sickness is of international importance. We are glad to have been able to contribute to the research in this highly relevant field that might eventually influence the lives of millions of people in Africa. 162 9. Acknowledgements I am indebted to all people in the Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, who have contributed with their time, valuable advice and laboratory experience to the successful completion of this thesis. I am most grateful to my supervisor Prof. Dr. M. Wink for giving me the opportunity to do my dissertation in his laboratory. He always took the time to listen to my ideas, gave valuable advice and provided the necessary materials and space for the completion of my experiments. I am especially thankful that he was willing to let me pursue my ideas and gave me all liberty to follow those that appeared most promising and most interesting to me. To give the PhD student the chance to follow his own ideas while at the same time directing him with valuable advice is a rare trait I am most fortunate to have encountered in him. His broad knowledge in so different fields such as phytomedicine, traditional medicinal systems like TCM, evolution and zoology was a great inspiration to me and enabled me to include a broader range of exciting topics in my thesis than commonly possible. I am also very grateful to Prof. Dr. T. Efferth for his constant interest and friendly support of my research and his kind cooperation in several projects we could work at together. His strong interest in traditional Chinese Medicine was a great inspiration and influence in my thesis. I also want to thank Prof. Dr. J. Reichling whose friendly approach and whose constructive ideas were helpful to look at angles of my project that might have otherwise passed unnoticed. I am very much indebted to Prof. Dr. J.J.G. Marin and his co-workers Dr. M. R. Romero and Dr. A.G. Blazquez of the Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, CIBERehd, Spain, for their cooperation in our large screening project where they performed all the viral and some of the cancer assays. In the course of this project I am also thankful to Dorothea Kaufmann for performing the cytotoxic screening in Cos7 cells. I am very much indebted to the group of Prof. Dr. U. Müller for giving me the opportunity to measure my cytotoxic assays with their plate reader. They were always cheerful no matter how many 96 well plates I carried into their laboratory each week to measure. I am especially thankful to Frank Sporer who performed the GLC-MS analysis in our projects on Carlina acaulis and Panax ginseng. Without him the successful conclusion of these projects would not have been possible. I am indebted to several people in our institute who helped me with the daily laboratory work. First of all I want to thank Hedi Sauer-Gürth who taught me all the basics of DNA barcoding 163 and how to overcome the daily frustration when the secondary metabolites in the isolated DNA yet again made a successful PCR impossible. I also want to thank Heidi Stauder who was always cheerful and very helpful in obtaining plant samples from the botanical garden as references for the DNA barcoding. Here I also want to thank Michael Braun and Dr. Javier Gonzalez for their support with the phylogenetic analysis of my samples. Our cell culture laboratory would not have been such a good working place without Dorothea Kaufmann who tireless fought to keep it in order and to organize a schedule that allowed all of us to use the sterile benches. She was also most helpful in ordering the daily chemicals we needed to perform our research. Last, but not least made her friendship and good humor the many hours in front of the sterile bench an agreeable time! My thanks go also to Razan Hamoud who performed the antimicrobial and antifungal tests in some of our projects. It was always great to work with her and she often shared my frustration when things were not going as smoothly as hoped. I also want to thank Dr. M. Ashour for his support with the extract preparation of our TCM plants when we spent months with extracting and concentrating the TCM plants that formed the basis of many of the projects now being performed in our institute. At this place I would also want to thank Astrid Backhaus for her friendly support whenever we had new extracts to prepare in the course of our experiments. My thanks go also to Endalk Nibret for his friendly cooperation in our cultivation of the trypanosomes. I want to thank as well Ted Cole for his friendly advice regarding formal procedure occuring during the final phase of my dissertation. At last I want to thank Sami Abbas, Andreas Bauer, Amin Eimanifar, Petra Fellhauer, Ina Groß, Pille Link, Alexandre Mendes Fernandes, Dr. Holger Schäfer, Nina Strychalski, Ikhwan Resmala Sudji, Chen Wei and all the others in the lab for their friendship and help. Not part of our institute but equally important for the successful termination of my thesis is my family. I am most grateful for their constant support and love. Without them, this project would not have been possible. 164 10. Appendix 10.1 List of plants used in the screening with IPMB and GenBank accession number Species Andrographis paniculata Celosia cristata Bupleurum chinense Bupleurum marginatum Centella asiatica Cnidium monnieri Saposhnikovia divaricata Eleutherococcus senticosus Araliaceae Panax ginseng China Panax ginseng Korea Panax notoginseng Areca catechu Arecaceae Asclepiadaceae Cynanchum paniculatum Artemisia annua Asteraceae Artemisia capillaris Arctium lappa Centipeda minima Chrysanthemum indicum Chrysanthemum morifolium Eclipta prostata Senecio scandens Siegesbeckia orientalis Taraxacum officinale Berberis bealei Berberidaceae Dysosma versipellis Epimedium koreanum Capsella bursa-pastoris Brassicaceae Isatis indigotica (root) Isatis indigotica (leaf) Lonicera confusa Caprifoliaceae Convallariaceae Polygonatum kingianum Rhodiola rosea Crassulaceae Platycladus orientalis Cupressaceae Dryopteridaceae Cyrtomium fortunei Ephedra sinica Ephedraceae Equisetum hiemale Equisetaceae Croton tiglium Euphorbiaceae Family Acanthaceae Amaranthaceae Apiaceae 165 IPMB / No P6838 / 04 P6848 / 14 P6844 / 10 P6845 / 11 P6849 / 15 P6854 / 20 P6902 / 68 P6919 / 79 P8088 / 81 P8086 / 81 P6887 / 53 P6840 / 06 P6858 / 24 P6841 / 07 P6842 / 08 P6839 / 05 P6850 / 16 P6851 / 17 P6852 / 18 P6863 / 29 P6905 / 71 P6906 / 72 P6908 / 74 P6883 / 49 P6862 / 28 P6865 / 31 P6846 / 12 P6877 / 43 P6878 / 44 P6880 / 46 P6892 / 58 P6920 / 84 P6891 / 57 P6859 / 25 P6864 / 30 P6866 / 32 P6856 / 22 GenBank JF949965 JF949970 JF950021 JF949968 JF950022 JF949973 JF949988 JF950028 JF950029 JF950030 JF949975 JF949966 JF949967 JF949994 JF949971 JF949972 JF950000 JF949989 JF949990 JF950019 JF949996 JF950002 JF949997 JF949981 JF949981 JF949982 JF950027 JF950011 JF949998 JF950001 JF950003 - Fabaceae Geraniaceae Ginkgoaceae Hypericaceae Iridaceae Lamiaceae Lauraceae Loranthaceae Lythraceae Magnoliaceae Melanthiaceae Myrsinaceae Myrtaceae Ophioglossaceae Orchidaceae Paeoniaceae Pedaliaceae Poaceae Polygonaceae Ranunculaceae Rosaceae Rubiaceae Rutaceae Saururaceae Schisandraceae Abrus cantoniensis Acacia catechu Cassia tora Desmodium styracifolium Glycyrrhiza inflata Spatholobus suberectus Sutherlandia frutescens Geranium wilfordii Pelargonium sidoides Ginkgo biloba Hypericum japonicum Belamcanda chinensis Mentha haplocalyx Prunella vulgaris Scutellaria baicalensis Cinnamomum cassia Taxillus chinensis Punica granatum Magnolia officinalis Paris polyphylla Lysimachia christinae Eucalyptus robusta Ophioglossum vulgatum Dendrobium loddigesii Paeonia lactiflora Harpagophytum procumbens Cymbopogon distans Fallopia japonica (syn. Polygonum cuspidatum) Fallopia multiflora (syn. Polygonum multiflorum) Polygonum aviculare Rheum officinale Coptis chinensis Rosa chinensis Rosa laevigata Sanguisorba officinalis Hedyotis diffusa Evodia lepta Evodia rutaecarpa Phellodendron chinense Houttuynia cordata Kadsura longipedunculata 166 P6835 / 01 P6836 / 02 P6847 / 13 P6861 / 27 P6873 / 39 P6907 / 73 tba / 83 P6867 / 33 tba / 82 P6872 / 38 P6876 / 42 P6843 / 09 P6884 / 50 P6896 / 62 P6903 / 69 P6853 / 19 P6909 / 75 P6897 / 63 P6882 / 48 P6888 / 54 P6881 / 47 P6868 / 34 P6885 / 51 P6860 / 26 P6886 / 52 tba / 80 P6857 / 23 JF949964 JF949969 JF949976 JF950025 JF949991 JF949977 JF950005 JF949980 JF949995 JF949984 JF950013 JF950017 JF950023 JF949992 JF950014 JF950008 JF950010 JF949983 JF950009 JF949999 JF950026 JF949974 P6894 / 60 JF950004 P6895 / 61 P6893 / 59 P6898 / 64 P6855 / 21 P6899 / 65 P6900 / 66 P6901 / 67 P6874 / 40 P6869 / 35 P6870 / 36 P6890 / 56 P6875 / 41 P6879 / 45 JF949987 JF950012 JF950015 JF950024 JF950016 JF949979 JF949978 JF949986 JF950006 JF950007 Selaginellaceae Valerianaceae Verbenaceae Violaceae Zingiberaceae Selaginella tamariscina Patrinia scabiosaefolia Verbena officinalis Viola yezoensis Alpinia galanga Alpinia oxyphylla 167 P6904 / 70 P6889 / 55 P6910 / 76 P6911 / 77 P6837 / 03 P6917 / 78 JF950018 JF949985 JF950020 JF949993 - 10.2 TCM plants with photos and Chinese name Family Species Acanthaceae Andrographis paniculata Chinese Name Chuanxinlian 穿 心 莲 Jiguanhua Amaranthaceae Celosia cristata 鸡 冠 花 Chaihu Apiaceae Bupleurum chinense 柴 胡 Apiaceae Nanchaihu Bupleurum marginatum 南 柴 胡 Leigonggen Apiaceae Centella asiatica 雷 公 根 Shechuangzi Apiaceae Cnidium monnieri 蛇 床 子 Fangfeng Apiaceae Saposhnikovia divaricata 防 风 168 Renshen Araliaceae Panax ginseng China 人 参 Renshen Araliaceae Panax ginseng Korea 人 参 Sanqi Araliaceae Panax notoginseng 三 七 Binglang Arecaceae Areca catechu 槟 榔 Liaodiaozhu Asclepiadaceae Cynanchum paniculatum 了 刁 竹 Huanghuahao Asteraceae Artemisia annua 黄 花 蒿 Yinchenhao Asteraceae Artemisia capillaris 茵 陈 蒿 169 Niubang Asteraceae Arctium lappa 牛 蒡 Ebushicao Asteraceae Centipeda minima 鹅 不 食 草 Asteraceae Yejuhua Chrysanthemum indicum 野 菊 花 Juhua Asteraceae Chrysanthemum morifolium 菊 花 Hanliancao Asteraceae Eclipta prostata 旱 莲 草 Qianliguang Asteraceae Senecio scandens 千 里 光 Xixiancao Asteraceae Siegesbeckia orientalis 稀 170 莶 草 Pugongying Asteraceae Taraxacum officinale 蒲 公 英 Shidagonglao Berberidaceae Berberis bealei 十 大 功 劳 Bajiaolian Berberidaceae Dysosma versipellis 八 角 莲 Yinyanghuo Berberidaceae Epimedium koreanum 淫 羊 霍 Jicai Brassicaceae Capsella bursapastoris 荠 菜 Banlangen Brassicaceae Isatis indigotica (root) 板 蓝 根 Daqingye Brassicaceae Isatis indigotica (leaf) 大 青 叶 171 Rendongteng Caprifoliaceae Lonicera confusa 忍 冬 藤 Convallariaceae Huangjing Polygonatum kingianum 黄 精 Hongjingtian Crassulaceae Rhodiola rosea 红 景 天 Cebaiye Cupressaceae Platycladus orientalis 侧 柏 叶 Guanzhong Dryopteridaceae Cyrtomium fortunei 贯 众 Mahuang Ephedraceae Ephedra sinica 麻 黄 Muzei Equisetaceae Equisetum hiemale 木 贼 172 Badou Euphorbiaceae Croton tiglium 巴 豆 Jigucao Fabaceae Abrus cantoniensis 鸡 骨 草 Ercha Fabaceae Acacia catechu 儿 茶 Juemingzi Fabaceae Cassia tora 决 明 子 Guangjinqiancao Fabaceae Desmodium styracifolium 广 金 钱 草 Gancao Fabaceae Glycyrrhiza inflata 甘 草 Jixueteng Fabaceae Spatholobus suberectus 鸡 血 藤 173 Laoguancao Geraniaceae Geranium wilfordii 老 鹳 草 Yinxing Ginkgoaceae Ginkgo biloba 银 杏 Tianjihuang Hypericaceae Hypericum japonicum 田 基 黄 Shegan Iridaceae Belamcanda chinensis 射 干 Bohe Lamiaceae Mentha haplocalyx 薄 荷 Xiakucao Lamiaceae Prunella vulgaris 夏 枯 草 Huangqin Lamiaceae Scutellaria baicalensis 黄 芩 174 Guizhi Lauraceae Cinnamomum cassia 桂 枝 Sangjisheng Loranthaceae Taxillus chinensis 桑 寄 生 Shiliu Lythraceae Punica granatum 石 榴 Houpu Magnoliaceae Magnolia officinalis 厚 朴 Qiyeyizhihua Melanthiaceae Paris polyphylla 七 叶 一 枝 花 Jinqiancao Myrsinaceae Lysimachia christinae 金 钱 草 Anshu Myrtaceae Eucalyptus robusta 桉 树 175 Yizhijian Ophioglossaceae Ophioglossum vulgatum 一 支 箭 Shihu Orchidaceae Dendrobium loddigesii 石 斛 Chishao Paeoniaceae Paeonia lactiflora 赤 芍 Yunxiancao Poaceae Cymbopogon distans 芸 香 草 Polygonaceae Polygonaceae Huzhang Fallopia japonica (syn. Polygonum cuspidatum) 虎 杖 Heshouwu Fallopia multiflora (syn. Polygonum multiflorum) 何 首 乌 Pianxu Polygonaceae Polygonum aviculare 扁 蓄 176 Dahuang Polygonaceae Rheum officinale 大 黄 Huanglian Ranunculaceae Coptis chinensis 黄 连 Yuejihua Rosaceae Rosa chinensis 月 季 花 Jinyingzi Rosaceae Rosa laevigata 金 樱 子 Diyu Rosaceae Sanguisorba officinalis 地 榆 Baihuasheshecao Rubiaceae Hedyotis diffusa 紫 花 地 丁 草 Sanchaku Rutaceae Evodia lepta 三 叉 苦 177 Wuzhuyu Rutaceae Evodia rutaecarpa 吴 茱 萸 Huangbai Rutaceae Phellodendron chinense 黄 柏 Yuxingcao Saururaceae Houttuynia cordata 鱼 腥 草 Zigingpi Schisandraceae Kadsura longipedunculata 紫 荆 皮 Juanbai Selaginellaceae Selaginella tamariscina 卷 柏 Baijiang Valerianaceae Patrinia scabiosaefolia 败 酱 Mabiancao Verbenaceae Verbena officinalis 马 鞭 草 178 Zihuadidingcao Violaceae Viola yezoensis 紫 花 地 丁 草 Hongdoukou Zingiberaceae Alpinia galanga 红 豆 蔻 Yizheren Zingiberaceae Alpinia oxyphylla 益 智 仁 179 10.3 DNA Barcoding Sequences Documentation of the authentication of the TCM drugs: DNA sequence and GenBank accession number of the rbcL gene sequences of the TCM drugs aligned with species obtained from GenBank. Andrographis paniculata P6838 / 04 JF949965 Aligned with Andrographis paniculata GQ436496 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Acanthaceae TTCAAAGCGGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAATACGAAACCAAAGATACTGATATCTTGGCAGCATT TTCAAAGCGGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAATACGAAACCAAAGATACTGATATCTTGGCAGCATT CCGAGTAACTCCTCAACCCGGAGTTCCGCCTGAAGAAGCAGGGGCAGCGGTAGCTGCCGAATCTTCCACTGGTACATGGACA CCGAGTAACTCCTCAACCCGGAGTTCCGCCTGAAGAAGCAGGGGCAGCGGTAGCTGCCGAATCTTCCACTGGTACATGGACA ACCGTGTGGACTGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACAACATCGAGCCCGTTCTTGGCGAAACAG ACCGTGTGGACTGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACAACATCGAGCCCGTTCTTGGCGAAACAG ATCAATATATTTGTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACCAACATGTTTACTTCCATTGTAGGAA ATCAATATATTTGTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACCAACATGTTTACTTCCATTGTAGGAA ATGTATTTGGATTCAAAGCCCTGCGTGCTCTACGCCTGGAAGATCTGCGAATCCCTACTGCTTATATTAAAACTTTCCAAGGTC ATGTATTTGGATTCAAAGCCCTGCGTGCTCTACGCCTGGAAGATCTGCGAATCCCTACTGCTTATATTAAAACTTTCCAAGGTC CGCCTCATGGGATCCAAGTTGAGAGAGATAAATTGAACAAATATGGTCGTCCTCTGCTGGGATGTACTATTAAACCTAAATTG CGCCTCATGGGATCCAAGTTGAGAGAGATAAATTGAACAAATATGGTCGTCCTCTGCTGGGATGTACTATTAAACCTAAATTG GGATTATCCGCTAAAAACTACGGCAGAGCATGTTATGAATGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGT GGATTATCCGCTAAAAACTACGGCAGAGCATGTTATGAATGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGT GAACTCCCAGCCATTTATGCGTTGGAGAGATCGTT GAACTCCCAGCCATTTATGCGTTG GAGAGATCGTT Celosia cristata P6848 / 14 JF949970 Aligned with Celosia argentea GQ436716 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Amaranthaceae CTGACCTATTATACCCCGGAATATGAAACCCTGGATACCGATATTCTGGCGGCGTTTCGTGTGACCCCGCAGCCGGGCGTGCC CTGACCTATTATACCCCGGAATATGAAACCCTGGATACCGATATTCTGGCGGCGTTTCGTGTGACCCCGCAGCCGGGCGTGCC GCCGGAAGAAGCGGGCGCGGCGGTGGCGGCGGAAAGCAGCACCGGCACCTGGACCACCGTGTGGACCGATGGCCTGACCAG GCCGGAAGAAGCGGGCGCGGCGGTGGCGGCGGAAAGCAGCACCGGCACCTGGACCACCGTGTGGACCGATGGCCTGACCAG CCTGGATCGTTATAAAGGCCGTTGCTATCATATTGAACCGGTGGCGGGCGAAGAAAACCAGTATATTTGCTATGTGGCGTATC CCTGGATCGTTATAAAGGCCGTTGCTATCATATTGAACCGGTGGCGGGCGAAGAAAACCAGTATATTTGCTATGTGGCGTATC CGCTGGATCTGTTTGAAGAAGGCAGCGTGACCAACATGTTTACCAGCATTGTGGGCAACGTGTTTGGCTTTAAAGCGCTGCGT CGCTGGATCTGTTTGAAGAAGGCAGCGTGACCAACATGTTTACCAGCATTGTGGGCAACGTGTTTGGCTTTAAAGCGCTGCGT GCGCTGCGTCTGGAAGATCTGCGTATTCCGGTGGCGTATATTAAAACCTTTCAGGGCCCGCCGCATGGCATTCAGGTGGAACG GCGCTGCGTCTGGAAGATCTGCGTATTCCGGTGGCGTATATTAAAACCTTTCAGGGCCCGCCGCATGGCATTCAGGTGGAACG TGATAAACTGAACAAATATGGCCGTCCGCTGCTGGGCTGCACCATTAAACCGAAACTGGGCCTGAGCGCGAAAAACTATGGC TGATAAACTGAACAAATATGGCCGTCCGCTGCTGGGCTGCACCATTAAACCGAAACTGGGCCTGAGCGCGAAAAACTATGGC CGTGCGTGCTATGAATGCCTG CGTGCGTGCTATGAATGCCTG Bupleurum chinense P6844 / 10 JF950021 Aligned with Bupleurum falcatum U50224 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Apiaceae GATTACAAATTGACTTATTATACTCCTGAATATGAAACCAAAGATACTGATATCTTGGCAGCATTCAGAGTAACTCCTCAACC GATTACAAATTGACTTATTATACTCCTGAATATGAAACCAAAGATACTGATATCTTGGCAGCATTCAGAGTAACTCCTCAACC 180 AGGAGTTCCACCTGAAGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACCACTGTGTGGACCGATGGA AGGAGTTCCACCTGAAGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACCACTGTGTGGACCGATGGA CTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACGGAATCGAGCCCGTTCCTGGAGAAGAAAATCAATTTATCGCTTATGT CTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACGGAATCGAGCCCGTTCCTGGAGAAGAAAATCAATTTATCGCTTATGT AGCTTACCCATTAGATCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATCGTAGGTAATGTATTTGGGTTCAAAGC AGCTTACCCATTAGATCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATCGTAGGTAATGTATTTGGGTTCAAAGC CCTGCGCGCTCTACGTCTGGAAGATCTGCGAATCCCCGTTGCTTATGTTAAAACTTTCCAAGGACCGCCTCATGGCATCCAAG CCTGCGCGCTCTACGTCTGGAAGATCTGCGAATCCCCGTTGCTTATGTTAAAACTTTCCAAGGACCGCCTCATGGCATCCAAG TTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAAAAC TTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAAAAC TACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGACGATGAGAATGTGAATTCCCAACCATTTAT TACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGACGATGAGAATGTGAATTCCCAACCATTTAT GCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCCCAAGCCGAAACTGGTGAAATCAAAGGGCATTACT GCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCCCAAGCCGAAACTGGTGAAATCAAAGGGCATTACT TGAACGCCACTGCGGGTACATGTGAA TGAACGCCACTGCGGGTACATGTGAA Bupleurum marginatum P6845 / 11 JF949968 Aligned with Bupleurum falcatum U50224 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Apiaceae GATTACAAATTGACTTATTATACTCCTGAATATGAAACCAAAGATACTGATATCTTGGCAGCATTCAGAGTAACTCCTCAACC GATTACAAATTGACTTATTATACTCCTGAATATGAAACCAAAGATACTGATATCTTGGCAGCATTCAGAGTAACTCCTCAACC AGGAGTTCCACCTGAAGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACCACTGTGTGGACCGATGGA AGGAGTTCCACCTGAAGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACCACTGTGTGGACCGATGGA CTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACGGAATCGAGCCCGTTCCTGGAGAAGAAAATCAATTTATCGCTTATGT CTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACGGAATCGAGCCCGTTCCTGGAGAAGAAAATCAATTTATCGCTTATGT AGCTTACCCATTAGATCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATCGTAGGTAATGTATTTGGGTTCAAAGC AGCTTACCCATTAGATCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATCGTAGGTAATGTATTTGGGTTCAAAGC CCTGCGCGCTCTACGTCTGGAAGATCTGCGAATCCCCATTGCTTATGTTAAAACTTTCCAAGGACCGCCTCATGGCATCCAAG CCTGCGCGCTCTACGTCTGGAAGATCTGCGAATCCCCGTTGCTTATGTTAAAACTTTCCAAGGACCGCCTCATGGCATCCAAG TTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAAAAC TTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAAAAC TACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGACGATGAGAATGTGAATTCCCAACCATTTAT TACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGACGATGAGAATGTGAATTCCCAACCATTTAT GCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCCCAAGCCGAAACTGGTGAAATCAAAGGGCATTACT GCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCCCAAGCCGAAACTGGTGAAATCAAAGGGCATTACT TGA TGA Centella asiatica P6849 / 15 JF950022 Aligned with Centella asiatica GQ436636 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Apiaceae TAAAGATTACAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTC TAAAGATTACAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTC AACCTGGAGTTCCACCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGA AACCTGGAGTTCCACCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGA CGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACGGAATCGAGCCCGTTCCTGGAGAAGAAAATCAATTTATTGCTT CGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACGGAATCGAGCCCGTTCCTGGAGAAGAAAATCAATTTATTGCTT ATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTTGGTAATGTATTTGGGTTCA ATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTTGGTAATGTATTTGGGTTCA 181 AAGCCCTGCGTGCCCTACGTCTGGAAGATCTGCGAATCCCTGTTGCTTATGTGAAAACTTTCCAAGGCCCGCCTCATGGTATC AAGCCCTGCGTGCCCTACGTCTGGAAGATCTGCGAATCCCTGTTGCTTATGTGAAAACTTTCCAAGGCCCGCCTCATGGTATC CAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAA CAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAA AAACTACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGACGATGAGAACGTGAACTC AAACTACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGACGATGAGAACGTGAACTC Cnidium monnieri P6854 / 20 JF949973 Aligned with Cnidium japonicum D44562 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Apiaceae TAAAGATTACAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTC TAAAGATTACAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTC AACCTGGAGTTCCACCTGAAGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACCACTGTGTGGACCGA AACCTGGAGTTCCACCTGAAGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACCACTGTGTGGACCGA TGGACTTACCAGCCTTGATCGTTACAAAGGGCGCTGCTACGAAATCGAGCCCGTTGCTGGAGAAGAAAATCAATTTATCGCTT TGGACTTACCAGCCTTGATCGTTACAAAGGGCGCTGCTACGAAATCGAGCCCGTTGCTGGAGAAGAAAATCAATTTATCGCTT ATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCA ATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCA AAGCCCTGCGCGCTCTACGTCTGGAAGATCTGCGAATCCCCGTTGCTTATGTTAAAACTTTCCAAGGACCGCCTCATGGCATC AAGCCCTGCGTGCTCTACGTCTGGAAGATCTGCGAATCCCCGTTGCTTATGTTAAAACTTTCCAAGGACCGCCTCATGGCATC CAAGTTGAGAGAGATAAATTGAACAAGTACGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAA CAAGTTGAGAGAGATAAATTGAACAAGTACGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAA AAACTACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGACGATGAGAATGTGAACTCCCAACCAT AAACTACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGACGATGAGAATGTGAACTCCCAACCAT TTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCAATTTATAAAGCACAGGCTGAAACTGGTGAAATCAAAGGGCAT TTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCAATTTATAAAGCACAGGCTGAAACTGGTGAAATCAAAGGGCAT TACTTGAATGCTACTGCGGGTACATG TACTTGAATGCTACTGCGGGTACATG Saposhnikovia divaricata P6902 / 68 JF949988 Aligned with Saposhnikovia divaricata GQ436633 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Apiaceae TAAAGATTACAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTC TAAAGATTACAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTC AACCTGGAGTTCCACCTGAAGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACCACTGTGTGGACCGA AACCTGGAGTTCCACCCGAAGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACCACTGTGTGGACCGA TGGACTTACCAGCCTTGATCGTTACAAAGGGCGCTGCTACGGAATCGAGCCCGTTGCTGGAGAAGAAAATCAATATATCGCTT TGGACTTACCAGCCTTGATCGTTACAAAGGGCGCTGCTACGGAATCGAGCCCGTTGCTGGAGAAGAAAATCAATATATCGCTT ATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCA ATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCA AAGCCCTGCGCGCTCTACGTCTGGAAGATCTGCGAATCCCCGTTGCTTATGTTAAAACTTTCCAAGGACCGCCTCATGGCATC AAGCCCTGCGCGCTCTACGTCTAGAAGATCTGCGAATCCCCGTTGCTTATGTTAAAACTTTCCAAGGACCGCCTCATGGCATC CAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAA CAAGTTGAGAGAGATAAATTGAACAAGTACGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAA AAACTACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGACGATGAGAATGTGAACTCCCAACCAT AAACTACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGACGATGAGAATGTGAACTCCCAACCAT TTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCACAGGCTGAAACTGGTGAAATCAAAGGGCAT TTATGCGTTGGAGAGATCGTTTCGTATTTTGTGCCGAAGCAATTTATAAAGCACAGGCTGAAACTGGTGAAATCAAAGGGCAT TACTTGAAT TACTTGAAT 182 Panax ginseng China P8088 / 81 JF950028 Aligned with Panax ginseng NC_006290 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Araliaceae AAAGATTACAAATTGACTTATTATACTCCTGACTATGATCCCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCA AAAGATTACAAATTGACTTATTATACTCCTGACTATGATCCCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCA ACCTGGAGTTCCAGCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGAT ACCTGGAGTTCCAGCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGAT GGACTTACTAGCCTTGATCGTTACAAAGGGCGATGCTACAAAATAGAGCCCGTTGCTGGAGAAGAAACTCAATTTATTGCTTA GGACTTACTAGCCTTGATCGTTACAAAGGGCGATGCTACAAAATAGAGCCCGTTGCTGGAGAAGAAACTCAATTTATTGCTTA TGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCAA TGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCAA AGCCCTGCGTGCTCTACGTCTGGAAGATCTGCGAATCCCTGTTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGCATCCA AGCCCTGCGTGCTCTACGTCTGGAAGATCTGCGAATCCCTGTTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGCATCCA AGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCTGCTAAAA AGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCTGCTAAAA ACTACGGTAGAGCGGTTTATGAATGTCTCCGGGGTGGACTTGATTTTACCAAAGACGATGAGAACGTGAACTCACAACCATTT ACTACGGTAGAGCGGTTTATGAATGTCTCCGGGGTGGACTTGATTTTACCAAAGACGATGAGAACGTGAACTCACAACCATTT ATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCACAGGCTGAAACAGGTGAAATCAAAGGGCATTA ATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCACAGGCTGAAACAGGTGAAATCAAAGGGCATTA CTTGAATGCTACTG CTTGAATGCTACTG Panax ginseng Korea P8086 / 81 JF950029 Aligned with Panax ginseng NC_006290 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Araliaceae AAAGATTACAAATTGACTTATTATACTCCTGACTATGATCCCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCA AAAGATTACAAATTGACTTATTATACTCCTGACTATGATCCCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCA ACCTGGAGTTCCAGCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGAT ACCTGGAGTTCCAGCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGAT GGACTTACTAGCCTTGATCGTTACAAAGGGCGATGCTACAAAATAGAGCCCGTTGCTGGAGAAGAAACTCAATTTATTGCTTA GGACTTACTAGCCTTGATCGTTACAAAGGGCGATGCTACAAAATAGAGCCCGTTGCTGGAGAAGAAACTCAATTTATTGCTTA TGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCAA TGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCAA AGCCCTGCGTGCTCTACGTCTGGAAGATCTGCGAATCCCTGTTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGCATCCA AGCCCTGCGTGCTCTACGTCTGGAAGATCTGCGAATCCCTGTTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGCATCCA AGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCTGCTAAAA AGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCTGCTAAAA ACTACGGTAGAGCGGTTTATGAATGTCTCCGGGGTGGACTTGATTTTACCAAAGACGATGAGAACGTGAACTCACAACCATTT ACTACGGTAGAGCGGTTTATGAATGTCTCCGGGGTGGACTTGATTTTACCAAAGACGATGAGAACGTGAACTCACAACCATTT ATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCACAGGCTGAAACAGGTGAAATCAAAGGGCATTA ATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCACAGGCTGAAACAGGTGAAATCAAAGGGCATTA CTTGAATGCTACTG CTTGAATGCTACTG Panax notoginseng P6887 / 53 JF950030 Aligned with Panax notoginseng GQ436707 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Araliaceae TAAAGATTACAAATTGACTTATTATACTCCTGACTATGACCCCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTC TAAAGATTACAAATTGACTTATTATACTCCTGACTATGACCCCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTC 183 AACCTGGAGTTCCAGCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGA AACCTGGAGTTCCAGCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGA TGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACAAAATAGAGCCCGTTGCTGGAGAAGAAACTCAATTTATTGCTT TGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACAAAATAGAGCCCGTTGCTGGAGAAGAAACTCAATTTATTGCTT ATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCA ATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCA AAGCCCTGCGTGCTCTACGTCTGGAAGATCTGCGAATCCCTGTTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGCATCC AAGCCCTGCGTGCTCTACGTCTGGAAGATCTGCGAATCCCTGTTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGCATCC AAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCTGCTAAA AAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCTGCTAAA AACTACGGTAGGGCGGTTTATGAATGTCTCCGTGGTGGACTTGATTTTACCAAAGACGATGAGAACGTGAACTCACAACCATT AACTACGGTAGGGCGGTTTATGAATGTCTCCGTGGTGGACTTGATTTTACCAAAGACGATGAGAACGTGAACTCACAACCATT TATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCACAGGCTGAAACAGGTGAAATCAAAGGGCATT TATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCACAGGCTGAAACAGGTGAAATCAAAGGGCATT ACTTGAAT ACTTGAAT Panax pseudoschinseng P6887 / 53 JF950030 Aligned with Panax ginseng NC_006290 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Araliaceae TTAAGATTACAAATTGACTTATTATACTCCTGACTATGACCCCAAAGATACTGATACCTTGGCAGCATTCCGAGTAACTCCTC TAAAGATTACAAATTGACTTATTATACTCCTGACTATGATCCCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTC AACCTGGAGTTCCACCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGA AACCTGGAGTTCCAGCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGA TGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACAAAATCGAGCCCGTTGCTGGAGAAGAAACTCAATTTATTGCTT TGGACTTACTAGCCTTGATCGTTACAAAGGGCGATGCTACAAAATAGAGCCCGTTGCTGGAGAAGAAACTCAATTTATTGCTT ATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCA ATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCA AAGCCCTGCGTGCTCTACGTCTGGAAGATCTGCGAATCCCTGTTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGCATCC AAGCCCTGCGTGCTCTACGTCTGGAAGATCTGCGAATCCCTGTTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGCATCC AAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCTGCTAAA AAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCTGCTAAA AACTACGGTAGAGCGGTTTATGAATGTCTCCGTGGTGGACTTGATTTTACCAAAGACGATGAGAACGTGAACTCCCAACCAT AACTACGGTAGAGCGGTTTATGAATGTCTCCGGGGTGGACTTGATTTTACCAAAGACGATGAGAACGTGAACTCACAACCAT TTATGCGTTGGAGAGACCGTTTCTTATTTT TTATGCGTTGGAGAGATCGTTTCTTATTTT Cynanchum paniculatum P6858 / 24 JF949975 Aligned with Cynanchum mongolicum GQ436512 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Asclepiadaceae GATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTC GATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTC TACTGGTACATGGACAACTGTTTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATCGAGGCCG TACTGGTACATGGACAACTGTTTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATCGAGCCCG TTCCTGGAGAAGAAGATCAATTTATTGCTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGCTTA TTCCTGGAGAAGAAGATCAATTTATTGCTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGCTTA CTTCCATTGTAGGTAATGTATTTGGGTTCAAAGCCCTACGCGCTCTACGTCTGGAAGATTTGCGAATCCCTCCGGCTTATATTA CTTCCATTGTAGGTAATGTATTTGGGTTCAAAGCCCTACGCGCTCTACGTCTGGAAGATTTGCGAATCCCTCAGGCTTATGTTA AAACCTTCCAAGGCCCGCCGCATGGCATCCAGGTTGAGAGAGATAAATTGAACAAATATGGTCGTCCCCTGTTGGGATGTAC AAACCTTCCAAGGCCCGCCACATGGCATCCAGGTTGAGAGAGATAAATTGAACAAATATGGTCGTCCCCTGTTGGGATGTAC 184 TATTAAACCAAAATTGGGGTTATCAGCTAAAAACTATGGTAGGGCGGTTTATGAATGTCTTCGTGGTGGACTTGATTTTACCA TATTAAACCAAAATTGGGGTTATCAGCTAAAAACTATGGTAGGGCGGTTTATGAATGTCTTCGTGGTGGACTTGATTTTACCA AAGATGATGAAAACGTGAACTCCCAACCGTTTATGCGTTGGAGAGATCGTTTCTTGTTTTGTGCCGAAGCAATTTTTAAATCA AAGATGATGAAAACGTGAACTCCCAACCGTTTATGCGTTGGAGAGATCGTTTCTTGTTTTGTGCCGAAGCAATTTTTAAATCA CAGGCTGAAACCGGCGAAATCAAAGGGCATTACTTGAAT CAGGCTGAAACCGGCGAAATCAAAGGGCATTACTTGAAT Artemisia annua P6841 / 07 JF949966 Aligned with Artemisia annua DQ006057 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Asteraceae GGGGTTAAAGATTATAAATTGACTTATTATACTCCTGAGTATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAAC GGGGTTAAAGATTATAAATTGACTTATTATACTCCTGAGTATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAAC TCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGG TCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGG ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATTGAGCCTGTTCCTGGAGAAGAGAATCAATATA ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATTGAGCCTGTTCCTGGAGAAGAGAATCAATATA TTTGCTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAACGTATTTG TTTGCTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAACGTATTTG GTTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATTCCTACTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACG GTTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATTCCTACTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACG GTATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCT GTATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCT GCTAAAAACTACGGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCCA GCTAAAAACTACGGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCCA ACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTTTAAATCACAAGCTGAAACAGGTGAAATCAAAG ACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTTTAAATCACAAGCTGAAACAGGTGAAATCAAAG Artemisia capillaris P6842 / 08 JF949967 Aligned with Artemisia annua DQ006057 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Asteraceae TGGGGTTAAAGATTATAAATTGACTTATTATACTCCTGAGTATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAA TGGGGTTAAAGATTATAAATTGACTTATTATACTCCTGAGTATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAA CTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGG CTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGG ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATTGAGCCTGTTCCTGGAGAAGAGAATCAATATA ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATTGAGCCTGTTCCTGGAGAAGAGAATCAATATA TTTGCTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAACGTATTTG TTTGCTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAACGTATTTG GTTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATTCCTACTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACG GTTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATTCCTACTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACG GTATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCC GTATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCT GCTAAAAACTACGGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCCA GCTAAAAACTACGGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCCA ACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTTTAAATCACAAGCTGAAACAGGTGAAATCAAAG ACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTTTAAATCACAAGCTGAAACAGGTGAAATCAAAG GGCA GGCA 185 Arctium lappa P6839 / 05 JF949994 Aligned with Arctium lappa GU724233 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Asteraceae GGTGTTAAAGATTATAAATTGACTTATTATACTCCTGACTATCAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAAC GGTGTTAAAGATTATAAATTGACTTATTATACTCCTGACTATCAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAAC TCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGG TCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGG ACCGATGGACTTACGAGCCTTGATCGTTACAAGGGGCGATGCTATGGAATCGAGCCTGTTCCTGGAGAAGAAAGTCAATTTA ACCGATGGACTTACGAGCCTTGATCGTTACAAGGGGCGATGCTATGGAATCGAGCCTGTTCCTGGAGAAGAAAGTCAATTTA TTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGG TTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGG GTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATCCCTACTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACG GTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATCCCTACTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACG GCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATC GCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATC CGCTAAAAACTACGGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCC CGCTAAAAACTACGGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCC AACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTATAAAGCACAAGCTGAAACAGGTGAAATCAAA AACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTATAAAGCACAAGCTGAAACAGGTGAAATCAAA GGGCATTACTTGAAT GGGCATTACTTGAAT Chrysanthemum indicum P6851 / 17 Aligned with Chrysanthemum lavandulifolium ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Asteraceae JF949971 GQ436485 TATAAATTGACTTATTATACTCCTGAGTATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAACTCCTCAACCTGG TATAAATTGACTTATTATACTCCTGAGTATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAACTCCTCAACCTGG AGTTCCGCCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACCTGGACAACTGTGTGGACCGATGGACTT AGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGACTT ACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATTGAGCCTGTTCTTGGAGAAGAGAATCAATATATTTGCTATGTAGC ACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATTGAGCCTGTTCTTGGAGAAGAGAATCAATATATTTGCTATGTAGC TTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAACGTATTTGGTTTCAAAGCCCT TTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAACGTATTTGGTTTCAAAGCCCT GCGTGCTCTACGTCTGGAAGATTTGCGAATTCCTACCGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACGGTATCCAAGTTG GCGTGCTCTACGTCTGGAAGATTTGCGAATTCCTACTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACGGTATCCAAGTTG AAAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAAAACTAC AAAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAAAACTAC GGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAAAACGTGAACTCCCAACCGTTTATG GGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCCAACCATTTATG Chrysanthemum morifolium P6852 / 18 Aligned with Chrysanthemum lavandulifolium ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Asteraceae JF949972 GQ436485 TATAAATTGACTTATTATACTCCTGAGTATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAACTCCTCAACCTGG TATAAATTGACTTATTATACTCCTGAGTATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAACTCCTCAACCTGG AGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGACTT AGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGACTT ACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATTGAGCCTGTTCTTGGAGAAGAGAATCAATATATTTGCTATGTAGC ACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATTGAGCCTGTTCTTGGAGAAGAGAATCAATATATTTGCTATGTAGC 186 TTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAACGTATTTGGTTTCAAAGCCCT TTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAACGTATTTGGTTTCAAAGCCCT GCGTGCTCTACGTCTGGAAGATTTGCGAATTCCTACTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACGGTATCCAAGTTG GCGTGCTCTACGTCTGGAAGATTTGCGAATTCCTACTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACGGTATCCAAGTTG AAAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAAAACTAC AAAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAAAACTAC GGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCCAACCATTTATG GGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCCAACCATTTATG Eclipta prostrata P6863 / 29 JF950000 Aligned with Eclipta prostrata GQ436455 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Asteraceae GGTGTTAAAGATTATAAATTGACTTATTATACTCCTGAATATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAAC GGTGTTAAAGATTATAAATTGACTTATTATACTCCTGAATATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAAC TCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGG TCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGG ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGCCGATGCTATGGAATCGAGCCTGTTCCTGGAGAAGAAAATCAATATA ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGCCGATGCTATGGAATCGAGCCTGTTCCTGGAGAAGAAAATCAATATA TTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGG TTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGG GTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATCCCTACTGCGTATATTAAAACTTTCGAGGGTCCGCCTCACG GTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATCCCTACTGCGTATATTAAAACTTTCGAGGGTCCGCCTCACG GTATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCC GTATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCC GCTAAAAACTACGGTAGAGCTTGTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCCA GCTAAAAACTACGGTAGAGCTTGTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCCA ACCATTTATGCGTTGGAGAGACCGTTTCGTATTTTGTGCCGAAGCTATTTATAAAGCACAAGCTGAAACAGGTGAAATCAAAG ACCATTTATGCGTTGGAGAGACCGTTTCGTATTTTGTGCCGAAGCTATTTATAAAGCACAAGCTGAAACAGGTGAAATCAAAG Senecio scandens P6905 / 71 JF949989 Aligned with Senecio scandens GQ436472 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Asteraceae GGTGTTAAAGATTATAAATTGACTTATTATACTCCTGATTATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAAC GGTGTTAAAGATTATAAATTGACTTATTATACTCCTGATTATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAAC TCCTCAACCAGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGG TCCTCAACCAGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGG ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATCGAGCCTGTTCTTGGAGAAGAAAATCAATTTAT ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATCGAGCCTGTTCTTGGAGAAGAAAATCAATTTAT TGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGG TGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGG GTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATCCCTACTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACG GTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATCCCTACTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACG GCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTATTGGGATGTACTATTAAACCTAAATTGGGGCTATCC GCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTATTGGGATGTACTATTAAACCTAAATTGGGGCTATCC GCTAAAAACTACGGTAGAGCTGTTTATGAGTGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAAAACGTGAACTCCCA GCTAAAAACTACGGTAGAGCTGTTTATGAGTGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAAAACGTGAACTCCCA ACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTATAAATCACAAGCTGAAACAGGTGAAATCAAAG ACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTATAAATCACAAGCTGAAACAGGTGAAATCAAAG GGCATTACTTGAAT GGCATTACTTGAAT 187 Siegesbeckia orientalis P6906 / 72 JF949990 Aligned with Siegesbeckia orientalis GQ436447 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Asteraceae GGTGTTAAAGATTATAAATTGACTTATTATACTCCTGAATATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAAC GGTGTTAAAGATTATAAATTGACTTATTATACTCCTGAATATGAAACCAAGGATACTGATATCTTGGCAGCATTTCGAGTAAC TCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGG TCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGG ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGCCGATGCTATGGAATCGAGCCTGTTCCTGGAGAAGAAAATCAATTTAT ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGCCGATGCTATGGAATCGAGCCTGTTCCTGGAGAAGAAAATCAATTTAT TGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGG TGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGG GTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATCCCTACTGCGTATGTTAAAACTTTCGATGGTCCGCCTCACG GTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATCCCTACTGCGTATGTTAAAACTTTCGATGGTCCGCCTCACG GTATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCC GTATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCC GCTAAAAACTACGGTAGAGCTTGTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCCA GCTAAAAACTACGGTAGAGCTTGTTATGAATGTCTTCGTGGTGGCCTTGATTTTACTAAAGATGATGAGAACGTGAACTCCCA ACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTATAAAGCACAAGCTGAAACAGGTGAAATCAAAG ACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTATAAAGCACAAGCTGAAACAGGTGAAATCAAAG GGCATTACTTGAAT GGCATTACTTGAAT Taraxacum officinale P6908 / 74 JF950019 Aligned with Taraxacum officinale AY395562 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Asteraceae GGTGTTAAAGATTATAAATTGACTTATTATACTCCTGACTATGAAACCAAGGATACTGATATTTTGGCAGCATTTCGAGTAAC GGTGTTAAAGATTATAAATTGACTTATTATACTCCTGACTATGAAACCAAGGATACTGATATTTTGGCAGCATTTCGAGTAAC TCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGG TCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGG ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATTGAGCCTGTTCCTGGAGAAGAAAGTCAATTTAT ACCGATGGACTTACGAGCCTTGATCGTTACAAAGGGCGATGCTATGGAATTGAGCCTGTTCCTGGAGAAGAAAGTCAATTTAT TGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGG TGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGG GTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATCCCTGTTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACG GTTCAAAGCCCTGCGTGCTCTACGTCTGGAAGATTTGCGAATCCCTGTTGCGTATGTTAAAACTTTCCAAGGTCCGCCTCACG GCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCC GCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCC GCTAAAAACTACGGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTT GCTAAAAACTACGGTAGAGCTGTTTATGAATGTCTTCGTGGTGGCCTTGATTTT Berberis bealei P6883 / 49 JF949996 Aligned with Berberis bealei FJ449858 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Berberidaceae AATTATTATACTCCTGACTATGTAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACC AATTATTATACTCCTGACTATGTAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACC GGAAGAAGCAGGGGCCGCTGTAGCTGCCGAATCTTCTACGGGTACATGGACAACTGTGTGGACCGATGGACTTACCAGTCTT GGAAGAAGCAGGGGCCGCTGTAGCTGCCGAATCTTCTACGGGTACATGGACAACTGTGTGGACCGATGGACTTACCAGTCTT GATCGTTACAAAGGACGATGCTACGACATTGAGCCCGTTGCTGGAGAAGACAATCAATATATTTGTTATGTAGCCTATCCTTT GATCGTTACAAAGGACGATGCTACGACATTGAGCCCGTTGCTGGAGAAGACAATCAATATATTTGTTATGTAGCCTATCCTTT 188 AGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTGACCTCTATTGTGGGTAATGTTTTTGGGTTCAAAGCGCTGCGCGCTCT AGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTGACCTCTATTGTGGGTAATGTTTTTGGGTTCAAAGCGCTGCGCGCTCT ACGTCTGGAGGATCTGCGAATTCCTACTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGCATCCAAGTTGAGAGAGATA ACGTCTGGAGGATCTGCGAATTCCTACTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGCATCCAAGTTGAGAGAGATA AATTGAACAAGTATGGTCGTCCCCTATTAGGATGTACTATTAAACCAAAATTGGGATTATCCGCTAAGAACTATGGTAGAGCG AATTGAACAAGTATGGTCGTCCCCTATTAGGATGTACTATTAAACCAAAATTGGGATTATCCGCTAAGAACTATGGTAGAGCG GTTTATGAATGTCTCCGTGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCCCAACCATTTATGCGTTGGCGCGA GTTTATGAATGTCTCCGTGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCCCAACCATTTATGCGTTGGCGCGA CCGTTTCCTATTTTGTGCCGAAGCACTTTTTAAAGCACAGGCTGAAACAGGTGAAATCAAAGGACATTACTTAAATGCTACT CCGTTTCCTATTTTGTGCCGAAGCACTTTTTAAAGCACAGGCTGAAACAGGTGAAATCAAAGGACATTACTTAAATGCTACT Epimedium koreanum P6865 / 31 JF950002 Aligned with Epimedium koreanum L75869 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Berberidaceae TACAAATTGACTTATTATACTCCTGACTATGTAACGAAGGATACTGATATCTTGGCAGCATTCCGCGTCACTCCTCAACCTGG TACAAATTGACTTATTATACTCCTGACTATGTAACGAAGGATACTGATATCTTGGCAGCATTCCGCGTCACTCCTCAACCTGG AGTTCCACCTGAAGAAGCAGGGGCCGCTGTAGCTGCCGAATCTTCTACAGGTACATGGACAACNGTGTGGACCGATGGACTT AGTTCCACCTGAAGAAGCAGGGGCCGCTGTAGCTGCCGAATCTTCTACAGGTACATGGACAACNGTGTGGACCGATGGACTT ACCAGTCTTGATCGTTACAAAGGACGRTGCTACCACATTGAGCCTGTTGCTGGAGAAGACAATCAATATATTTGTTACGTAGC ACCAGTCTTGATCGTTACAAAGGACGRTGCTACCACATTGAGCCTGTTGCTGGAGAAGACAATCAATATATTTGTTACGTAGC CTATCCTTTAGACCTTTTTNAAGAGGGTTCTGTTACTAACATGTTTACTTCTATTGTGGGTAATGTATTTGGGTTCAAAGCGCT CTATCCTTTAGACCTTTTTNAAGAGGGTTCTGTTACTAACATGTTTACTTCTATTGTGGGTAATGTATTTGGGTTCAAAGCGCT GCGCGCTCTACGTCTGGAGGATCTGCGAATTCCTCTTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGNATCCAAGTTG GCGCGCTCTACGTCTGGAGGATCTGCGAATTCCTCTTGCTTATGTTAAAACTTTCCAAGGCCCGCCTCATGGNATCCAAGTTG AGAGAGATAAATTGAACAAGTATGGTCGTCCTCTATTAGGATGTACTATTAAACCAAAATTGGGATTATCCGCTAAGAACTAT AGAGAGATAAATTGAACAAGTATGGTCGTCCTCTATTAGGATGTACTATTAAACCAAAATTGGGATTATCCGCTAAGAACTAT GGTAGAGCGGTTTATGAATGTCTCCGCGGTGGRCTTGATTTTACCAAGGATGATGAGAACGTGAACTCCCAGCCATTTATGCG GGTAGAGCGGTTTATGAATGTCTCCGCGGTGGRCTTGATTTTACCAAGGATGATGAGAACGTGAACTCCCAGCCATTTATGCG TTGGAGAGANCGTTTCCTATTTTGTGCCGAAGCTATTTATAAATCACAGGCGGAAACAGGTGAAATCAAAGGACATTACTTGA TTGGAGAGANCGTTTCCTATTTTGTGCCGAAGCTATTTATAAATCACAGGCGGAAACAGGTGAAATCAAAGGACATTACTTGA ATGCTACT ATGCTACT Capsella bursa-pastoris P6846 / 12 JF949997 Aligned with Capsella bursa-pastoris FN594844 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Brassicaceae TATAAATTGACTTATTATACTCCTGAATATGAAACCAAGGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGG TATAAATTGACTTATTATACTCCTGAATATGAAACCAAGGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGG AGTTCCACCTGAAGAAGCAGGGGCTGCGGTAGCTGCTGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGGCTT AGTTCCACCTGAAGAAGCAGGGGCTGCGGTAGCTGCTGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGGCTT ACCAGCCTTGATCGTTACAAAGGACGATGCTACCACATCGAGCCCGTTCCAGGAGAAGAAACTCAATTTATTGCGTATGTAGC ACCAGCCTTGATCGTTACAAAGGACGATGCTACCACATCGAGCCCGTTCCAGGAGAAGAAACTCAATTTATTGCGTATGTAGC TTACCCCTTAGACCTTTTTGAAGAAGGTTCGGTTACTAACATGTTTACTTCGATTGTGGGTAATGTATTTGGGTTCAAAGCCCT TTACCCCTTAGACCTTTTTGAAGAAGGTTCGGTTACTAACATGTTTACTTCGATTGTGGGTAATGTATTTGGGTTCAAAGCCCT GGCTGCCCTACGTCTAGAGGATCTGCGAATCCCTCCTGCTTATACTAAAACTTTCCAAGGACCACCTCATGGTATCCAAGTTG GGCTGCCCTACGTCTAGAGGATCTGCGAATCCCTCCTGCTTATACTAAAACTTTCCAAGGACCACCTCATGGTATCCAAGTTG AAAGAGATAAATTGAACAAGTATGGACGTCCCCTATTAGGATGTACTATTAAACCAAAATTGGGGTTATCCGCGAAGAACTA AAAGAGATAAATTGAACAAGTATGGACGTCCCCTATTAGGATGTACTATTAAACCAAAATTGGGGTTATCCGCGAAGAACTA TGGTAGAGCGGTTTATGAATGTCTACGTGGTGGACTTGATTTTACCAAAGATGATGAGAATGTGAACTCCCAACCATTTATGC TGGTAGAGCGGTTTATGAATGTCTACGTGGTGGACTTGATTTTACCAAAGATGATGAGAATGTGAACTCCCAACCATTTATGC 189 GTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTATAAATCACAGGCTGAAACAGGTGAAATCAAAGGGCATTATTTG GTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTATAAATCACAGGCTGAAACAGGTGAAATCAAAGGGCATTATTTG AATGCTACTGC AATGCTACTGC Isatis indigotica P6877, P6878 JF949981 Aligned with Isatis pachycarpa FN594830 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Brassicaceae TATAAATTGACTTATTATACTCCTGAATATGAAACCAAGGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGG TATAAATTGACTTATTATACTCCTGAATATGAAACCAAGGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGG AGTTCCACCTGAAGAAGCAGGGGCTGCGGTAGCTGCTGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGGCTT AGTTCCACCTGAAGAAGCAGGGGCTGCGGTAGCTGCTGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGGCTT ACCAGCCTTGATCGTTACAAAGGAAGATGCTACCACATCGAGCCCGTTCCAGGAGAAGAAACTCAATTTATTGCGTATGTAG ACCAGCCTTGATCGTTACAAAGGAAGATGCTACCACATCGAGCCCGTTCCAGGAGAAGAAACTCAATTTATTGCATATGTAG CTTACCCCTTAGACCTTTTTGAAGAAGGGTCGGTTACTAACATGTTTACCTCGATTGTGGGTAATGTATTTGGGTTCAAAGCCC CTTACCCCTTAGACCTTTTTGAAGAAGGGTCGGTTACTAACATGTTTACCTCGATTGTGGGTAATGTATTTGGGTTCAAAGCCC TGGCTGCTCTACGTCTAGAGGATCTGCGAATCCCTCCTGCTTATACTAAAACTTTCCAGGGACCACCTCATGGTATCCAAGTTG TGGCTGCTCTACGTCTAGAGGATCTGCGAATCCCTCCTGCTTATACTAAAACTTTCCAGGGACCACCTCATGGTATCCAAGTTG AAAGAGATAAATTGAACAAGTACGGACGTCCCCTATTAGGATGTACTATTAAACCTAAATTGGGGTTATCCGCGAAGAATTA AAAGAGATAAATTGAACAAGTACGGACGTCCCCTATTAGGATGTACTATTAAACCTAAATTGGGGTTATCCGCGAAGAATTA TGGTAGAGCAGTTTATGAATGTCTACGTGGTGGACTTGATTTTACCAAAGATGATGAGAATGTGAACTCCCAACCATTTATGC TGGTAGAGCAGTTTATGAATGTCTACGTGGTGGACTTGATTTTACCAAAGATGATGAGAATGTGAACTCCCAACCATTTATGC GTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTATAAATCACAGGCTGAAACAGGTGAAATCAAAGGGCATTATTTG GTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTATAAATCACAGGCTGAAACAGGTGAAATCAAAGGGCATTATTTG AATGCTACTGC AATGCTACTGC Lonicera confusa P6880 / 46 JF949982 Aligned with Lonicera confusa HM228484 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Caprifoliaceae AGTGTTGGATTCAAAGCGGGTGTTAAAGATTACAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTT AGTGTTGGATTCAAAGCGGGTGTTAAAGATTACAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTT GGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCGCCTGAAGAAGCGGGGGCCGCGGTAGCTGCTGAATCTTCAACCGGT GGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCGCCTGAAGAAGCGGGGGCCGCGGTAGCTGCTGAATCTTCAACCGGT ACATGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATCGAGCCCGTTGCTG ACATGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATCGAGCCCGTTGCTG GAGAAGAAAATCAATTTATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCTA GAGAAGAAAATCAATTTATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCTA TTGTGGGTAATGTATTTGGGTTCAAAGCCCTGCGCGCTCTACGTCTGGAAGATCTGCGAATCCCTGTCTCTTATGTTAAAACTT TTGTGGGTAATGTATTTGGGTTCAAAGCCCTGCGCGCTCTACGTCTGGAAGATCTGCGAATCCCTGTCTCTTATGTTAAAACTT TCCAAGGCCCGCCTCATGGTATCCAAGTTGAGAGAGATAAATTGAACAAGTACGGCCGCCCCCTGTTGGGATGTACTATTAA TCCAAGGCCCGCCTCATGGTATCCAAGTTGAGAGAGATAAATTGAACAAGTACGGCCGCCCCCTGTTGGGATGTACTATTAA ACCTAAATTGGGGTTATCTGCTAAAAACTATGGTAGGGCGGTTTATGAATGTCTACGTGGTGGACTTGATTTTACCAAAGATG ACCTAAATTGGGGTTATCTGCTAAAAACTATGGTAGGGCGGTTTATGAATGTCTACGTGGTGGACTTGATTTTACCAAAGATG ATGAGAACGTGAACTCCCAACCATTTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCCCTTTTTAAAGCACAAGTT ATGAGAACGTGAACTCCCAACCATTTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCCCTTTTTAAAGCACAAGTT GAAACAGGTGAAATCAAAGGGCATTACTTGAAT GAAACAGGTGAAATCAAAGGGCATTACTTGAAT 190 Polygonatum kingianum P6892 / 58 JF950027 Aligned with Polygonatum humile AB009947 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Convallariaceae AGCTGGTGTTAAAGATTACAGATTGACTTATTATACTCCTGATTACGAAACCAAAGCTACTGATATCTTGGCAGCATTCCGAG AGCTGGTGTTAAAGATTACAGATTGACTTATTATACTCCTGATTACGAAACCAAAGCTACTGATATCTTGGCAGCATTCCGAG TAACTCCTCAACCCGGAGTTCCCGCTGAAGAAGCAGGGGCTGCGGTAGCTGCCGAATCCTCTACTGGTACATGGACAACTGT TAACTCCTCAACCCGGAGTTCCCGCTGAAGAAGCAGGGGCTGCGGTAGCTGCCGAATCCTCTACTGGTACATGGACAACTGT GTGGACTGATGGACTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCACATTGAGGCCGTTATTGGGGAAGAAAATCAA GTGGACTGATGGACTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCACATTGAGGCCGTTATTGGGGAAGAAAATCAA TATATTTGTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTAT TATATTTGTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTAT TTGGTTTCAAAGCCCTACGAGCTCTACGTCTGGAGGATCTGCGAATTCCCCCTGCTTATTCCAAAACTTTCCAAGGCCCGCCTC TTGGTTTCAAAGCCCTACGAGCTCTACGTCTGGAGGATCTGCGAATTCCCCCTGCTTATTCCAAAACTTTCCAAGGCCCGCCTC ATGGCATTCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAACCAAAATTGGGATTA ATGGCATTCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAACCAAAATTGGGATTA TCCGCAAAAAACTACGGTAGAGCGGTTTATGAATGTCTACGCGGTGGACTTGATTTTACCAAGGATGATGAA TCCGCAAAAAACTACGGTAGAGCGGTTTATGAATGTCTACGCGGTGGACTTGATTTTACCAAGGATGATGAA Platycladus orientalis P6891 / 57 JF950011 Aligned with Platycladus orientalis HM024345 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Cupressaceae TTATTATACTCCGGAATATCAGACCAAAGATACTGATATCTTGGCAGCATTCCGAGTCACTCCTCAACCTGGAGTGCCCCCCG TTATTATACTCCGGAATATCAGACCAAAGATACTGATATCTTGGCAGCATTCCGAGTCACTCCTCAACCTGGAGTGCCCCCCG AAGAAGCGGGAGCAGCAGTAGCTGCCGAATCTTCCACTGGTACGTGGACCACTGTTTGGACCGATGGACTTACCAGTCTTGA AAGAAGCGGGAGCAGCAGTAGCTGCCGAATCTTCCACTGGTACGTGGACCACTGTTTGGACCGATGGACTTACCAGTCTTGA TCGCTACAAGGGGCGATGCTATGATATTGAACCCGTTCCTGGAGAAGAAACTCAATTTATTGCCTATGTAGCTTACCCTTTAG TCGCTACAAGGGGCGATGCTATGATATTGAACCCGTTCCTGGAGAAGAAACTCAATTTATTGCCTATGTAGCTTACCCTTTAG ATCTTTTTGAAGAAGGCTCTGTGACTAACCTGTTTACTTCTATTGTAGGTAATGTATTTGGATTCAAAGCTTTACGGGCTCTAC ATCTTTTTGAAGAAGGCTCTGTGACTAACCTGTTTACTTCTATTGTAGGTAATGTATTTGGATTCAAAGCTTTACGGGCTCTAC GTCTGGAAGATTTACGAATTCCTCCTGCTTATTCAAAAACTTTTCAAGGCCCACCACATGGTATTCAAGTAGAAAGGGATAAA GTCTGGAAGATTTACGAATTCCTCCTGCTTATTCAAAAACTTTTCAAGGCCCACCACATGGTATTCAAGTAGAAAGGGATAAA TTAAATAAATATGGTCGTCCTTTGTTGGGATGTACTATCAAACCAAAATTGGGTCTATCTGCCAAGAATTATGGTAGAGCGGT TTAAATAAATATGGTCGTCCTTTGTTGGGATGTACTATCAAACCAAAATTGGGTCTATCTGCCAAGAATTATGGTAGAGCGGT TTATGAATGTCTCCGTGGTGGACTTGATTTTACCAAGGATGATGAAAACGTGAATTCCCAACCATTTATGCGCTGGAGAGATC TTATGAATGTCTCCGTGGTGGACTTGATTTTACCAAGGATGATGAAAACGTGAATTCCCAACCATTTATGCGCTGGAGAGATC GTTTCTGCTTTTGTGCAGAAGCACTTTATAAAGCTCAGGCTGAGACGGGTGAGATTAAGGGACATTACCTGAATGC GTTTCTGCTTTTGTGCAGAAGCACTTTATAAAGCTCAGGCTGAGACGGGTGAGATTAAGGGACATTACCTGAATGC Dryopteridaceae Cyrtomium fortunei P6859 / 25 JF949998 Aligned with Cyrtomium fortunei AF537227 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene ATACAAGACCAAAGATACCGATATCTTAGCAGCCTTCAGAATGACCCCACAACCCGGAGTACCGGCTGAGGAAGCCGGAGCT ATACAAGACCAAAGATACCGATATCTTAGCAGCCTTCAGAATGACCCCACAACCCGGAGTACCGGCTGAGGAAGCCGGAGCT GCGGTAGCTGCGGAATCCTCAACGGGTACGTGGACCACTGTATGGACAGATGGGTTGACCAGTCTTGACCGTTACAAGGGCC GCGGTAGCTGCGGAATCCTCAACGGGTACGTGGACCACTGTATGGACAGATGGGTTGACCAGTCTTGACCGTTACAAGGGCC GATGCTACGATATCGAACCCGTCGCCGGGGAAGAAAACCAATATATCGCGTATGTAGCTTATCCTTTGGATCTATTCGAAGAA GATGCTACGATATCGAACCCGTCGCCGGGGAAGAAAACCAATATATCGCGTATGTAGCTTATCCTTTGGATCTATTCGAAGAA GGTTCCGTCACTAATTTGTTTACCTCTATCGTAGGTAATGTTTTTGGATTTAAGGCTCTACGCGCTTTACGCCTGGAAGACCTT GGTTCCGTCACTAATTTGTTTACCTCTATCGTAGGTAATGTTTTTGGATTTAAGGCTCTACGCGCTTTACGCCTGGAAGACCTT 191 CGAATTCCTCCTGCTTATTCTAAAACTTTCATTGGACCGCCTCATGGTATTCAGGTCGAAAGGGATAAACTGAACAAATATGG CGAATTCCTCCTGCTTATTCTAAAACTTTCATTGGACCGCCTCATGGTATTCAGGTCGAAAGGGATAAACTGAACAAATATGG ACGTCCTTTATTGGGATGTACAATCAAGCCAAAATTAGGTCTGTCTGCTAAAAATTATGGTAGAGCCGTCTACGAATGCCTTC ACGTCCTTTATTGGGATGTACAATCAAGCCAAAATTAGGTCTGTCTGCTAAAAATTATGGTAGAGCCGTCTACGAATGCCTTC GCGGTGGACTTGATTTCACAAAAGATGATGAAAATGTGAATTCTCAGCCATTCATGCGTTGGAGAGATCGCTTCCTATTCGTA GCGGTGGACTTGATTTCACAAAAGATGATGAAAATGTGAATTCTCAGCCATTCATGCGTTGGAGAGATCGCTTCCTATTCGTA GCAGAAGCTCTCTTCAAATCCCAGGCTGAAACAGGAGAAATCAAAGGGCATTACTTAAATGCTACTGCAGGTAC GCAGAAGCTCTCTTCAAATCCCAGGCTGAAACAGGAGAAATCAAAGGGCATTACTTAAATGCTACTGCAGGTAC Ephedra sinica P6864 / 30 JF950001 Aligned with Ephedra sinica AY492046 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Ephedraceae GATTATAGATTAACTTATTATACTCCAGAGTATCAGACTAAGAACACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACC GATTATAGATTAACTTATTATACTCCAGAGTATCAGACTAAGAACACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACC CGGAGTACCGGCCGAGGAAGCAGGCGCAGCGGTAGCTGCTGAATCTTCTACAGGTACATGGACCACAGTTTGGACTGATGGT CGGAGTACCGGCCGAGGAAGCAGGCGCAGCGGTAGCTGCTGAATCTTCTACAGGTACATGGACCACAGTTTGGACTGATGGT CTTACTAGTCTTGATCGTTACAAAGGACGATGCTATGATATCGAACCTGTTCCGGGAGAAGACAATCAATTTATTGCTTATGT CTTACTAGTCTTGATCGTTACAAAGGACGATGCTATGATATCGAACCTGTTCCGGGAGAAGACAATCAATTTATTGCTTATGT AGCATATCCTTTGGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCTATTGTGGGGAATGTTTTTGGTTTTAAAGCT AGCATATCCTTTGGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCTATTGTGGGGAATGTTTTTGGTTTTAAAGCT CTACGAGCTCTACGCCTAGAAGATTTGCGAATTCCTACTGCTTATATCAAAACATTTCAAGGTCCACCTCATGGGATCCAAGT CTACGAGCTCTACGCCTAGAAGATTTGCGAATTCCTACTGCTTATATCAAAACATTTCAAGGTCCACCTCATGGGATCCAAGT AGAAAGAGATAAATTAAACAAATACGGACGTCCTTTGTTGGGATGTACCATCAAACCTAAATTAGGTCTATCTGCTAAAAATT AGAAAGAGATAAATTAAACAAATACGGACGTCCTTTGTTGGGATGTACCATCAAACCTAAATTAGGTCTATCTGCTAAAAATT ACGGTAGAGCAGTTTATGAATGTCTTCGTGGCGGACTAGATTTTACTAAAGATGATGAAAATGTAAATTCTCAACCCTTTATG ACGGTAGAGCAGTTTATGAATGTCTTCGTGGCGGACTAGATTTTACTAAAGATGATGAAAATGTAAATTCTCAACCCTTTATG CGTTGGAGAGATCGCTTTGTTTTTTGCGCGGAAGCTATTTATAAAGCTCAAGCTGAAACAGGTGAAATTAAGGGACATTACTT CGTTGGAGAGATCGCTTTGTTTTTTGCGCGGAAGCTATTTATAAAGCTCAAGCTGAAACAGGTGAAATTAAGGGACATTACTT AAATGCTACTGC AAATGCTACTGC Equisetum hyemale P6866 / 32 JF950003 Aligned with Equisetum hyemale AB574685 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Equisetaceae TTTACTCCAGATTATGAAACCAAAGATACCGATATTTTAGCAGCATTTCGTATGACTCCGCAGCCGGGGGTACCACCGGAAGA TTTACTCCAGATTATGAAACCAAAGATACCGATATTTTAGCAGCATTTCGTATGACTCCGCAGCCGGGGGTACCACCGGAAGA AGCAGGAGCAGCTGTAGCTGCTGAATCCTCCACGGGCACCTGGACTACCGTATGGACAGATGGACTTACTAGTCTTGATCGAT AGCAGGAGCAGCTGTAGCTGCTGAATCCTCCACGGGCACCTGGACTACCGTATGGACAGATGGACTTACTAGTCTTGATCGAT ATAAAGGTCGCTGCTATAATATTGAGCCTGTTGCTGGAGAAGATAACCAATTCATAGCTTATGTAGCCTATCCTTTAGATCTTT ATAAAGGTCGCTGCTATAATATTGAGCCTGTTGCTGGAGAAGATAACCAATTCATAGCTTATGTAGCCTATCCTTTAGATCTTT TTGAAGAAGGTTCTGTTACCAATCTGTTTACTTCAATTGTTGGTAATGTTTTCGGCTTCAAAGCTCTACGTGCTTTACGTTTAG TTGAAGAAGGTTCTGTTACCAATCTGTTTACTTCAATTGTTGGTAATGTTTTCGGCTTCAAAGCTCTACGTGCTTTACGTTTAG AAGATTTACGAATTCCTCCTGCTTATTCTAAAACTTTTATAGGACCACCCCATGGTATCCAGGTTGAAAGAGATAAGTTAAAC AAGATTTACGAATTCCTCCTGCTTATTCTAAAACTTTTATAGGACCACCCCATGGTATCCAGGTTGAAAGAGATAAGTTAAAC AAATATGGTCGTCCGTTATTAGGTTGTACAATTAAACCAAAATTGGGACTTTCTGCTAAAAACTATGGTAGAGCTGTTTATGA AAATATGGTCGTCCGTTATTAGGTTGTACAATTAAACCAAAGTTGGGACTTTCTGCTAAAAACTATGGTAGAGCTGTTTATGA ATGTCTTCGTGGTGGACTTGACTTCACCAAAGATGATGAGAATGTAAACTCTCAACCTTTTATGCGTTGGA ATGTCTTCGTGGTGGACTTGACTTCACCAAAGATGATGAGAATGTAAACTCTCAACCTTTTATGCGTTGGA 192 Abrus cantoniensis P6835 / 01 JF949964 Aligned with Abrus precatorius U74224 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Fabaceae GTTGGGTTCAAAGCTGGTGTTAAAGATTATAAATTGAATTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGC GTTGGGTTCAAAGCTGGTGTTAAAGATTATAAATTGAATTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGC AGCATTCCGAGTAACTCCTCAACCCGGAGTTCCGCCTGAAGAAGCAGGTGCCGCGGTAGCTGCCGAATCTTCTACTGGTACAT AGCATTCCGAGTAACTCCTCAACCCGGAGTTCCGCCTGAAGAAGCAGGTGCCGCGGTAGCTGCCGAATCTTCTACAGGTACAT GGACAACTGTGTGGACCGATGGGCTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCACATCGAACCCGTTGCTGGAGA GGACAACTGTGTGGACCGATGGGCTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCACATCGAACCCGTTGCTGGAGA AGAAAATCAATATATTGCTTATGTAGCTTATCCCTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGT AGAAAATCAATATATTGCTTATGTAGCTTATCCCTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGT AGGTAATGTATTTGGGTTCAAGGCCCTGCGCGCTCTACGTTTGGAGGATTTGCGAATCCCTACTTCTTATATTAAAACTTTCCA AGGTAATGTATTTGGGTTCAAGGCCCTGCGCGCTCTACGTTTGGAGGATTTGCGAATCCCTACTTCTTATATTAAAACTTTCCA AGGTCCGCCTCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAACCGA AGGTCCGCCTCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGCCGTCCCCTATTGGGATGTACTATTAAACCTA AATTGGGATTATCCGCTAAGAATTACGGTAGAGCGGTTTATGAATGTCTCCGCGGGGGGCTTGATTTTACCAAAGATGATGAA AATTGGGATTATCCGCTAAGAATTACGGTAGAGCGGTTTATGAATGTCTCCGCGGGGGGCTTGATTTTACCAAAGATGATGAA AATGTGAATTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCACAGGCTGAAAC AATGTGAATTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCACAGACTGAAAC GGGTGAAATCAAAGGGCATTACTTAAATGCTACTGCAGGTACATGCGAA GGGTGAAATCAAAGGGCATTACTTAAATGCTACTGCAGGTACATGCGAA Cassia tora P6847 / 13 JF949969 Aligned with Cassia grandis AM234244 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Fabaceae GTTGGGTTCAAAGCTGGTGTTAAAGATTATAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGC GTTGGGTTCAAAGCTGGTGTTAAAGATTATAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGC AGCATTCCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGTGCCGCGGTAGCTGCTGAATCTTCTACTGGTACAT AGCATTCCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGTGCCGCGGTAGCTGCTGAATCTTCTACTGGTACAT GGACAACTGTGTGGACCGATGGGCTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCACATCGAGCCCGTTGCTGGAGA GGACAACTGTGTGGACCGATGGGCTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCACATCGAGCCCGTTGCTGGAGA AGAAAATCAATATATTGCTTATGTAGCTTATCCCTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGT AGAAAATCAATATATTGCTTATGTAGCTTATCCCTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGT GGGTAATGTATTTGGGTTCAAGGCCCTGCGCGCTCTACGTCTGGAGGATTTGCGAATCCCTACTTCTTATACTAAAACTTTCCA GGGTAATGTATTTGGGTTCAAGGCCCTGCGCGCTCTACGTCTGGAGGATTTGCGAATCCCTATTTCTTATATTAAAACTTTCCA AGGTCCGCCTCACGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTACGGCCGTCCCCTATTGGGATGTACTATTAAACCT AGGTCCGCCCCACGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGCCGTCCCCTATTGGGATGTACTATTAAACCT AAATTGGGGTTATCCGCTAAGAATTACGGTAGAGCAGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGATGATGA AAATTGGGGTTATCCGCTAAGAATTACGGTAGAGCAGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGATGATGA GAATGTGAATTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCCCTTTTTAAAGCACAGGCCGAAA GAATGTGAATTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTGCTTTTGTGCCGAAGCACTTTATAAAGCACAGGCCGAAA CAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGG CAGGTGAAATCAAAGGGCATTACTTGAATGCTACGGCAGG Desmodium styracifolium P6861 / 27 JF949976 Aligned with Desmodium styracifolium GQ436338 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Fabaceae GTTGGGTTCAAAGCTGGTGTTAAAGATTATAAATTGACTTATTATACTCCTGAGTATCAAACCAAAGATACTGATATCTTGGC GTTGGGTTCAAAGCTGGTGTTAAAGATTATAAATTGACTTATTATACTCCTGAGTATCAAACCAAAGATACTGATATCTTGGC 193 AGCCTTCCGAGTAACTCCTCAACCGGGAGTTCCACCTGAAGAAGCAGGTGCTGCGGTAGCTGCGGAATCTTCTACTGGTACAT AGCCTTCCGAGTAACTCCTCAACCGGGAGTTCCACCTGAAGAAGCAGGTGCTGCGGTAGCTGCGGAATCTTCTACTGGTACAT GGACAACTGTGTGGACCGATGGGCTTACCAGTCTTGATCGTTACAAAGGACGATGCTACGGCCTCGAACCTGTTGCTGGAGA GGACAACTGTGTGGACCGATGGGCTTACCAGTCTTGATCGTTACAAAGGACGATGCTACGGCCTCGAACCTGTTGCTGGAGA AGAAAATCAATATATTGCTTATGTAGCGTATCCCTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGT AGAAAATCAATATATTGCTTATGTAGCGTATCCCTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGT CGGTAATGTATTTGGGTTCAAGGCACTGCGCGCCCTACGTCTGGAGGATTTGCGAATCCCTAAGGCTTATATTAAAACTTTTG CGGTAATGTATTTGGGTTCAAGGCACTGCGCGCCCTACGTCTGGAGGATTTGCGAATCCCTAAGGCTTATATTAAAACTTTTG AAGGTCCACCTCATGGCATCCAAGTTGAAGAGAGATAAATTGAACAAGTATGGCCGTCCTCTATTAGGATGTACTATTAAACT AAGGTCCACCTCATGGCATCCAAGTTGAAGAGAGATAAATTGAACAAGTATGGCCGTCCTCTATTAGGATGTACTATTAAACT AAATTGGGGTTATCCGCTAAGAATTACGGTAGAGCAGTTTACGAATGTCTTCGTGGGGGACTTGATTTTACCAAAGATGATGA AAATTGGGGTTATCCGCTAAGAATTACGGTAGAGCAGTTTACGAATGTCTTCGTGGGGGACTTGATTTTACCAAAGATGATGA AAATGTGAATTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCCCTTTTTAAAGCACAGGCTGAAA AAATGTGAATTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCCCTTTTTAAAGCACAGGCTGAAA CAGGTGAAATCAAAGGGCATTACTTGAAT CAGGTGAAATCAAAGGGCATTACTTGAAT Glycyrrhiza inflata P6873 / 39 JF950025 Aligned with Glycyrrhiza inflata AB012127 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Fabaceae GTTGGGTTCAAAGCTGGTGTTAAAGATTATAAATTGACTTATTATACTCCTGAATATGAAACCAAGGATACTGATATCTTGGC GTTGGGTTCAAAGCTGGTGTTAAAGATTATAAATTGACTTATTATACTCCTGAATATGAAACCAAGGATACTGATATCTTGGC AGCATTCCGAGTAACTCCTCAACCAGGAGTTCCGCCGGAAGAAGCAGGTGCAGCGGTAGCAGCCGAATCTTCCACTGGGACA AGCATTCCGAGTAACTCCTCAACCAGGAGTTCCGCCGGAAGAAGCAGGTGCAGCGGTAGCAGCCGAATCTTCCACTGGGACA TGGACAACTGTGTGGACCGATGGTCTTACCAGTCTTGATCGTTATAAAGGACGATGCTACGGGCTAGAGCCCGTTGCTGGAGA TGGACAACTGTGTGGACCGATGGTCTTACCAGTCTTGATCGTTATAAAGGACGATGCTACGGGCTAGAGCCCGTTGCTGGAGA AGAAAATCAATATATTGCTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACCTCCATTGT AGAAAATCAATATATTGCTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACCTCCATTGT AGGTAATGTATTTGGTTTCAAGGCCTTGCGCGCTCTACGTCTTGAGGATTTGCGAATTCCTGTTTCTTACATTAAAACTTTCCA AGGTAATGTATTTGGTTTCAAGGCCTTGCGCGCTCTACGTCTTGAGGATTTGCGAATTCCTGTTTCTTACATTAAAACTTTCCA AGGTCCGCCTCACGGAATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGCCGCCCTCTATTGGGATGTACTATTAAACCT AGGTCCGCCTCACGGAATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGCCGCCCTCTATTGGGATGTACTATTAAACCT AAATTGGGGTTATCTGCTAAGAATTATGGTAGAGCAGTTTATGAATGTCTTCGCGGGGGACTTGATTTTACCAAAGATGATGA AAATTGGGGTTATCTGCTAAGAATTATGGTAGAGCAGTTTATGAATGTCTTCGCGGGGGACTTGATTTTACCAAAGATGATGA AAATGTGAACTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCAATTTATAAAGCACAGGCCGAAA AAATGTGAACTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCAATTTATAAAGCACAGGCCGAAA CTGGTGAAATCAAAGGGCATTATTTGAATGCTAC CTGGTGAAATCAAAGGGCATTATTTGAATGCTAC Spatholobus suberectus P6907 / 73 JF949991 Aligned with Spatholobus parviflorus AB045825 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Fabaceae ATGAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGTGCCGC ATGAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGTGCCGC GGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGGCTTACCAGTCTTGATCGTTACAAAGGACGAT GGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGGCTTACCAGTCTTGATCGTTACAAAGGACGAT GCTATCACATCGAACCTGTTGCTGGAGAAGAAAATCAATTTATTGCTTATGTAGCTTATCCCTTAGACCTTTTTGAAGAAGGTT GCTATAACATCGAACCTGTTGCTGGAGAAGAAAATCAATTTATTGCTTATGTAGCTTATCCCTTAGACCTTTTTGAAGAAGGTT CTGTTACTAACATGTTTACTTCCATTGTCGGTAATGTATTTGGGTTCAAGGCCCTTCGCGCTCTACGTCTGGAGGATTTGCGAA CTGTTACTAACATGTTTACTTCCATTGTCGGTAATGTATTTGGGTTCAAGGCACTACGCGCTCTACGTCTGGAGGATTTGCGAA 194 TCCCTATTTCTTATGTTAAAACTTTCCAAGGTCCGCCTCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGCCGT TCCCTATTTCTTATGTTAAAACTTTCCAAGGTCCGCCTCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGCCGT CCCCTATTAGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAGAATTACGGTAGAGCAGTTTATGAATGTCTTCGTGG CCCCTATTAGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAGAATTACGGTAGAGCAGTTTATGAATGTCTTCGTGG GGGACTTGATTTTACCAAAGATGATGAAAATGTGAATTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCG GGGACTTGATTTTACCAAAGATGATGAAAATGTGAATTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCG AAGCGCTTTATAAAGCACAGGCTGAA ATGCGCTTTATAAAGCACAGGCTGAA Geranium wilfordii P6867 / 33 JF949977 Aligned with Geranium grandiflorum L01920 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Geraniaceae TAGTGTTGGATTTAAAGCGGGTGTTAAAGACTATAAATTGACTTATTATACTCCTGATTATGAAACCAAGGATACTGATATCT TAGTGTTGGATTTAAAGCGGGTGTTAAAGACTATAAATTGACTTATTATACTCCTGATTATGAAACCAAGGATACTGATATCT TGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACCTGAGGAAGCGGGGGCCGCGGTAGCTGCTGAATCTTCTACCGG TGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACCTGAGGAAGCAGGGGGCGCGGTAGCTGCTGAATCTTCTACCGG TACATGGACAACCGTGTGGACCGATGGGCTTACTAGTCTGGATCGTTACAAAGGACGCTGCTATCACATCGAGCCCGTTGCTG TACATGGACAACCGTGTGGACCGATGGGCTTACTAGTCTGGATCGTTACAAAGGACGCTGCTATCACATCGAGCCCGTTGCTG GAGAAGAAAATCAATTTATTGCTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTACTAATATGTTTACTTCCA GAGAAGAAAATCAATATATTGCTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTACTAATATGTTTACTTCCA TCGTGGGTAATGTATTTGGGTTCAAAGCCCTTCGCGCTCTGCGTCTGGAGGATCTGCGAATCCCTCCTGCTTATGTGAAAACTT TCGTGGGTAATGTATTTGGGTTCAAAGCCCTTCGCGCTTTGCGTCTGGAGGATCTGCGAATCCCTCCTGCTTATGTGAAAACTT TCCAGGGCCCGCCTCACGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGACGTCCCCTATTGGGATGTACTATTAA TCCAGGGCCCGCCTCACGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGACGTCCCCTATTGGGATGTACTATTAA ACCGAAATTGGGATTGTCCGCTAAGAACTACGGTCGAGCGGTTTTTGAATGTCTTCGCGGTGGACTTGATTTTACTAAAGATG ACCGAAATTGGGATTGTCCGCTAAGAACTACGGTCGAGCAGTTTTTGAATGTCTTCGCGGTGGACTTGATTTTACTAAAGATG ATGAGAACGTGAACTCCCAACCGTTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCGCTTTATAAAGCACAGGCC ATGAGAACGTGAACTCTCAACCGTTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTATTTATAAAGCACAGGCT GAAACAGGTGAAATCAAGGGGCATTACTTGAATGCTACTGCAGG GAAACAGGTGAAATCAAGGGGCATTACTTGAATGCTACTGCAGG Ginkgo biloba P6872 / 38 JF950005 Aligned with Ginkgo biloba DQ069500 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Ginkgoaceae ATTACAGATTGACTTATTATACTCCTGAATATCAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCT ATTACAGATTGACTTATTATACTCCTGAATATCAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCT GGAGTGCCACCTGAGGAAGCGGGAGCTGCAGTAGCTGCCGAATCTTCCACTGGTACATGGACCACTGTTTGGACCGATGGAC GGAGTGCCACCTGAGGAAGCGGGAGCTGCAGTAGCTGCCGAATCTTCCACTGGTACATGGACCACTGTTTGGACCGATGGAC TTACCAGTCTTGATCGTTACAAGGGAAGATGCTATGACATCGAGCCCGTTCCTGGGGAGGAAAATCAATTTATTGCCTATGTA TTACCAGTCTTGATCGTTACAAGGGAAGATGCTATGACATCGAGCCCGTTCCTGGGGAGGAAAATCAATTTATTGCCTATGTA GCTTACCCTTTGGATCTTTTCGAGGAAGGTTCTGTTACTAACCTGTTCACTTCCATTGTAGGGAATGTATTTGGATTCAAAGCC GCTTACCCTTTGGATCTTTTCGAGGAAGGTTCTGTTACTAACCTGTTCACTTCCATTGTAGGGAATGTATTTGGATTCAAAGCC CTACGAGCTCTACGTCTGGAAGATCTGCGAATTCCTCCTGCTTATTCCAAAACTTTCCAGGGTCCACCTCATGGTATCCAAGTT CTACGAGCTCTACGTCTGGAAGATCTGCGAATTCCTCCTGCTTATTCCAAAACTTTCCAGGGTCCACCTCATGGTATCCAAGTT GAAAGGGATAAATTGAATAAATATGGCCGTCCCCTATTGGGATGTACTATCAAGCCAAAATTGGGTTTATCTGCCAAAAATTA GAAAGGGATAAATTGAATAAATATGGCCGTCCCCTATTGGGATGTACTATCAAGCCAAAATTGGGTTTATCTGCCAAAAATTA TGGTAGAGCAGTTTACGAATGTCTTCGTGGTGGACTTGATTTTACTAAAGATGATGAGAACGTAAATTCCCAACCATTCATGC TGGTAGAGCAGTTTACGAATGTCTTCGTGGTGGACTTGATTTTACTAAAGATGATGAGAACGTAAATTCCCAACCATTCATGC GCTGGAGAGATCGTTTCTTGTTTTGTGCAGAAGCAATTTATAAAGCTCAGACCGAGACGGGTGAAATTAAGGGACATT GCTGGAGAGATCGTTTCTTGTTTTGTGCAGAAGCAATTTATAAAGCTCAGACCGAGACGGGTGAAATTAAGGGACATT 195 Hypericum japonicum P6876 / 42 JF949980 Aligned with Hypericum japonicum GQ436683 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Hypericaceae GTTGGATTCAAGGCCGGCGTTAAAGAGTATAAATTGACTTATTATACTCCTGAATATGAAACCAAAGATACTGATATCTTGGC GTTGGATTCAAGGCCGGCGTTAAAGAGTATAAATTGACTTATTATACTCCTGAATATGAAACCAAAGATACTGATATCTTGGC AGCATTTCGAGTAACTCCTCAACCTGGGGTTCCCCCGGAGGAAGCAGGAGCAGCGGTAGCTGCGGAATCTTCTACTGGTACCT AGCATTTCGAGTAACTCCTCAACCTGGGGTTCCCCCGGAGGAAGCAGGAGCAGCGGTAGCTGCGGAATCTTCTACTGGTACCT GGACAACTGTCTGGACGGATGGACTGACAAGTCTTGATCGTTATAAAGGACGATGCTACCACATTGAGCCTGTTGCTGGAGA GGACAACTGTCTGGACGGATGGACTGACAAGTCTTGATCGTTATAAAGGACGATGCTACCACATTGAGCCTGTTGCTGGAGA GGAAAATCAATATATATGTTATGTAGCTTACCCCTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGT GGAAAATCAATATATATGTTATGTAGCTTACCCCTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGT AGGGAATGTATTTGGATTCAAAGCCCTGCGTGCTCTACGCTTGGAGGATTTGCGAATCCCTACTGCTTATACGAAAACTTTCC AGGGAATGTATTTGGATTCAAAGCCCTGCGTGCTCTACGCTTGGAGGATTTGCGAATCCCTACTGCTTATACGAAAACTTTCC AAGGTCCGCCTCATGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGCCGCCCGCTATTAGGTTGTACTATTAAACCT AAGGTCCGCCTCATGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGCCGCCCGCTATTAGGTTGTACTATTAAACCT AAATTGGGGTTATCCGCTAAGAATTACGGTCGAGCAGTTTATGAATGTCTGCGTGGTGGGCTTGATTTTACCAAAGATGATGA AAATTGGGGTTATCCGCTAAGAATTACGGTCGAGCAGTTTATGAATGTCTGCGTGGTGGGCTTGATTTTACCAAAGATGATGA GAACGTGAACTCCCAACCATTTAT GAACGTGAACTCCCAACCATTTAT Belamcanda chinensis P6843 / 09 JF949995 Aligned with Belamcanda chinensis AJ309694 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Iridaceae TAAAGCAAGTGTTGGATTTAAAGCTGGTGTTAAAGATTACAGATTGACTTATTATACTCCTGATTACGAAACCAAAGATACTG TAAAGCAAGTGTTGGATTTAAAGCTGGTGTTAAAGATTACAGATTGACTTATTATACTCCTGATTACGAAACCAAAGATACTG ATATCTTGGCAGCATTTCGAGTAACTCCTCAACCCGGAGTTCCTGCTGAAGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCT ATATCTTGGCAGCATTTCGAGTAACTCCTCAACCCGGAGTTCCTGCTGAAGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCT ACTGGTACATGGACAACAGTGTGGACTGATGGACTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCACATCGAGGCCG ACTGGTACATGGACAACAGTGTGGACTGATGGACTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCACATCGAGGCCG TTGTTGGGGAGGAAAATCAATATATTGCTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTA TTGTTGGGGAGGAAAATCAATATATTGCTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTA CTTCCATTGTGGGTAACGTATTTGGTTTCAAAGCCCTACGAGCTCTACGTCTGGAAGATCTGCGAATTCCTCCTGCTTATTCCA CTTCCATTGTGGGTAACGTATTTGGTTTCAAAGCCCTACGAGCTCTACGTCTGGAAGATCTGCGAATTCCTCCTGCTTATTCCA AAACTTTCCAAGGCCCGCCTCATGGCATCCAGGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACT AAACTTTCCAAGGCCCGCCTCATGGCATCCAGGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACT ATTAAACCTAAATTGGGATTATCCGCAAAAAACTACGGTAGGGCGGTTTATGAATGTCTACGCGGTGGGCTTGATTTTACCAA ATTAAACCTAAATTGGGATTATCCGCAAAAAACTACGGTAGGGCGGTTTATGAATGTCTACGCGGTGGGCTTGATTTTACCAA GGATGATGAAAACGTGAACTCACAACCTTTTATGCGTTGGAGAGACCGTTTCGTATTTTGCGCTGAAGCAATTTATAAAGCGC GGATGATGAAAACGTGAACTCACAACCTTTTATGCGTTGGAGAGACCGTTTCGTATTTTGCGCTGAAGCAATTTATAAAGCGC AAGCCGAAACAGGTGAAATCAAAGGACATTACTTGAATGC AAGCCGAAACAGGTGAAATCAAAGGACATTACTTGAATGC Mentha haplocalyx P6884 / 50 JF949984 Aligned with Mentha longifolia AY570390 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Lamiaceae TTCAAAGCGGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAATACGAAACCAAAGATACTGATATCTTGGCAGCATT TTCAAAGCGGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAATACGAAACCAAAGATACTGATATCTTGGCAGCATT CCGAGTAACTCCTCAACCCGGAGTTCCGCCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACA CCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACA 196 ACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATTGAGCCCGTTCCTGGAGAAAAAG ACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATTGAGCCCGTTCCTGGAGAAAAAG ATCAATATATCTGTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGAA ATCAATATATCTGTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGAA ATGTATTTGGATTCAAAGCCCTACGTGCTCTACGTCTGGAAGATCTGCGAATTCCTGTTGCTTATGTTAAAACTTTCCAAGGCC GTGTATTTGGATTCAAAGCCCTACGTGCTCTACGTCTGGAAGATCTGCGAATTCCTGTTGCTTATGTTAAAACTTTCCAAGGCC CGCCTCATGGGATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGCTGGGATGTACTATTAAACCTAAATTG CGCCTCATGGGATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGCTGGGATGTACTATTAAACCTAAATTG GGGTTATCTGCTAAAAACTACGGTAGAGCGGTTTATGAATGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGT GGGTTATCTGCTAAAAACTACGGTAGAGCGGTTTATGAATGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGT GAACTCCCAGCCATTTATGCGTTGGAGAGACCGCT GAACTCCCAGCCATTTATGCGTTGGAGAGACCGCT Prunella vulgaris P6896 / 62 JF950013 Aligned with Prunella vulgaris AY395556 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Lamiaceae TTCAAAGCGGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAATATGAAACCAAAGATACTGATATCTTGGCAGCATT TTCAAAGCGGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAATATGAAACCAAAGATACTGATATCTTGGCAGCATT CCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCGGAATCTTCTACTGGTACATGGACA CCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCAGTAGCTGCGGAATCTTCTACTGGTACATGGACA ACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATTGAGCCCGTTCCTGGAGAAAAAG ACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATTGAGCCCGTTCCTGGAGAAAAAG ATCAATATATCTGTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGAA ATCAATATATCTGTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGAA ATGTATTTGGATTCAAAGCCCTACGTGCTCTACGTCTGGAAGATCTGCGAATTCCTCCTGCTTATATTAAAACTTTCCAAGGCC ATGTATTTGGATTCAAAGCCCTACGTGCTCTACGTCTGGAAGATCTGCGAATTCCTCCTGCTTATATTAAAACTTTCCAAGGCC CGCCTCATGGGATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGCTGGGATGTACTATTAAACCTAAATTG CGCCTCATGGGATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGCTGGGATGTACTATTAAACCTAAATTG GGATTATCTGCTAAAAACTATGGTAGAGCGGTTTATGAATGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGT GGATTATCTGCTAAAAACTATGGTAGAGCGGTTTATGAATGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGT GAACTCCCAGCCATTTATGCGTTGGAGAGACCGCT GAACTCCCAGCCATTTATGCGTTGGAGAGACCGCT Scutellaria baicalensis P6903 / 69 JF950017 Aligned with Scutellaria baicalensis FJ513152 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Lamiaceae TTCAAAGCGGGTGTTAAAGAGTACAAATTGACTTATTATACCCCTGAATATGAAACCAAGGATACTGATATCTTGGCAGCATT TTCAAAGCGGGTGTTAAAGAGTACAAATTGACTTATTATACCCCTGAATATGAAACCAAGGATACTGATATCTTGGCAGCATT CCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACA CCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACA ACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATTGAGCCCGTTATTGGAGAAAAAG ACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATTGAGCCCGTTATTGGAGAAAAAG ATCAATATATATGTTATGTAGCTTACCCCTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGAA ATCAATATATATGTTATGTAGCTTACCCCTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGAA ATGTATTTGGATTCAAAGCCCTACGTGCTCTACGTCTGGAAGATCTGCGAATCCCTCCTGCTTATGTTAAAACTTTCCAAGGCC ATGTATTTGGATTCAAAGCCCTACGTGCTCTACGTCTGGAAGATCTGCGAATCCCTCCTGCTTATGTTAAAACTTTCCAAGGCC CGCCTCATGGGATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCAAAATTG CGCCTCATGGGATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCAAAATTG GGGTTATCTGCTAAAAACTATGGTAGAGCAGTTTATGAATGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGAAAACGT GGGTTATCTGCTAAAAACTATGGTAGAGCAGTTTATGAATGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGAAAACGT 197 GAACTCCCAGCCATTTATGCGTTGGAGAGATCGCT GAACTCCCAGCCATTTATGCGTTGGAGAGATCGCT Cinnamomum cassia P6853 / 19 JF950023 Aligned with Cinnamomum aromaticum HM019459 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Lauraceae GACTATGAAACCAAAGATACTGATATTTTGGCAGCATTTCGAGTAACTCCTCAACCCGGAGTTCCACCTGAGGAAGCAGGGG GACTATGAAACCAAAGATACTGATATTTTGGCAGCATTTCGAGTAACTCCTCAACCCGGAGTTCCACCTGAGGAAGCAGGGG CTGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGA CTGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGA CGATGCTACCACATCGAGCCCGTTCCTGGGGAGGAAACTCAATTTATTGCCTATGTAGCTTACCCTTTAGACCTTTTTGAAGA CGATGCTACCACATCGAGCCCGTTCCTGGGGAGGAAACTCAATTTATTGCCTATGTAGCTTACCCCTTAGACCTTTTTGAAGA AGGTTCTGTTACGAACATGTTTACTTCTATTGTGGGTAATGTATTTGGGTTCAAAGCTCTACGAGCTCTACGTCTGGAGGATCT AGGTTCTGTTACGAACATGTTTACTTCTATTGTGGGTAATGTATTTGGGTTCAAAGCTCTACGAGCTCTACGTCTGGAGGATCT GCGAATTCCTCCTGCTTATTCCAAAACTTTCCAAGGCCCGCCCCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATG GCGAATTCCTCCTGCTTATTCCAAAACTTTCCAAGGCCCGCCCCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATG GTCGTCCCCTATTGGGATGTACTATTAAACCAAAATTGGGGTTATCCGCCAAGAACTACGGTAGAGCGGTTTATGAATGTCT GTCGTCCCCTATTGGGATGTACTATTAAACCAAAATTGGGGTTATCCGCCAAGAACTACGGTAGAGCGGTTTATGAATGTCT Taxillus chinensis P6909 / 75 JF949992 Aligned with Atkinsonia ligustrina EF464526 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Loranthaceae GAGTACAAATTGACTTATTATACTCCTGATTATGAAACTAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACC GAGTACAAATTGACTTATTATACTCCTGATTATGAAACTAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACC TGGAGTTCCACCCGAGGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACCACTGTGTGGACCGATGGA TGGAGTTCCACCCGAGGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACCACTGTGTGGACCGATGGA CTTACCAGCCTTGATCGTTACAAAGGACGATGCTATCACATCGAGCCCGTTGCTGGAGAAGAAAATCAATATATTGCTTATGT CTTACTAGCCTTGATCGTTACAAAGGACGATGCTATCACATCGAGCCCGTTGCTGGAGAAGAAAATCAATATATTGCTTATGT AGCTTACCCCTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTATTTGGGTTTAAAGC AGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTATTTGGGTTTAAAGC CCTACGTGCTCTACGTCTGGAGGATCTTCGAATCCCTCCTGCTTATTCTAAAACTTTCCAAGGCCCGCCTCATGGTATCCAAGT CCTACGTGCTCTACGTCTGGAGGATCTTCGAATCCCCCCTGCTTATTCTAAAACTTTCCAAGGCCCGCCTCATGGTATCCAAGT TGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTATTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAGAACT TGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTATTGGGATGTACTATTAAACCCAAATTGGGGTTATCCGCTAAGAACT ACGGTCGAGCGGTTTATGAGTGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTAAACTCCCAACCATTTATG ACGGTCGAGCGGTTTATGAGTGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTAAACTCCCAACCATTTATG CGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTCTTTATAAAGCACAGGCCGAAACTGGCGAAATCAAAGGGCATTATTT CGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCTCTTTATAAAGCACAGGCCGAAACTGGCGAAATCAAAGGGCATTATTT GAATGCTACTGCAG GAATGCTACTGCAG Punica granatum P6897 / 63 JF950014 Aligned with Punica granatum GQ436656 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Lythraceae TAAAGCAAGTGTTGGATTCAAAGCCGGTGTTAAAGATTATAAACTGACTTATTATACTCCTGAATATGAAACCAAAGATACTG TAAAGCAAGTGTTGGATTCAAAGCCGGTGTTAAAGATTATAAACTGACTTATTATACTCCTGAATATGAAACCAAAGATACTG ATATCTTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAGGAAGCAGGGGCTGCAGTAGCCGCTGAATCTTCT ATATCTTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAGGAAGCAGGGGCTGCAGTAGCCGCTGAATCTTCT ACTGGTACCTGGACAACTGTGTGGACCGATGGGCTTACCAGCCTTGATCGTTATAAAGGAAGATGCTACCACATCGAGCCTGT ACTGGTACCTGGACAACTGTGTGGACCGATGGGCTTACCAGCCTTGATCGTTATAAAGGAAGATGCTACCACATCGAGCCTGT 198 TGCTGGAGAAGAAAATCAATATATATGTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAATATGTTTAC TGCTGGAGAAGAAAATCAATATATATGTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAATATGTTTAC TTCCATTGTGGGTAATGTATTTGGGTTCAAAGCCCTGCGCGCTCTACGTCTGGAGGATCTGAGAATCCCTACTGCATATACTA TTCCATTGTGGGTAATGTATTTGGGTTCAAAGCCCTGCGCGCTCTACGTCTGGAGGATCTGAGAATCCCTACTGCATATACTA AAACTTTCCAAGGCCCGCCTCATGGTATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACT AAACTTTCCAAGGCCCGCCTCATGGTATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACT ATTAAACCTAAATTGGGGTTATCCGCTAAGAACTACGGTAGAGCGGTTTATGAATGTCTTCGTGGTGGACTTGATTTTACGAA ATTAAACCTAAATTGGGGTTATCCGCTAAGAACTACGGTAGAGCGGTTTATGAATGTCTTCGTGGTGGACTTGATTTTACGAA GGATGATGAGAACGTGAACTCACAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCAC GGATGATGAGAACGTGAACTCACAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCAC AGGCTGAAACTGGTGAAATCAAGGGGCATTACTTGAAT AGGCTGAAACTGGTGAAATCAAGGGGCATTACTTGAAT Magnolia officinalis P6882 / 48 JF950008 Aligned with Magnolia officinalis AY008933 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Magnoliaceae TTGACTTATTATACTCCTGAATATGAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCC TTGACTTATTATACTCCTGAATATGAAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCC ACCTGAGGAAGCAGGGGCTGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGACTTACCAGC ACCTGAGGAAGCAGGGGCTGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGACTTACCAGC CTTGATCGTTACAAAGGACGATGCTACCACATCGAGCCCGTTCCTGGGGAGGAAAGTCAATTTATTGCTTATGTAGCTTACCC CTTGATCGTTACAAAGGACGATGCTACCACATCGAGCCCGTTCCTGGGGAGGAAAGTCAATTTATTGCTTATGTAGCTTACCC TTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCAAAGCCCTACGAGC TTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTAGGTAATGTATTTGGGTTCAAAGCCCTACGAGC TCTACGTCTGGAGGATCTGCGAATTCCTACTGCTTATGTCAAAACTTTCCAAGGCCCGCCCCATGGCATCCAAGTTGAGAGAG TCTACGTCTGGAGGATCTGCGAATTCCTACTGCTTATGTCAAAACTTTCCAAGGCCCGCCCCATGGCATCCAAGTTGAGAGAG ATAAATTGAACAAGTATGGTCGTCCACTATTGGGATGTACTATTAAACCAAAATTGGGGTTATCCGCCAAGAACTACGGTAG ATAAATTGAACAAGTATGGTCGTCCACTATTGGGATGTACTATTAAACCAAAATTGGGGTTATCCGCCAAGAACTACGGTAG GGCGGTTTATGAATGTCTCCGTGGTGGACTTGATTTTACCAAGGATGATGAGAACGTGAACTCCCAACCATTTATGCGTTGGA GGCGGTTTATGAATGTCTCCGTGGTGGACTTGATTTTACCAAGGATGATGAGAACGTGAACTCCCAACCATTTATGCGTTGGA GAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCGCAGGCCGAAACAGGTGAAATCAAAGGACATTACTTGAATGCT GAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAAGCGCAGGCCGAAACAGGTGAAATCAAAGGACATTACTTGAATGCT ACTGCAGGTACATG ACTGCAGGTACATG Paris polyphylla P6888 / 54 JF950010 Aligned with Paris polyphylla D28155 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Melanthiaceae TGCTGGATTCAAAGCTGGTGTTAAAGATTACAAATTGAATTATTATACTCCTGACTACACACCCAAAGATACTGATATCTTGG TGCTGGATTCAAAGCTGGTGTTAAAGATTACAAATTGAATTATTATACTCCTGACTACACACCCAAAGATACTGATATCTTGG CAGCATTCCGAGTAGCTCCTCAACCCGGAGTTCCGGCTGAAGAAGCGGGCGCTGCGGTAGCAGCCGAATCTTCTACTGGTAC CAGCATTCCGAGTAGCTCCTCAACCCGGAGTTCCGGCTGAAGAAGCGGGCGCTGCGGTAGCAGCCGAATCTTCTACTGGTAC ATGGACAACTGTGTGGACTGATGGACTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCAGATCGAGAGCGTTGCTGGG ATGGACAACTGTGTGGACTGATGGACTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCAGATCGAGAGCGTTGCTGGG GAGGAAAATCAATATATTGCTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAATATGTTTACTTCCATT GAGGAAAATCAATATATTGCTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAATATGTTTACTTCCATT GTGGGTAATGTATTTGGGTTCAAAGCCCTACGAGCTCTACGTCTGGAGGATCTGCGAATTCCTCCTGCTTATTCAAAAACTTTT GTGGGTAATGTATTTGGGTTCAAAGCCCTACGAGCTCTACGTCTGGAGGATCTGCGAATTCCTCCTGCTTATTCAAAAACTTTT CAAGGCCCGCCCCATGGTATCCAGGTTGAAAGAGATAAATTGAACAAATACGGTCGTCCCCTATTGGGATGTACAATTAAAC CAAGGCCCGCCCCATGGTATCCAGGTTGAAAGAGATAAATTGAACAAATACGGTCGTCCCCTATTGGGATGTACAATTAAAC 199 CAAAATTGGGATTATCCGCAAAGAACTACGGTAGAGCAGTTTATGAGTGTCTACGCGGTGGACTTGATTTTACTAAGGATGAT CAAAATTGGGATTATCCGCAAAGAACTACGGTAGAGCAGTTTATGAGTGTCTACGCGGTGGACTTGATTTTACTAAGGATGAT GAAAACGTGAACTCACAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAGGCGCAGGCCGA GAAAACGTGAACTCACAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGCCGAAGCACTTTATAAGGCGCAGGCCGA AACGGGTGAAATCAAAGGGCATTACTTGAATGC AACGGGTGAAATCAAAGGGCATTACTTGAATGC Lysimachia christinae P6881 / 47 JF949983 Aligned with Lysimachia vulgaris AF421095 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Myrsinaceae GTTAAAGATTACAAATTGACTTATTATACTCCTGAGTATGCAACCAAGGATACTGATATCTTGGCAGCATTCCGAGTAACTCC GTTAAAGATTACAAATTGACTTATTATACTCCTGAGTATGTAACCAAGGATACTGATATCTTGGCAGCATTCCGAGTAACTCC TCAACCAGGAGTTCCGCCCGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACCGTGTGGACC TCAACCTGGAGTTCCGCCCGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCTACTGGTACATGGACAACCGTGTGGACC GATGGACTTACTAGCCTTGATCGTTACAAAGGGCGATGCTACAACATCGAGCCTGTTGCTGGAGAAGAAAATCAATATATTTG GATGGACTTACTAGCCTTGATCGTTACAAAGGGCGATGCTACGGCATCGAGCCTGTTGCTGGAGAAGAAAATCAATTTATTGC TTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCTATTGTTGGTAATGTATTTGGGTTC TTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCTATTGTGGGTAATGTATTTGGGTTC AAAGCCCTGCGCGCTCTACGTCTGGAAGATCTTCGAATCCCGCCTGCGTATGTTAAAACTTTCCAAGGACCGCCTCATGGTAT AAAGCCCTGCGCGCTCTACGTCTGGAAGATCTGCGAATCCCGCCTGCGTATGTTAAAACTTTCCAAGGACCGCCTCATGGTAT CCAAGTTGAAAGAGATAAATTGAATAAATATGGTCGTCCACTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTA CCAAGTTGAAAGAGATAAATTGAATAAATATGGTCGTCCACTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTA AAAACTACGGTAGGGCTGTTTATGAATGTCTTCGTGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCCCAACCA AAAACTACGGTAGGGCTGTTTATGAATGTCTTCGTGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCCCAACCA TTTATGCGTTGGCGAGACCGTTTCTTATTTTGTGCCGAAGCTCTTTATAAAGCACAGGCTGAAACTGGTGAAATCAAAGGTCA TTTATGCGTTGGCGAGACCGTTTCGTATTTTGTGCCGAAGCTATTTATAAAGCACAGTCTGAAACTGGTGAAATCAAAGGTCA TTACTTGAATGCTACTGCAG TTACTTGAATGCTACTGCAG Ophioglossaceae Ophioglossum vulgatum P6885 / 51 JF950009 Aligned with Ophioglossum vulgatum HQ676505 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene GAGCTGCAGTAGCTGCTGAATCCTCCACGGGTACGTGGACTACCGTATGGACCGATGGGCTTACCAGTCTCGATCGTTACAAA GAGCTGCAGTAGCTGCTGAATCCTCCACGGGTACGTGGACTACCGTATGGACCGATGGGCTTACCAGTCTCGATCGTTACAAA GGTCGATGCTATGAAATCGAACCTGTTGCTGGGGAGGAAGATCAATACATTGCTTATGTAGCGTATCCCTTAGACCTTTTTGA GGTCGATGCTATGAAATCGAACCTGTTGCTGGGGAGGAAGATCAATACATTGCTTATGTAGCGTATCCCTTAGACCTTTTTGA AGAAGGTTCCGTCACCAACATGTTCACCTCCATTGTAGGTAACGTATTCGGATTCAAGGCATTGAAAGCTCTACGGTTGGAGG AGAAGGTTCCGTCACCAACATGTTCACCTCCATTGTAGGTAACGTATTCGGATTCAAGGCATTGAAAGCTCTACGGTTGGAGG ATTTACGAATTCCTCCTGCTTATTCTAAGACTTTCATGGGCCCTCCCCACGGTATCCAAGTCGAAAGGGATAAATTAAACAAA ATTTACGAATTCCTCCTGCTTATTCTAAGACTTTCATGGGCCCTCCCCACGGTATCCAAGTCGAAAGGGATAAATTAAACAAA TATGGTCGTCCCTTACTGGGGTGTACCATCAAACCCAAATTGGGATTATCTGCCAAGAATTATGGTAGAGCCGTTTATGAATG TATGGTCGTCCCTTACTGGGGTGTACCATCAAACCCAAATTGGGATTATCTGCCAAGAATTATGGTAGAGCCGTTTATGAATG CTTACGCGGTGGGCTCGACTTCACCAAAGATGATGAAAACGTAAATTCTCAACCATTTATGCGTTGGAGAGATCGTTTCGTAT CTTACGCGGTGGGCTCGACTTCACCAAAGATGATGAAAACGTAAATTCTCAACCATTTATGCGTTGGAGAGATCGTTTCGTAT TTGTGGCGGAAGCTCTTTTCAAATCTCAGGCGGAAACGGGAGAGATTAAGGGGCATTACTTAAATGCTAC TTGTGGCGGAAGCTCTTTTCAAATCTCAGGCGGAAACGGGAGAGATTAAGGGGCATTACTTAAATGCTAC 200 Dendrobium loddigesii P6860 / 26 JF949999 Aligned with Dendrobium loddigesii FJ216573 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Orchidaceae TTGGATTTAAAGCTGGTGTTAAAGATTACAAATTGACTTATTATACTCCTGACTACGAAACCAAAGATACTGATATCTTGGCA TTGGATTTAAAGCTGGTGTTAAAGATTACAAATTGACTTATTATACTCCTGACTACGAAACCAAAGATACTGATATCTTGGCA GCATTCCGAGTAACTCCTCAACCGGGAGTTCCGCCTGAAGAAGCGGGGGCTGCGGTAGCTGCCGAATCTTCTACTGGTACATG GCATTCCGAGTAACTCCTCAACCGGGAGTTCCGCCTGAAGAAGCGGGGGCTGCGGTAGCTGCCGAATCTTCTACTGGTACATG GACAACTGTGTGGACTGATGGACTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCACATCGAGGTCGTTGTTGGGGAG GACAACTGTGTGGACTGATGGACTTACCAGTCTTGATCGTTACAAAGGACGATGCTACCACATCGAGGTCGTTGTTGGGGAG GAAAATCAATATATTGCTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTG GAAAATCAATATATTGCTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTG GGTAATGTATTTGGTTTCAAAGCCCTGCGAGCTCTACGTCTGGAAGATCTGCGAATTCCTACTTCTTATTCCAAAACTTTCCAA GGTAATGTATTTGGTTTCAAAGCCCTGCGAGCTCTACGTCTGGAAGATCTGCGAATTCCTACTTCTTATTCCAAAACTTTCCAA GGTCCGCCTCATGGCATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAACCAAA GGTCCGCCTCATGGCATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAACCAAA ATTGGGATTATCCGCAAAAAACTACGGTAGAGCGGTTTATGAATGTCTACGGGGTGGACTTGATTTTACTAAGGATGATGAA ATTGGGATTATCCGCAAAAAACTACGGTAGAGCGGTTTATGAATGTCTACGGGGTGGACTTGATTTTACTAAGGATGATGAA AACGTAAATTCACAACCATTTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCAATCTTTAAAGCGCAAGCCGAAAC AACGTAAATTCACAACCATTTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCAATCTTTAAAGCGCAAGCCGAAAC GGGTGAAATTAAAGG GGGTGAAATTAAAGG Paeonia lactiflora P6886 / 52 JF950026 Aligned with Paeonia lactiflora GQ436534 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Paeoniaceae TATTATACTCCTGACTATAAAACCAAGGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACCGGA TATTATACTCCTGACTATAAAACCAAGGATACTGATATCTTGGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACCGGA GGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCTACGGGTACTTGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGAT GGAAGCGGGGGCCGCGGTAGCTGCCGAATCTTCTACGGGTACTTGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGAT CGTTACAAAGGACGATGCTATCACATTGAGCCTGTTGCTGGAGAAGAAAATCAATTTATTGCTTATGTAGCCTACCCACTCGA CGTTACAAAGGACGATGCTATCACATTGAGCCTGTTGCTGGAGAAGAAACTCAATTTATTGCTTATGTAGCCTACCCACTCGA CCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTATTTGGGTTCAAAGCCTTGCGCGCCCTACG CCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTATTTGGGTTCAAAGCCTTGCGCGCCCTACG TCTGGAGGATCTGCGAATTCCTCCTGCTTATGTTAAAACTTTTCAAGGTCCGCCTCACGGCATCCAGGTTGAGAGAGATAAAT TCTGGAGGATCTGCGAATTCCTACTGCTTATGTTAAAACTTTTCAAGGTCCGCCTCACGGCATCCAGGTTGAGAGAGATAAAT TGAACAAGTATGGCCGTCCCCTATTGGGATGTACTATTAAACCTAAATTGGGATTATCCGCTAAAAACTACGGTAGAGCAGTT TGAACAAGTATGGCCGTCCCCTATTGGGATGTACTATTAAACCTAAATTGGGATTATCCGCTAAAAACTACGGTAGAGCAGTT TATGAATGTCTTCGCGGTGGGCTTGATTTTACCAAAGATGATGAAAACGTGAATTCCCAACCATTTATGCGTTGGAGAGATCG TATGAATGTCTTCGCGGTGGGCTTGATTTTACCAAAGATGATGAAAACGTGAATTCCCAACCATTTATGCGTTGGAGAGATCG TTTCTTATTTTGTGCAGAAGCTATTTATAAAGCACAAGCCGAAACAGGCGAAATCAAGGGGCATTACTTAAAT TTTCTTATTTTGTGCAGAAGCTCTTTATAAAGCACAAGCCGAAACAGGCGAAATCAAGGGGCATTACTTAAAT Cymbopogon distans P6857 / 23 JF949974 Aligned with Cymbopogon citratus AM887872 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Poaceae TTTAAAGCTGGTGTTAAGGATTATAAATTGACTTACTACACCCCGGAGTACGAAACCAAGGATACTGATATCTTGGCAGCATT TTTAAAGCTGGTGTTAAGGATTATAAATTGACTTACTACACCCCGGAGTACGAAACCAAGGATACTGATATCTTGGCAGCATT CCGAGTAACTCCTCAGCTCGGGGTTCCGCCTGAAGAAGCAGGAGCTGCAGTAGCTGCGGAATCTTCTACTGGTACATGGACA CCGAGTAACTCCTCAGCTCGGGGTTCCGCCTGAAGAAGCAGGAGCTGCAGTAGCTGCGGAATCTTCTACTGGTACATGGACA 201 ACTGTTTGGACTGATGGACTTACCAGTCTTGATCGTTACAAAGGACGATGCTATCACATCGAGCCCGTTCCTGGGGACCCAGA ACTGTTTGGACTGATGGACTTACCAGTCTTGATCGTTACAAAGGACGATGCTATCACATCGAGCCCGTTCCTGGGGACCCAGA TCAATATATCTGTTATGTAGCTTATCCATTAGACCTATTTGAAGAGGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAA TCAATATATCTGTTATGTAGCTTATCCATTAGACCTATTTGAAGAGGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAA CGTATTTGGTTTCAAAGCCTTACGCGCTCTACGTTTGGAGGATCTACGAATTCCCCCTGCTTATGCAAAAACTTTCCAAGGTCC CGTATTTGGTTTCAAAGCCTTACGCGCTCTACGTTTGGAGGATCTACGAATTCCCCCTGCTTATGCAAAAACTTTCCAAGGTCC GCCTCACGGTATCCAAGTTGAAAGGGATAAGTTGAACAAGTACGGTCGTCCTTTATTGGGATGTACTATTAAACCAAAATTGG GCCTCACGGTATCCAAGTTGAAAGGGATAAGTTGAACAAGTACGGTCGTCCTTTATTGGGATGTACTATTAAACCAAAATTGG GATTATCCGCAAAAAATTATGGTAGAGCGTGTTATGAGTGTCTACGCGGTGGACTTGATTTTACCAAAGATGATGAAAACGTA GATTATCCGCAAAAAATTATGGTAGAGCGTGTTATGAGTGTCTACGCGGTGGACTTGATTTTACCAAAGATGATGAAAACGTA AACTCACAACCATTTATGCGCTGGAGAGACCGTTTTGTCTTTTGTGCCGAAGCAATTTATAAAGCACAAGCCGAAACCGGTGA AACTCACAACCATTTATGCGCTGGAGAGACCGTTTTGTCTTTTGTGCCGAAGCAATTTATAAAGCACAAGCCGAAACCGGTGA AATCAAGGGGCATTACTTGAATGCTACTGCAGGTACATGCGAA AATCAAGGGGCATTACTTGAATGCGACTGCAGGTACATGCGAA Fallopia japonica P6894 / 60 JF950004 Aligned with Fallopia japonica AF297131 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Polygonaceae GGATTCAAAGCTGGTGTTAAAGAATACAAATTGACTTATTATACTCCTGAGTATGAACCCCATGATCATGATATCTTGGCAGC GGATTCAAAGCTGGTGTTAAAGAATACAAATTGACTTATTATACTCCTGAGTATGAACCCCATGATCATGATATCTTGGCAGC ATTTCGAGTAACTCCTCAACCTGGAGTTCCGCCAGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGG ATTTCGAGTAACTCCTCAACCTGGAGTTCCGCCAGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGG ACAACCGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGACGATGCTACGACATCGAGCCTGTTCCTGGAGAAG ACAACCGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGACGATGCTACGACATCGAGCCTGTTCCTGGAGAAG AAAATCAATTTATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAGGGTTCTGTTACTAACATGTTTACTTCCATTGTGG AAAATCAATTTATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAGGGTTCTGTTACTAACATGTTTACTTCCATTGTGG GTAATGTATTTGGGTTCAAAGCCCTGCGTGCTCTTCGTTTGGAGGATTTGCGAATCCCTCCTGCTTATACGAAAACTTTCCAAG GTAATGTATTTGGGTTCAAAGCCCTGCGTGCTCTTCGTTTGGAGGATTTGCGAATCCCTCCTGCTTATACGAAAACTTTCCAAG GCCCGCCTCACGGTATCCAAGTTGAAAGAGATAAATTGAACAAATATGGACGTCCCCTATTGGGATGTACTATTAAACCGAA GCCCGCCTCACGGTATCCAAGTTGAAAGAGATAAATTGAACAAATATGGACGTCCCCTATTGGGATGTACTATTAAACCGAA ATTGGGGTTGTCCGCTAAGAACTACGGTCGGGCAGTTTATGAATGTCTTCGTGGCGGACTTGATTTTACCAAAGATGATGAAA ATTGGGGTTGTCCGCTAAGAACTACGGTCGGGCAGTTTATGAATGTCTTCGTGGCGGACTTGATTTTACCAAAGATGATGAAA ACGTGAACTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTCTGTGCCGAAGCTATTTTTAAATCACAGTGCGAAACA ACGTGAACTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTCTGTGCCGAAGCTATTTTTAAATCACAGTGCGAAACA GGTGAAATCAAAGGACATTACTTGAAT GGTGAAATCAAAGGACATTACTTGAAT Fallopia multiflora P6895 / 61 JF949987 Aligned with Fallopia multiflora HM357901 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Polygonaceae TTTCGAGTAACTCCTCAACCTGGAGTTCCGCCAGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGAC TTTCGAGTAACTCCTCAACCTGGAGTTCCGCCAGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGAC AACCGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGACGATGCTACGACATCGAGCCTGTTCCTGGAGAAGAA AACCGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGACGATGCTACGACATCGAGCCTGTTCCTGGAGAAGAA AATCAATTTATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGT AATCAATTTATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGT AATGTATTTGGGTTCAAAGCCCTGCGTGCTCTTCGTTTGGAGGATTTGCGAATCCCTCCTGCTTATACGAAAACTTTCCAAGGC AATGTATTTGGGTTCAAAGCCCTGCGTGCTCTTCGTTTGGAGGATTTGCGAATCCCTCCTGCTTATACGAAAACTTTCCAAGGC CCGCCTCATGGTATCCAAGTTGAGAGAGATAAATTGAACAAATATGGACGTCCCCTATTGGGATGTACTATTAAACCGAAATT CCGCCTCATGGTATCCAAGTTGAGAGAGATAAATTGAACAAATATGGACGTCCCCTATTGGGATGTACTATTAAACCGAAATT 202 GGGGTTGTCCGCTAAGAACTACGGTCGGGCAGTTTATGAATGTCTTCGTGGCGGACTTGATTTTACCAAAGATGATGAAAACG GGGGTTGTCCGCTAAGAACTACGGTCGGGCAGTTTATGAATGTCTTCGTGGCGGACTTGATTTTACCAAAGATGATGAAAACG TGAACTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTCTGTGCCGAAGCTATTTTTAAATCACAGTGCGAAACAGGT TGAACTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTCTGTGCCGAAGCTATTTTTAAATCACAGTGCGAAACAGGT GAAATCAAAGGACATTACTTGAAT GAAATCAAAGGACATTACTTGAAT Polygonum aviculare P6893 / 59 JF950012 Aligned with Polygonum aviculare EU554012 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Polygonaceae GGATTCAAAGCTGGTGTTAAAGAATACAAATTGACTTATTATACTCCTGACTATGAACCGCATGATCATGATATCTTGGCAGC GGATTCAAAGCTGGTGTTAAAGAATACAAATTGACTTATTATACTCCTGACTATGAACCGCATGATCATGATATCTTGGCAGC ATTTCGAGTAACTCCTCAACCTGGAGTTCCGCCAGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGG ATTTCGAGTAACTCCTCAACCTGGAGTTCCGCCAGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGG ACAACCGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGACGATGCTACGACATCGAGCCTGTTCCTGGCGAAG ACAACCGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGACGATGCTACGACATCGAGCCTGTTCCTGGCGAAG AAAGTCAATTTATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGG AAAGTCAATTTATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGG GTAATGTATTTGGGTTCAAAGCCTTGCGTGCTCTTCGTTTGGAGGATTTGCGAATCCCTCCTGCTTATACGAAAACTTTCCAAG GTAATGTATTTGGGTTCAAAGCCTTGCGTGCTCTTCGTTTGGAGGATTTGCGAATCCCTCCTGCTTATACGAAAACTTTCCAAG GCCCGCCTCATGGTATCCAAGTTGAAAGAGATAAATTGAACAAATATGGACGTCCCCTATTGGGATGTACTATTAAACCGAA GCCCGCCTCATGGTATCCAAGTTGAAAGAGATAAATTGAACAAATATGGACGTCCCCTATTGGGATGTACTATTAAACCGAA ATTGGGATTGTCCGCTAAGAACTACGGTCGGGCAGTTTATGAATGTCTTCGTGGCGGACTTGATTTTACCAAAGATGATGAAA ATTGGGATTGTCCGCTAAGAACTACGGTCGGGCAGTTTATGAATGTCTTCGTGGCGGACTTGATTTTACCAAAGATGATGAAA ACGTGAACTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTCTGTGCCGAAGCTATTTTTAAATCACAGTCCGAAACA ACGTGAACTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTCTGTGCCGAAGCTATTTTTAAATCACAGTCCGAAACA GGTGAAATCAAAGGACATTACTTGAAT GGTGAAATCAAAGGACATTACTTGAAT Rheum officinale P6898 / 64 JF950015 Aligned with Rheum officinale GQ436767 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Polygonaceae CTGGTGTTAAAGAATACAAATTGACTTATTATACTCCTGACTATGAACCCCATGACCATGATATCTTGGCAGCATTTCGCGTA CTGGTGTTAAAGAATACAAATTGACTTATTATACTCCTGACTATGAACCCCATGACCATGATATCTTGGCAGCATTTCGCGTA ACTCCTCAACCTGGAGTTCCACCAGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGT ACTCCTCAACCTGGAGTTCCACCAGAAGAAGCAGGGGCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTGT GGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGACGATGCTACCACATCGAGCCTGTTCCTGGAGAAGAAAATCAATT GGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGACGATGCTACCACATCGAGCCTGTTCCTGGAGAAGAAAATCAATT TATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTATTT TATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTATTT GGGTTCAAAGCCCTGCGTGCTCTACGTTTGGAGGATTTGCGAATCCCTCCTGCTTATACGAAAACTTTCCAAGGCCCGCCTCA GGGTTCAAAGCCCTGCGTGCTCTACGTTTGGAGGATTTGCGAATCCCTCCTGCTTATACGAAAACTTTCCAAGGCCCGCCTCA TGGTATCCAAGTTGAGAGAGATAAATTGAACAAATATGGACGTCCCCTATTGGGATGTACTATTAAACCGAAATTGGGGTTGT TGGTATCCAAGTTGAGAGAGATAAATTGAACAAATATGGACGTCCCCTATTGGGATGTACTATTAAACCGAAATTGGGGTTGT CCGCTAAGAACTACGGCCGAGCAGTTTATGAATGTCTTCGTGGCGGACTTGATTTTACCAAAGATGATGAAAACGTGAACTCC CCGCTAAGAACTACGGCCGAGCAGTTTATGAATGTCTTCGTGGCGGACTTGATTTTACCAAAGATGATGAAAACGTGAACTCC CAACCATTTATGCGTTGGAGAGACCGTTTCTTATTCTGTGCCGAAGCTCTTTTTAAAGCACAGTCTGAAACAGGTGAAATCAA CAACCATTTATGCGTTGGAGAGACCGTTTCTTATTCTGTGCCGAAGCTCTTTTTAAAGCACAGTCTGAAACAGGTGAAATCAA AGGACATTACTTGAAT AGGACATTACTTGAAT 203 Coptis chinensis P6855 / 21 JF950024 Aligned with Coptis chinensis FJ449856 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Ranunculaceae TACAAATTGACTTATTATACTCCTCAATATACACCCAAAGATACTGATACCCTGGCAGCATTCCGAGTAACTCCTCAACCTGG TACAAATTGACTTATTATACTCCTCAATATACACCCAAAGATACTGATACCCTGGCAGCATTCCGAGTAACTCCTCAACCTGG AGTTCCACCGGAAGAAGCGGGGGCTGCTGTAGCTGCCGAATCTTCTACAGGTACATGGACAACTGTGTGGACCGATGGACTT AGTTCCACCGGAAGAAGCGGGGGCTGCTGTAGCTGCCGAATCTTCTACAGGTACATGGACAACTGTGTGGACCGATGGACTT ACCAGCCTTGATCGTTACAAAGGACGATGCTACGACATCGAGCCCGTTGCTGGAGAAGAAAATCAATATATTTGTTATGTAGC ACCAGCCTTGATCGTTACAAAGGACGATGCTACGACATCGAGCCCGTTGCTGGAGAAGAAAATCAATATATTTGTTATGTAGC CTATCCTTTAGACCTTTTTGAAGAGGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTTTTTGGGTTCAAAGCGCT CTATCCTTTAGACCTTTTTGAAGAGGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTTTTTGGGTTCAAAGCGCT ACGCGCTCTACGTTTGGAGGATCTGCGAATTCCTGTTGCTTATGTTAAAACTTTCCAGGGGCCGCCCCATGGTATCCAAGTTG ACGCGCTCTACGTTTGGAGGATCTGCGAATTCCTGTTGCTTATGTTAAAACTTTCCAGGGGCCGCCCCATGGTATCCAAGTTG AGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAACCAAAATTGGGATTATCTGCTAAGAACTAC AGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAACCAAAATTGGGATTATCTGCTAAGAACTAC GGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAGGATGATGAGAACGTGAACTCCCAACCATTTATGCG GGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAGGATGATGAGAACGTGAACTCCCAACCATTTATGCG TTGGAGAGACCGTTTCCTATTTTGTGCTGAAGCAATTTATAAAGCACAAGCCGAAACCGGTGAAATCAAAGGACATTACTTGA TTGGAGAGACCGTTTCCTATTTTGTGCTGAAGCAATTTATAAAGCACAAGCCGAAACCGGTGAAATCAAAGGACATTACTTGA ATGCTACTGC ATGCTACTGC Sanguisorba officinalis P6901 / 67 JF950016 Aligned with Sanguisorba officinalis AY395560 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Rosaceae GTTGGATTCAAAGCTGGTGTTAAAGATTATAAATTGACTTATTATACTCCGGACTATGAAACCAAAGATACTGATATCTTGGC GTTGGATTCAAAGCTGGTGTTAAAGATTATAAATTGACTTATTATACTCCGGACTATGAAACCAAAGATACTGATATCTTGGC AGCATTTCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAGGAAGCAGGGGCGGCGGTAGCTGCGGAATCTTCTACTGGTACAT AGCATTTCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAGGAAGCAGGGGCGGCGGTAGCTGCGGAATCTTCTACTGGTACAT GGACAACTGTATGGACTGACGGGCTTACCAGTCTTGATCGTTACAAAGGGCGCTGCTACCATATTGAACCTGTTGCTGGAGAA GGACAACTGTATGGACTGACGGGCTTACCAGTCTTGATCGTTACAAAGGGCGCTGCTACCATATTGAACCTGTTGCTGGAGAA GAAAATCAATATATTGCTTATGTAGCTTACCCCTTAGACCTTTTTGAAGAGGGTTCGGTTACTAACATGTTTACTTCCATTGTA GAAAATCAATATATTGCTTATGTAGCTTACCCCTTAGACCTTTTTGAAGAGGGTTCGGTTACTAACATGTTTACTTCCATTGTA GGTAATGTATTTGGGTTCAAGGCCTTGCGCGCTCTACGTCTGGAGGATTTACGAATTCCTCCTGCTTATGTTAAAACTTTCCAA GGTAATGTATTTGGGTTCAAGGCCTTGCGCGCTCTACGTCTGGAGGATTTACGAATTCCTCCTGCTTATGTTAAAACTTTCCAA GGCCCGCCTCACGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTACGGCCGCCCGCTATTGGGATGCACTATTAAACCTA GGCCCGCCTCACGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTACGGCCGCCCGCTATTGGGATGCACTATTAAACCTA AATTGGGGTTATCCGCTAAGAATTACGGTAGAGCAGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGATGATGAG AATTGGGGTTATCCGCTAAGAATTACGGTAGAGCAGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAAGATGATGAG AATGTTAATTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGTCGAAGCAATTAATAAAGCGCAGGCTGAAAC AATGTTAATTCCCAACCATTTATGCGTTGGAGAGACCGTTTCTTATTTTGTGTCGAAGCAATTAATAAAGCGCAGGCTGAAAC AGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAA AGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAA Hedyotis diffusa P6874 / 40 JF949979 Aligned with Hedyotis nigricans AJ288606 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Rubiaceae AGTGTTGGATTCAAAGCTGGTGTTAAAGAGTACAAATTAACTTATTATACTCCTGAATACGAAACCAAAGATACTGATATCTT AGTGTTGGATTTAAAGCTGGTGTTAAAGAGTACAAATTAACTTATTATACTCCTGAATACGAAACCAAAGATACTGATATCTT 204 GGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACCGGAAGAAGCAGGGGCCGCGGTAGCTGCCGAGTCTTCTACTGGT GGCAGCATTCCGAGTAACTCCTCAACCCGGAGTTCCACCGGAAGAAGCCGGGGCTGCGGTAGCTGCCGAGTCTTCTACTGGT ACATGGACAACTGTATGGACGGATGGACTTACCAGTCTTGACCGTTACAAAGGACGATGCTACCACATCGAGCCAGTTCCTG ACATGGACAACTGTATGGACGGATGGACTTACCAGTCTTGACCGTTACAAAGGACGATGCTACCACATCGAGCCAGTTCCTG GAGAAGAAGATCAATTTATTGCTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCA GAGAAGAAGATCAATTTATTGCTTATGTAGCGTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCA TCGTAGGTAATGTATTTGGGTTCAAAGCCCTGCGCGCCCTACGTCTGGAAGATTTGCGAATTCCCATTGCTTATGTTAAAACCT TCGTAGGTAATGTATTTGGGTTCAAAGCCTTGCGCGCCCTACGTCTGGAAGATTTGCGAATTCCCATTGCTTATGTTAAAACCT TCGAAGGTCCACCTCACGGCATTCAGGTCGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAA TCGAAGGTCCACCTCACGGCATTCAGGTCGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAA CCTAAATTAGGTTTATCTGCTAAAAACTACGGTAGAGCATGTTATGAATGTCTTCGTGGTGGACTTGATTTTACTAAAGATGA CCTAAATTAGGTTTATCTGCTAAAAACTACGGTAGAGCATGTTATGAATGTCTTCGTGGTGGACTTGATTTTACTAAAGATGA TGAAAACGTGAACTCCCAACCATTTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCAATTTATAAAGCGCAGGCTG TGAAAACGTGAACTCCCAACCATTTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCAATTTATAAAGCGCAGGCTG AAACTGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGT AAACTGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGT Evodia lepta P6869 / 35 JF949978 Aligned with Zanthoxylum monophyllum U39282 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Rutaceae TCAAAGCCGGTGTTAAAGATTATAAATTGACTTATTATACTCCTGACTATGTAACCAAAGATACTGATATCTTGGCAGCATTC TCAAAGCCGGTGTTAAAGATTATAAATTGACTTATTATACTCCTGACTATGTAACCAAAGATACTGATATCTTGGCAGCATTC CGAGTAACTCCTCAACCCGGAGTTCCACCCGAGGAAGCGGGGGCTGCAGTAGCTGCGGAATCTTCTACTGGTACATGGACAA CGAGTAACTCCTCAACCCGGAGTTCCACCCGAGGAAGCGGGGGCTGCGGTAGCTGCGGAATCTTCTACTGGTACATGGACAA CTGTGTGGACCGATGGGCTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACAACATTGAGCCCGTTGCTGGAGAAGAAAA CTGTGTGGACCGACGGGCTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACAACATTGAGCCCGTTGCTGGAGAAGAAAA TCAATATATATGTTATGTAGCTTACCCGTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAA TCAATATATATGTTATGTAGCTTACCCGTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAA TGTATTTGGTTTCAAAGCCCTGCGCGCTCTACGTCTAGAGGATCTACGAATCCCTCCCGCGTATTCTAAAACTTTTCAAGGCC TGTATTTGGTTTCAAAGCCCTGCGCGCTCTACGTCTAGAGGATCTACGAATCCCTACCGCGTATACTAAAACTTTCCAAGGCC CGCCTCATGGTATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGACGTCCCCTGTTGGGATGTACTATTAAACCGAAATT CGCCTCACGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGACGTCCCCTGTTGGGATGTACTATTAAACCGAAATT GGGGTTATCCGCTAAGAATTACGGTAGGGCGGTTTATGAATGTCTACGCGGTGGACTTGACTTTACCAAAGATGATGAGAAC GGGGTTATCCGCTAAGAATTACGGTAGGGCAGTTTATGAATGTCTACGCGGTGGACTTGACTTTACCAAAGATGATGAGAAC GTGAACTCCCAACCATTTATGCGTTGGAGGGACCGTTTCGTATTTTGTGCGGAAGCACTTTATAAAGCGCAAGCTGAAACAGG GTGAACTCCCAACCATTTATGCGTTGGAGGGACCGTTTCTTATTTTGTGCGGAAGCACTTTATAAAGCGCAAGCTGAAACAGG TGAAATCAAAGGTCATTACTTGAATGCTACTGCGGGTACATGCGAA TGAAATCAAAGGTCATTACTTGAATGCTACTGCAGGTACATGCGAA Phellodendron chinense P6890 / 56 JF949986 Aligned with Phellodendron chinense GQ436735 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Rutaceae CTTATTATACTCCTGACTATGCAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAAGTCCTCAACCCGGAGTTCCACCC CTTATTATACTCCTGACTATGCAACCAAAGATACTGATATCTTGGCAGCATTCCGAGTAAGTCCTCAACCCGGAGTTCCACCC GAGGAAGCGGGGGCTGCGGTAGCTGCGGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGGCTTACCAGCCTTG GAGGAAGCGGGGGCTGCGGTAGCTGCGGAATCTTCTACTGGTACATGGACAACTGTGTGGACCGATGGGCTTACCAGCCTTG ATCGTTACAAAGGGCGATGCTACAACATTGAGCCCGTTGCTGGAGAAGAAAATCAATATATATGTTATGTAGCTTACCCGTTA ATCGTTACAAAGGGCGATGCTACAACATTGAGCCCGTTGCTGGAGAAGAAAATCAATATATATGTTATGTAGCTTACCCGTTA GACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTATTTGGTTTCAAAGCCCTGCGCGCTCTA GACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTGGGTAATGTATTTGGTTTCAAAGCCCTGCGCGCTCTA 205 CGTCTAGAGGATCTACGAATCCCTACCGCGTATACTAAAACTTTCCAAGGCCCGCCTCACGGCATCCAAGTTGAGAGAGATA CGTCTAGAGGATCTACGAATCCCTACCGCGTATACTAAAACTTTCCAAGGCCCGCCTCACGGCATCCAAGTTGAGAGAGATA AATTGAATAAGTATGGACGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAGAATTACGGTAGGGCA AATTGAATAAGTATGGACGTCCCCTGTTGGGATGTACTATTAAACCTAAATTGGGGTTATCCGCTAAGAATTACGGTAGGGCA GTTTATGAATGTCTACGCGGTGGACTTGACTTTACCAAAGATGATGAGAACGTGAACTCCCAACCATTTATGCGTTGG GTTTATGAATGTCTACGCGGTGGACTTGACTTTACCAAAGATGATGAGAACGTGAACTCCCAACCATTTATGCGTTGG Houttuynia cordata P6875 / 41 JF950006 Aligned with Houttuynia cordata L08762 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Saururaceae GTTGGATTCAAAGCTGGTGTTAAAGATTACAAATTAACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGC GTTGGATTCAAAGCTGGTGTTAAAGATTACAAATTAACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGC AGCATTCCGAGTAACTCCGCAACCCGGAGTTCCACCCGAGGAAGCAGGGGCTGCGGTACGTGCCGAATCCTCTACTGGTACA AGCATTCCGAGTAACTCCGCAACCCGGAGTTCCACCCGAGGAAGCAGGGGCTGCGGTACGTGCCGAATCCTCTACTGGTACA TGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGTCGATGCTACCACATCGAGCCCGTTGCTGGAGA TGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGTCGATGCTACCACATCGAGCCCGTTGCTGGAGA GGAAAGTCAATTTATTGCTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTG GGAAAGTCAATTTATTGCTTATGTAGCTTATCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCCATTGTG GGTAATGTATTTGGGTTCAAAGCCCTACGAGCTCTACGTCTGGAAGATCTACGAATTCCTCCTGCTTATTCCAAAACTTTCCAA GGTAATGTATTTGGGTTCAAAGCCCTACGAGCTCTACGTCTGGAAGATCTACGAATTCCTCCTGCTTATTCCAAAACTTTCCAA GGCCCACCCCATGGAATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCTCTATTGGGATGTACTATTAAACCTAA GGCCCACCCCATGGAATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCTCTATTGGGATGTACTATTAAACCTAA ATTGGGGTTATCGGCTAAGAACTACGGTAGGGCGGTTTATGAATGTCTCCGCGGTGGGCTTGATTTCACCAAGGATGATGAAA ATTGGGGTTATCGGCTAAGAACTACGGTAGGGCGGTTTATGAATGTCTCCGCGGTGGGCTTGATTTCACCAAGGATGATGAAA ATGTGAACTCACAACCATTTATGCGTTGGAGAGACCGTTTCCTATTTTGTGCCGAAGCTATTTACAAAGCGCAGGCCGAAACA ATGTGAACTCACAACCATTTATGCGTTGGAGAGACCGTTTCCTATTTTGTGCCGAAGCTATTTACAAAGCGCAGGCCGAAACA GGTGAAATTAAAGGACATTACTTAAATGCTACTGCAGGTAC GGTGAAATTAAAGGACATTACTTAAATGCTACTGCAGGTAC Kadsura longipedunculata P6879 / 45 JF950007 Aligned with Kadsura japonica AF193969 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Schisandraceae ATTCAAGGCTGGTGTTAAAGATTACAGATTGACTTATTATACTCCTGACTATGAAACGAAAGATACTGATATCTTGGCAGCAT ATTCAAGGCTGGTGTTAAAGATTACAGATTGACTTATTATACTCCTGACTATGAAACGAAAGATACTGATATCTTGGCAGCAT TCCGAGTAACTCCTCAACCTGGAGTTCCACCCGAGGAAGCGGGAGCTGCGGTAGCTGCGGAATCTTCTACTGGTACCTGGACT TCCGAGTAACTCCTCAACCTGGAGTTCCACCCGAGGAAGCGGGAGCTGCGGTAGCTGCGGAATCTTCTACTGGTACCTGGACT ACTGTGTGGACTGATGGACTTACCAGCCTCGATCGTTATAAAGGGCGATGCTACCACATTGAGCCCGTTGCTGGGGAGGAAA ACTGTGTGGACTGATGGACTTACCAGCCTCGATCGTTATAAAGGGCGATGCTACCACATTGAGCCCGTTGCTGGGGAGGAAA ATCAATTTATTGCTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCTATTGTAGGTAA ATCAATATATTGCTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCTATTGTAGGTAA TGTGTTTGGGTTCAAAGCCCTACGAGCTCTGCGTCTGGAAGATTTGCGAATTCCTCCTGCTTATTCCAAAACTTTCCAAGGCCC TGTGTTTGGGTTCAAAGCCCTACGAGCTCTGCGTCTGGAAGATTTGCGAATTCCTCCTGCTTATTCCAAAACTTTCCAAGGCCC ACCCCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAACCAAAATTA ACCCCATGGCATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTATTGGGATGTACTATTAAACCAAAATTA GGGTTATCTGCCAAGAACTACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAGGATGAT GGGTTATCTGCCAAGAACTACGGTAGAGCGGTTTATGAATGTCTCCGCGGTGGACTTGATTTTACCAAGGATGAT 206 Selaginella tamariscina P6904 / 70 JF950018 Aligned with Selaginella tamariscina AJ295861 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Selaginellaceae TACAAGACCAAAAACAGCGATATCCTGGCAGCGTTCCGAATGACTCCGCAACCCGGAGTGCCCGCCGAAGAGGCAGGAGCC TACAAGACCAAAAACAGCGATATCCTGGCAGCGTTCCGAATGACTCCGCAACCCGGAGTGCCCGCCGAAGAGGCAGGAGCC GCAGTAGCTGCGGAATCCTCTACTGGCACATGGACCACCGTTTGGACCGACGGGCTTACCAATCTTGACCGTTATAAAGGTCG GCAGTAGCTGCGGAATCCTCTACTGGCACATGGACCACCGTTTGGACCGACGGGCTTACCAATCTTGACCGTTATAAAGGTCG GTGCTACGATATCGAACCCGTCCCTGGGGAAAAAGATCAATACATTGCCTATGTAGCCTATCCTTTGGATTTGTTTGAGGAAG GTGCTACGATATCGAACCCGTCCCTGGGGAAAAAGATCAATACATTGCCTATGTAGCCTATCCTTTGGATTTGTTTGAGGAAG GTTCCGTTACCAACATGTTTACTTCCATTGTGGGTAATGTTTTTGGATTCAAGGCCTTACGAGCCCTGCGTTTGGAAGATCTGC GTTCCGTTACCAACATGTTTACTTCCATTGTGGGTAATGTTTTTGGATTCAAGGCCTTACGAGCCCTGCGTTTGGAAGATCTGC GAATCCCCCCCGCTTATTCCAAAACCTTCGAGGGCCCGCCTCATGGTATCCAAGTCGAAAGGGATAAATCAAATAAATACGG GAATCCCCCCCGCTTATTCCAAAACCTTCGAGGGCCCGCCTCATGGTATCCAAGTCGAAAGGGATAAATCAAATAAATACGG CCGCCCCCTGCTGGGATGCACTATCAAACCCAAGTTAGGTTTATCTGCCAAAAACTATGGCAGAGCGTGCTATGAATGTCTTC CCGCCCCCTGCTGGGATGCACTATCAAACCCAAGTTAGGTTTATCTGCCAAAAACTATGGCAGAGCGTGCTATGAATGTCTTC GTGG GTGG Patrinia scabiosaefolia P6889 / 55 JF949985 Aligned with Patrinia triloba AF446951 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Valerianaceae AGTGCTGGATTCAAAGCGGGCGTTAAAGATTACAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTT AGTGCTGGATTCAAAGCGGGCGTTAAAGATTACAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTT GGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCAACTGGT GGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCTGCTGAAGAAGCAGGGGCCGCAGTAGCTGCCGAATCTTCAACTGGT ACATGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATCGAGCCCGTTGCTG ACATGGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATCGAGCCCGTTGCTG GAGAAGAAAGTCAATTTATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCTA GAGAAGAAAGTCAATTTATTGCTTATGTAGCTTACCCATTAGACCTTTTTGAAGAAGGTTCTGTTACTAACATGTTTACTTCTA TTGTGGGTAATGTATTTGGGTTCAAAGCCCTGCGCGCTCTACGTCTGGAAGATCTGCGAATCCCTGTCGCTTATGTTAAAACTT TTGTGGGTAATGTATTTGGGTTCAAAGCCCTGCGCGCTCTACGTCTGGAAGATCTGCGAATCCCTGTCGCTTATGTTAAAACTT TCCAAGGCCCGCCTCATGGTATCCAAGTTGAGAGAGATAAATTGAACAAGTACGGTCGCCCCCTGTTGGGATGTACTATTAAA TCCAAGGCCCGCCTCATGGTATCCAAGTTGAGAGAGATAAATTGAACAAGTACGGTCGCCCCCTGTTGGGATGTACTATTAAA CCCAAATTGGGGTTGTCTGCTAAAAACTATGGTAGAGCGGTTTATGAATGTCTACGTGGTGGACTTGATTTTACCAAAGATGA CCCAAATTGGGGTTGTCTGCTAAAAACTATGGTAGAGCGGTTTATGAATGTCTACGTGGTGGACTTGATTTTACCAAAGATGA TGAGAACGTGAACTCCCAACCATTTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCCCTTTATAAAGCACAAACTG TGAGAACGTGAACTCCCAACCATTTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCCCTTTATAAAGCACAAACTG AAACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGG AAACAGGTGAAATCAAAGGGCATTACTTGAATGCGACTGCAGG Verbena officinalis P6910 / 76 JF950020 Aligned with Verbena officinalis GQ436523 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Verbenaceae GTTGGATTCAAAGCGGGTGTTAAAGAGTACAAGTTGACTTATTATACTCCTGAATACGAAACCAAAGATACTGATATCTTGGC GTTGGATTCAAAGCGGGTGTTAAAGAGTACAAGTTGACTTATTATACTCCTGAATACGAAACCAAAGATACTGATATCTTGGC AGCATTCCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCTGCGGTAGCTGCCGAATCTTCTACTGGTACAT AGCATTCCGAGTAACTCCTCAACCTGGAGTTCCGCCTGAAGAAGCAGGGGCTGCGGTAGCTGCCGAATCTTCTACTGGTACAT GGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATCGAGCCCGTTCCTGGAGA GGACAACTGTGTGGACCGATGGACTTACCAGCCTTGATCGTTACAAAGGGCGATGCTACCACATCGAGCCCGTTCCTGGAGA 207 CCCAGATCAATATATTTGTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACGAACATGTTTACTTCCATTGT CCCAGATCAATATATTTGTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACGAACATGTTTACTTCCATTGT AGGAAATGTATTTGGATTCAAAGCCCTACGGGCTCTACGTCTGGAAGATCTGCGAATCCCCGTTGCCTATACTAAAACTTTCC AGGAAATGTATTTGGATTCAAAGCCCTACGGGCTCTACGTCTGGAAGATCTGCGAATCCCCGTTGCCTATACTAAAACTTTCC AAGGCCCGCCTCATGGGATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCTCTGTTGGGATGTACTATTAAACCT AAGGCCCGCCTCATGGGATCCAAGTTGAGAGAGATAAATTGAACAAGTATGGTCGTCCCCTGTTGGGATGTACTATTAAACCT AAATTGGGTTTATCTGCTAAAAACTATGGTAGAGCAGTTTATGAATGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGA AAATTGGGTTTATCTGCTAAAAACTATGGTAGAGCAGTTTATGAATGTCTTCGCGGTGGACTTGATTTTACCAAAGATGATGA GAACGTGAACTCTCAGCCATTTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCAATTTATAAAGCACAGGCTGAAA GAACGTGAACTCTCAGCCATTTATGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCAATTTATAAAGCACAGGCTGAAA CAGGTGAAATCAAAGGGCA CAGGTGAAATCAAAGGGCA Viola yezoensis P6911 / 77 JF949993 Aligned with Viola pubescens DQ006129 ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene Violaceae GTTGGATTCAAAGCTGGGGTTAAAGATTATAAATTGACTTATTATACTCCTGACTATGAAACCAAAGATACTGATATCTTGGC GTTGGATTCAAAGCTGGGGTTAAAGATTATAAATTGACTTATTATACTCCTGACTATGAAACCAAGGATACTGATATCTTGGC AGCATTCCGAGTAACTCCGCAACCCGGAGTTCCGCCTGAGGAAGCAGGGGCTGCGGTAGCTGCTGAATCTTCTACTGGTACAT AGCATTCCGAGTAACTCCGCAACCCGGAGTTCCGCCTGAGGAAGCAGGGGCTGCGGTAGCTGCTGAATCTTCTACTGGTACAT GGACAACTGTGTGGACCGATGGGCTTACCTCCCTTGATCGTTATAAAGGACGATGCTACGACATCGAGCCCGTTCCTGGAGAA GGACAACTGTGTGGACCGATGGGCTTACTTCCCTTGATCGTTATAAAGGACGATGCTACGACATCGAGCCCGTTCCTGGAGAA GAAAGTCAATTTATTGCTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACGAACATGTTTACTTCCATTGTG GAAAGTCAATTTATTGCTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCTGTTACGAACATGTTTACTTCCATTGTG GGTAATGTATTTGGGTTCAAAGCCCTACGGGCTTTACGTTTGGAGGATTTGCGAATCCCTCCTGCTTATACTAAAACTTTCCAA GGTAATGTATTTGGGTTCAAAGCCCTACGGGCTTTACGTTTGGAGGATTTGCGAATCCCTCCTGCTTATACTAAAACTTTCCAA GGTCCGCCTCATGGTATCCAAGTTGAGAGAGATAAATTGAACAAGTACGGTCGTCCCCTATTGGGCTGTACTATTAAACCTAA GGTCCGCCTCATGGTATCCAAGTTGAGAGAGATAAATTGAACAAGTACGGTCGTCCCCTATTGGGCTGTACTATTAAACCGAA ATTGGGGTTATCCGCTAAGAATTATGGGAGAGCTGTTTATGAGTGTCTCCGCGGTGGACTTGATTTTACTAAAGATGATGAGA ATTGGGGTTATCCGCTAAGAATTATGGGAGAGCTGTTTATGAGTGTCTCCGCGGTGGACTTGATTTTACTAAAGATGATGAGA ATGTGAACTCCCAACCATTTAT ATGTGAACTCCCAACCATTTAT 208 10.4 Documentation of screening results 10.4.1 Dichloromethane extracts: HeLa Acanthaceae Andrographis paniculata P6838 / 04 JF949965 IC50 188.4 µg/ml P6848 / 14 JF949970 IC50 472.0 µg/ml P6844 / 10 P6845 / 11 P6849 / 15 P6854 / 20 P6902 / 68 JF950021 JF949968 JF950022 JF949973 JF949988 IC50 235.2 µg/ml IC50 176.0 µg/ml IC50 175.0 µg/ml IC50 127.1 µg/ml IC50 410.1 µg/ml Andrographis paniculata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Amaranthaceae Celosia cristata Celosia cristata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Apiaceae Bupleurum chinense Bupleurum marginatum Centella asiatica Cnidium monnieri Saposhnikovia divaricata Bupleurum chinense Bupleurum marginatum 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 209 625 1250 2500 5000 Centella asiatica Cnidium monnieri 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 Concentration [µg/ml] Saposhnikovia divaricata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Araliaceae Eleutherococcus senticosus Panax ginseng China Panax ginseng Korea Panax notoginseng P6919 / 79 P8088 / 81 P8086 / 81 P6887 / 53 Eleutherococcus senticosus JF950028 JF950029 JF950030 IC50 300.0 µg/ml IC50 152.4 µg/ml IC50 173.1 µg/ml IC50 263.0 µg/ml Panax ginseng China 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 625 1250 2500 5000 Concentration [µg/ml] Panax ginseng Korea Panax notoginseng 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 210 Arecaceae Areca catechu P6840 / 06 - IC50 1023.3 µg/ml Areca catechu 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Asclepiadaceae Cynanchum paniculatum P6858 / 24 JF949975 IC50 395.6 µg/ml P6841 / 07 P6842 / 08 P6839 / 05 P6850 / 16 P6851 / 17 JF949966 JF949967 JF949994 JF949971 P6852 / 18 JF949972 IC50 129.4 µg/ml P6863 / 29 P6905 / 71 P6906 / 72 P6908 / 74 JF950000 JF949989 JF949990 JF950019 Cynanchum paniculatum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Asteraceae Artemisia annua Artemisia capillaris Arctium lappa Centipeda minima Chrysanthemum indicum Chrysanthemum morifolium Eclipta prostrata Senecio scandens Siegesbeckia orientalis Taraxacum officinale Artemisia annua IC50 107.9 µg/ml IC50 93.5 µg/ml IC50 345.0 µg/ml IC50 63.3 µg/ml IC50 152.1 µg/ml IC50 266.4 µg/ml IC50 268.6 µg/ml IC50 101.5 µg/ml IC50 232.8 µg/ml Artemisia capillaris 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 211 625 1250 2500 5000 Arctium lappa Centipeda minima 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 625 1250 2500 5000 625 1250 2500 5000 625 1250 2500 5000 Concentration [µg/ml] Chrysanthemum indicum Chrysanthemum morifolium 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 Concentration [µg/ml] Eclipta prostrata Senecio scandens 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 Concentration [µg/ml] Siegesbeckia orientalis Taraxacum officinale 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 212 Berberidaceae Berberis bealei Dysosma versipellis Epimedium koreanum P6883 / 49 P6862 / 28 P6865 / 31 JF949996 IC50 93.8 µg/ml IC50 213.9 µg/ml JF950002 IC50 48.7 µg/ml Berberis bealei Dysosma versipellis 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 Concentration [µg/ml] Epimedium koreanum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Brassicaceae Capsella bursa-pastoris Isatis indigotica (root) Isatis indigotica (leaf) P6846 / 12 P6877 / 43 P6878 / 44 Capsella bursa-pastoris JF949997 IC50 196.4 µg/ml JF949981 IC50 321.5 µg/ml JF949981 IC50 226.5 µg/ml Isatis indigotica (root) 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] Isatis indigotica (leaf) Survival [%] 100 50 0 19.5 39 78 156 313 39 78 156 313 Concentration [µg/ml] 150 9.8 19.5 625 1250 2500 5000 Concentration [µg/ml] 213 625 1250 2500 5000 Caprifoliaceae Lonicera confusa P6880 / 46 JF949982 IC50 226.5 µg/ml P6892 / 58 JF950027 IC50 279.6 µg/ml Lonicera confusa 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Convallariaceae Polygonatum kingianum Polygonatum kingianum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Crassulaceae Rhodiola rosea P6920 / 84 - IC50 164.1 µg/ml Rhodiola rosea 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Cupressaceae Platycladus orientalis P6891 / 57 Platycladus orientalis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 214 JF950011 IC50 121.7 µg/ml Dryopteridaceae Cyrtomium fortunei P6859 / 25 JF949998 IC50 572.4 µg/ml P6864 / 30 JF950001 IC50 95.3 µg/ml P6866 / 32 JF950003 IC50 125.6 µg/ml Cyrtomium fortunei 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Ephedraceae Ephedra sinica Ephedra sinica 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Equisetaceae Equisetum hiemale Equisetum hiemale 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Euphorbiaceae Croton tiglium P6856 / 22 Croton tiglium 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 215 - IC50 422.9 µg/ml Fabaceae Abrus cantoniensis Acacia catechu Cassia tora Desmodium styracifolium Glycyrrhiza inflata Spatholobus suberectus Sutherlandia frutescens P6835 / 01 P6836 / 02 P6847 / 13 P6861 / 27 P6873 / 39 P6907 / 73 tba / 83 JF949964 JF949969 JF949976 JF950025 JF949991 - Abrus cantoniensis IC50 494.4 µg/ml IC50 164.1 µg/ml IC50 1335.4 µg/ml IC50 156.0 µg/ml IC50 26.4 µg/ml IC50 299.1 µg/ml IC50 367.7 µg/ml Acacia catechu 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 625 1250 2500 5000 625 1250 2500 5000 Concentration [µg/ml] Cassia tora Desmodium styracifolium 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 Concentration [µg/ml] Glycyrrhiza inflata Spatholobus suberectus 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 216 Sutherlandia frutescens 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Geraniaceae Geranium wilfordii Pelargonium sidoides P6867 / 33 tba / 82 Geranium wilfordii JF949977 IC50 99.1 µg/ml IC50 488.2 µg/ml Pelargonium sidoides 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 Concentration [µg/ml] Ginkgoaceae 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Ginkgo biloba P6872 / 38 JF950005 IC50 768.3 µg/ml P6876 / 42 JF949980 IC50 163.3 µg/ml Ginkgo biloba 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Hypericaceae Hypericum japonicum Hypericum japonicum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 217 Iridaceae Belamcanda chinensis P6843 / 09 JF949995 IC50 324.4 µg/ml P6884 / 50 P6896 / 62 P6903 / 69 JF949984 IC50 108.5 µg/ml JF950013 IC50 282.1 µg/ml JF950017 IC50 90.9 µg/ml Belamcanda chinensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Lamiaceae Mentha haplocalyx Prunella vulgaris Scutellaria baicalensis Mentha haplocalyx Prunella vulgaris 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 Concentration [µg/ml] 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Scutellaria baicalensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Lauraceae Cinnamomum cassia P6853 / 19 Cinnamomum cassia 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 218 JF950023 IC50 138.9 µg/ml Loranthaceae Taxillus chinensis P6909 / 75 JF949992 IC50 417.8 µg/ml P6897 / 63 JF950014 IC50 583.3 µg/ml P6882 / 48 JF950008 IC50 23.6 µg/ml P6888 / 54 JF950010 IC50 952.6 µg/ml Taxillus chinensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Lythraceae Punica granatum Punica granatum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Magnoliaceae Magnolia officinalis Magnolia officinalis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Melanthiaceae Paris polyphylla Paris polyphylla 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 219 Myrsinaceae Lysimachia christinae P6881 / 47 JF949983 IC50 53.4 µg/ml P6885 / 51 JF950009 IC50 188.9 µg/ml P6860 / 26 JF949999 IC50 83.0 µg/ml P6886 / 52 JF950026 IC50 166.9 µg/ml Lysimachia christinae 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Ophioglossaceae Ophioglossum vulgatum Ophioglossum vulgatum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Orchidaceae Dendrobium loddigesii Dendrobium loddigesii 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Paeoniaceae Paeonia lactiflora Paeonia lactiflora 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 220 Pedaliaceae Harpagophytum procumbens tba / 80 - IC50 36.2 µg/ml Harpagophytum procumbens 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Poaceae Cymbopogon distans P6857 / 23 JF949974 IC50 425.9 µg/ml P6894 / 60 JF950004 IC50 88.0 µg/ml P6893 / 59 P6895 / 61 P6898 / 64 JF950012 IC50 118.5 µg/ml JF949987 IC50 469.4 µg/ml JF950015 IC50 22.5 µg/ml Cymbopogon distans 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Fallopia japonica (syn. Polygonum cuspidatum) Polygonum aviculare Polygonum multiflorum Rheum officinale Polygonaceae Fallopia japonica Polygonum aviculare 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 625 1250 2500 5000 Concentration [µg/ml] Polygonum multiflorum Rheum officinale 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 221 Ranunculaceae Coptis chinensis P6855 / 21 JF950024 IC50 100.0 µg/ml P6899 / 65 P6900 / 66 P6901 / 67 IC50 559.4 µg/ml IC50 712.3 µg/ml JF950016 IC50 66.5 µg/ml Coptis chinensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Rosaceae Rosa chinensis Rosa laevigata Sanguisorba officinalis Rosa chinensis Rosa laevigata 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 Concentration [µg/ml] 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Sanguisorba officinalis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Rubiaceae Hedyotis diffusa P6874 / 40 Hedyotis diffusa 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 222 JF949979 IC50 147.8 µg/ml Rutaceae Evodia lepta Evodia rutaecarpa Phellodendron chinense P6869 / 35 P6870 / 36 P6890 / 56 JF949978 IC50 232.0 µg/ml IC50 50.4 µg/ml JF949986 IC50 370.1 µg/ml Evodia lepta Evodia rutaecarpa 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 Concentration [µg/ml] 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Phellodendron chinense 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Saururaceae Houttuynia cordata P6875 / 41 JF950006 IC50 279.9 µg/ml Houttuynia cordata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Schisandraceae Kadsura longipedunculata Kadsura longipedunculata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 223 P6879 / 45 JF950007 IC50 9.9 µg/ml Selaginellaceae Selaginella tamariscina P6904 / 70 JF950018 IC50 339.2 µg/ml P6889 / 55 JF949985 IC50 140.5 µg/ml P6910 / 76 JF950020 IC50 298.1 µg/ml P6911 / 77 JF949993 IC50 59.6 µg/ml Selaginella tamariscina 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Valerianaceae Patrinia scabiosaefolia Patrinia scabiosaefolia 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Verbenaceae Verbena officinalis Verbena officinalis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Violaceae Viola yezoensis Viola yezoensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 224 Zingiberaceae Alpinia galanga Alpinia oxyphylla P6837 / 03 P6917 / 78 - Alpinia galanga IC50 55.7 µg/ml IC50 119.6 µg/ml Alpinia oxyphylla 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 225 625 1250 2500 5000 10.4.2 Dichloromethane extracts: T. b. brucei Acanthaceae Andrographis paniculata P6838 / 04 JF949965 IC50 16.8 µg/ml P6848 / 14 JF949970 IC50 55.2 µg/ml P6844 / 10 P6845 / 11 P6849 / 15 P6854 / 20 P6902 / 68 JF950021 JF949968 JF950022 JF949973 JF949988 Andrographis paniculata 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Amaranthaceae Celosia cristata Celosia cristata 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Apiaceae Bupleurum chinense Bupleurum marginatum Centella asiatica Cnidium monnieri Saposhnikovia divaricata Bupleurum chinense IC50 17.0 µg/ml IC50 16.2 µg/ml IC50 14.0 µg/ml IC50 14.9 µg/ml IC50 5.1 µg/ml Bupleurum marginatum 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 226 125 313 625 1250 2500 5000 Centella asiatica Cnidium monnieri 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 125 313 625 1250 2500 5000 Concentration [µg/ml] Saposhnikovia divaricata 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Araliaceae Eleutherococcus senticosus Panax ginseng China Panax ginseng Korea Panax notoginseng P6919 / 79 P8088 / 81 P8086 / 81 P6887 / 53 Eleutherococcus senticosus JF950028 JF950029 JF950030 IC50 13.5 µg/ml IC50 0.9 µg/ml IC50 3.3 µg/ml IC50 0.9 µg/ml Panax ginseng China 150 100 100 Survival [%] Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.075 0.15 0.3 0.6 1.2 2.4 Concentration [µg/ml] 4.9 9.8 19.5 39 78 156 313 625 39 78 156 313 625 Concentration [µg/ml] Panax ginseng Korea Panax notoginseng 150 100 100 Survival [%] Survival [%] 150 50 50 0 0 0.075 0.15 0.3 0.6 1.2 2.4 4.9 9.8 19.5 39 78 156 313 625 Concentration [µg/ml] 0.075 0.15 0.3 0.6 1.2 2.4 4.9 9.8 19.5 Concentration [µg/ml] 227 Arecaceae Areca catechu P6840 / 06 - IC50 22.5 µg/ml Areca catechu 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Asclepiadaceae Cynanchum paniculatum P6858 / 24 JF949975 IC50 53.1 µg/ml P6841 / 07 P6842 / 08 P6839 / 05 P6850 / 16 P6851 / 17 P6852 / 18 P6863 / 29 P6905 / 71 P6906 / 72 P6908 / 74 JF949966 JF949967 JF949994 JF949971 JF949972 JF950000 JF949989 JF949990 JF950019 Cynanchum paniculatum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Asteraceae Artemisia annua Artemisia capillaris Arctium lappa Centipeda minima Chrysanthemum indicum Chrysanthemum morifolium Eclipta prostrata Senecio scandens Siegesbeckia orientalis Taraxacum officinale Artemisia annua IC50 8.1 µg/ml IC50 10.6 µg/ml IC50 3.6 µg/ml IC50 2.2 µg/ml IC50 16.0 µg/ml IC50 19.3 µg/ml IC50 38.1 µg/ml IC50 13.1 µg/ml IC50 7.9 µg/ml IC50 17.5 µg/ml Artemisia capillaris 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 228 125 313 625 1250 2500 5000 Arctium lappa Centipeda minima 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 125 313 625 1250 2500 5000 125 313 625 1250 2500 5000 125 313 625 1250 2500 5000 Concentration [µg/ml] Chrysanthemum indicum Chrysanthemum morifolium 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 Concentration [µg/ml] Eclipta prostrata Senecio scandens 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 Concentration [µg/ml] Siegesbeckia orientalis Taraxacum officinale 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 229 Berberidaceae Berberis bealei Dysosma versipellis Epimedium koreanum P6883 / 49 P6862 / 28 P6865 / 31 Berberis bealei JF949996 IC50 5.9 µg/ml IC50 39.5 µg/ml JF950002 IC50 4.2 µg/ml Dysosma versipellis 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Epimedium koreanum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Brassicaceae Capsella bursa-pastoris Isatis indigotica (root) Isatis indigotica (leaf) P6846 / 12 P6877 / 43 P6878 / 44 Capsella bursa-pastoris JF949997 IC50 13.7 µg/ml JF949981 IC50 2.9 µg/ml JF949981 IC50 45.3 µg/ml Isatis indigotica (root) 150 100 100 Survival [%] Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Isatis indigotica (leaf) Survival [%] 100 50 0 0.98 1.95 3.91 7.81 15.63 31.25 62.5 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 150 0.49 0.49 125 313 625 1250 2500 5000 Concentration [µg/ml] 230 125 313 625 1250 2500 5000 Caprifoliaceae Lonicera confusa P6880 / 46 JF949982 IC50 16.2 µg/ml P6892 / 58 JF950027 IC50 52.6 µg/ml Lonicera confusa 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Convallariaceae Polygonatum kingianum Polygonatum kingianum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Crassulaceae Rhodiola rosea P6920 / 84 - IC50 43.9 µg/ml Rhodiola rosea 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Cupressaceae Platycladus orientalis P6891 / 57 Platycladus orientalis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 231 JF950011 IC50 17.7 µg/ml Dryopteridaceae Cyrtomium fortunei P6859 / 25 JF949998 IC50 37.1 µg/ml P6864 / 30 JF950001 IC50 20.9 µg/ml P6866 / 32 JF950003 IC50 30.9 µg/ml Cyrtomium fortunei 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Ephedraceae Ephedra sinica Ephedra sinica 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Equisetaceae Equisetum hiemale Equisetum hiemale 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Euphorbiaceae Croton tiglium P6856 / 22 Croton tiglium 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 232 - IC50 86.5 µg/ml Fabaceae Abrus cantoniensis Acacia catechu Cassia tora Desmodium styracifolium Glycyrrhiza inflata Spatholobus suberectus Sutherlandia frutescens P6835 / 01 P6836 / 02 P6847 / 13 P6861 / 27 P6873 / 39 P6907 / 73 tba / 83 JF949964 JF949969 JF949976 JF950025 JF949991 - Abrus cantoniensis IC50 14.5 µg/ml IC50 13.1 µg/ml IC50 185.9 µg/ml IC50 16.3 µg/ml IC50 6.4 µg/ml IC50 25.4 µg/ml IC50 41.8 µg/ml Acacia catechu 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 313 625 1250 2500 5000 313 625 1250 2500 5000 Concentration [µg/ml] Cassia tora Desmodium styracifolium 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 125 Concentration [µg/ml] Glycyrrhiza inflata Spatholobus suberectus 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 233 125 Sutherlandia frutescens 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Geraniaceae Geranium wilfordii Pelargonium sidoides P6867 / 33 tba / 82 Geranium wilfordii JF949977 IC50 23.0 µg/ml IC50 52.1 µg/ml Pelargonium sidoides 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 Concentration [µg/ml] Ginkgoaceae 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Ginkgo biloba P6872 / 38 JF950005 IC50 71.9 µg/ml P6876 / 42 JF949980 IC50 21.3 µg/ml Ginkgo biloba 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Hypericaceae Hypericum japonicum Hypericum japonicum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 234 Iridaceae Belamcanda chinensis P6843 / 09 JF949995 IC50 22.3 µg/ml P6884 / 50 P6896 / 62 P6903 / 69 JF949984 IC50 14.7 µg/ml JF950013 IC50 13.2 µg/ml JF950017 IC50 7.4 µg/ml Belamcanda chinensis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Lamiaceae Mentha haplocalyx Prunella vulgaris Scutellaria baicalensis Mentha haplocalyx Prunella vulgaris 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 Concentration [µg/ml] 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Scutellaria baicalensis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Lauraceae Cinnamomum cassia P6853 / 19 Cinnamomum cassia 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 235 JF950023 IC50 11.0 µg/ml Loranthaceae Taxillus chinensis P6909 / 75 JF949992 IC50 27.2 µg/ml P6897 / 63 JF950014 IC50 14.6 µg/ml P6882 / 48 JF950008 IC50 0.9 µg/ml P6888 / 54 JF950010 IC50 73.6 µg/ml Taxillus chinensis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Lythraceae Punica granatum Punica granatum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Magnoliaceae Magnolia officinalis Magnolia officinalis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Melanthiaceae Paris polyphylla Paris polyphylla 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 236 Myrsinaceae Lysimachia christinae P6881 / 47 JF949983 IC50 20.6 µg/ml P6885 / 51 JF950009 IC50 19.8 µg/ml P6860 / 26 JF949999 IC50 13.5 µg/ml P6886 / 52 JF950026 IC50 9.1 µg/ml Lysimachia christinae 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Ophioglossaceae Ophioglossum vulgatum Ophioglossum vulgatum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Orchidaceae Dendrobium loddigesii Dendrobium loddigesii 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Paeoniaceae Paeonia lactiflora Paeonia lactiflora 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 237 Pedaliaceae Harpagophytum procumbens tba / 80 - IC50 0.9 µg/ml Harpagophytum procumbens 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Poaceae Cymbopogon distans P6857 / 23 JF949974 IC50 31.1 µg/ml P6894 / 60 JF950004 IC50 13.1 µg/ml P6893 / 59 P6895 / 61 P6898 / 64 JF950012 IC50 18.2 µg/ml JF949987 IC50 98.6 µg/ml JF950015 IC50 34.0 µg/ml Cymbopogon distans 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Polygonaceae Fallopia japonica (syn. Polygonum cuspidatum) Polygonum aviculare Polygonum multiflorum Rheum officinale Fallopia japonica Polygonum aviculare 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 125 313 625 1250 2500 5000 Concentration [µg/ml] Polygonum multiflorum Rheum officinale 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 238 Ranunculaceae Coptis chinensis P6855 / 21 JF950024 IC50 12.9 µg/ml P6899 / 65 P6900 / 66 P6901 / 67 IC50 20.1 µg/ml IC50 20.6 µg/ml JF950016 IC50 12.3 µg/ml Coptis chinensis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Rosaceae Rosa chinensis Rosa laevigata Sanguisorba officinalis Rosa chinensis Rosa laevigata 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 Concentration [µg/ml] 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Sanguisorba officinalis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Rubiaceae Hedyotis diffusa P6874 / 40 Hedyotis diffusa 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 239 JF949979 IC50 13.3 µg/ml Rutaceae Evodia lepta Evodia rutaecarpa Phellodendron chinense P6869 / 35 P6870 / 36 P6890 / 56 JF949978 IC50 13.9 µg/ml IC50 16.8 µg/ml JF949986 IC50 15.6 µg/ml Evodia lepta Evodia rutaecarpa 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Phellodendron chinense 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Saururaceae Houttuynia cordata P6875 / 41 JF950006 IC50 68.3 µg/ml Houttuynia cordata 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Schisandraceae Kadsura longipedunculata Kadsura longipedunculata 150 Survival [%] 100 50 0 0.06 0.12 0.24 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 Concentration [µg/ml] 240 P6879 / 45 JF950007 IC50 0.1 µg/ml Selaginellaceae Selaginella tamariscina P6904 / 70 JF950018 IC50 13.6 µg/ml P6889 / 55 JF949985 IC50 13.7 µg/ml P6910 / 76 JF950020 IC50 16.5 µg/ml P6911 / 77 JF949993 IC50 3.3 µg/ml Selaginella tamariscina 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Valerianaceae Patrinia scabiosaefolia Patrinia scabiosaefolia 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Verbenaceae Verbena officinalis Verbena officinalis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Violaceae Viola yezoensis Viola yezoensis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 241 Zingiberaceae Alpinia galanga P6837 / 03 P6917 / 78 Alpinia oxyphylla - Alpinia galanga IC50 1.4 µg/ml IC50 0.7 µg/ml Alpinia oxyphylla 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 242 125 313 625 1250 2500 5000 10.4.3 Methanol extracts: HeLa Acanthaceae Andrographis paniculata P6838 / 04 JF949965 IC50 323.3 µg/ml P6848 / 14 JF949970 IC50 499.8 µg/ml P6844 / 10 P6845 / 11 P6849 / 15 P6854 / 20 P6902 / 68 JF950021 JF949968 JF950022 JF949973 JF949988 Andrographis paniculata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Amaranthaceae Celosia cristata Celosia cristata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Apiaceae Bupleurum chinense Bupleurum marginatum Centella asiatica Cnidium monnieri Saposhnikovia divaricata Bupleurum chinense IC50 646.4 µg/ml IC50 1147.0 µg/ml IC50 773.0 µg/ml IC50 251.1 µg/ml IC50 1515.6 µg/ml Bupleurum marginatum 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 243 625 1250 2500 5000 Centella asiatica Cnidium monnieri 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 Concentration [µg/ml] Saposhnikovia divaricata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Araliaceae Eleutherococcus senticosus Panax ginseng China Panax ginseng Korea Panax notoginseng P6919 / 79 P8088 / 81 P8086 / 81 P6887 / 53 Eleutherococcus senticosus JF950028 JF950029 JF950030 IC50 692.0 µg/ml IC50 1427.9 µg/ml IC50 1317.9 µg/ml IC50 1241.6 µg/ml Panax ginseng China 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 625 1250 2500 5000 Concentration [µg/ml] Panax ginseng Korea Panax notoginseng 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 244 Arecaceae Areca catechu P6840 / 06 - IC50 414.2 µg/ml Areca catechu 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Asclepiadaceae Cynanchum paniculatum P6858 / 24 JF949975 IC50 500.5 µg/ml Cynanchum paniculatum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Asteraceae Artemisia annua Artemisia capillaris Arctium lappa Centipeda minima Chrysanthemum indicum Chrysanthemum morifolium Eclipta prostrata Senecio scandens Siegesbeckia orientalis Taraxacum officinale P6841 / 07 P6842 / 08 P6839 / 05 P6850 / 16 P6851 / 17 P6852 / 18 P6863 / 29 P6905 / 71 P6906 / 72 P6908 / 74 JF949966 JF949967 JF949994 JF949971 JF949972 JF950000 JF949989 JF949990 JF950019 Artemisia annua IC50 287.2 µg/ml IC50 314.9 µg/ml IC50 1467.7 µg/ml IC50 219.1 µg/ml IC50 355.7 µg/ml IC50 349.2 µg/ml IC50 329.7 µg/ml IC50 299.3 µg/ml IC50 237.5 µg/ml IC50 636.7 µg/ml Artemisia capillaris 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 245 625 1250 2500 5000 Arctium lappa Centipeda minima 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 625 1250 2500 5000 625 1250 2500 5000 625 1250 2500 5000 Concentration [µg/ml] Chrysanthemum indicum Chrysanthemum morifolium 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 Concentration [µg/ml] Eclipta prostrata Senecio scandens 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 Concentration [µg/ml] Siegesbeckia orientalis Taraxacum officinale 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 246 Berberidaceae Berberis bealei Dysosma versipellis Epimedium koreanum P6883 / 49 JF949996 IC50 149.7 µg/ml P6862 / 28 IC50 385.2 µg/ml P6865 / 31 JF950002 IC50 257.5 µg/ml Berberis bealei Dysosma versipellis 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 Concentration [µg/ml] Epimedium koreanum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Brassicaceae Capsella bursa-pastoris Isatis indigotica (root) Isatis indigotica (leaf) P6846 / 12 JF949997 IC50 141.0 µg/ml P6877 / 43 JF949981 IC50 674.3 µg/ml P6878 / 44 JF949981 IC50 274.2 µg/ml Capsella bursa-pastoris Isatis indigotica (root) 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] Isatis indigotica (leaf) Survival [%] 100 50 0 19.5 39 78 156 313 39 78 156 313 Concentration [µg/ml] 150 9.8 19.5 625 1250 2500 5000 Concentration [µg/ml] 247 625 1250 2500 5000 Caprifoliaceae Lonicera confusa P6880 / 46 JF949982 IC50 923.5 µg/ml Lonicera confusa 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Convallariaceae Polygonatum kingianum P6892 / 58 JF950027 IC50 1517.9 µg/ml Polygonatum kingianum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Cupressaceae Platycladus orientalis P6891 / 57 JF950011 IC50 705.5 µg/ml Platycladus orientalis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Dryopteridaceae Cyrtomium fortunei P6859 / 25 JF949998 IC50 722.0 µg/ml Cyrtomium fortunei 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 248 Ephedraceae Ephedra sinica P6864 / 30 JF950001 IC50 163.5 µg/ml Ephedra sinica 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Equisetaceae Equisetum hiemale P6866 / 32 JF950003 IC50 241.2 µg/ml Equisetum hiemale 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Euphorbiaceae Croton tiglium P6856 / 22 Croton tiglium 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 249 - IC50 297.0 µg/ml Abrus cantoniensis Acacia catechu Cassia tora Desmodium styracifolium Glycyrrhiza inflata Spatholobus suberectus Sutherlandia frutescens Fabaceae P6835 / 01 P6836 / 02 P6847 / 13 P6861 / 27 P6873 / 39 P6907 / 73 tba / 83 IC50 612.4 µg/ml IC50 318.0 µg/ml IC50 670.9 µg/ml IC50 324.3 µg/ml IC50 528.3 µg/ml IC50 237.5 µg/ml IC50 586.6 µg/ml JF949964 JF949969 JF949976 JF950025 JF949991 - Abrus cantoniensis Acacia catechu 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 625 1250 2500 5000 625 1250 2500 5000 Concentration [µg/ml] Cassia tora Desmodium styracifolium 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 Concentration [µg/ml] Glycyrrhiza inflata Spatholobus suberectus 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 250 Sutherlandia frutescens 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Geraniaceae Geranium wilfordii Pelargonium sidoides P6867 / 33 JF949977 IC50 236.0 µg/ml tba / 82 IC50 112.3 µg/ml Geranium wilfordii Pelargonium sidoides 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] Ginkgoaceae 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Ginkgo biloba P6872 / 38 JF950005 IC50 302.9 µg/ml Ginkgo biloba 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Hypericaceae Hypericum japonicum P6876 / 42 JF949980 IC50 177.5 µg/ml Hypericum japonicum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 251 Iridaceae Belamcanda chinensis P6843 / 09 JF949995 IC50 522.6 µg/ml Belamcanda chinensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Lamiaceae Mentha haplocalyx Prunella vulgaris Scutellaria baicalensis P6884 / 50 JF949984 IC50 375.0 µg/ml P6896 / 62 JF950013 IC50 475.4 µg/ml P6903 / 69 JF950017 IC50 367.6 µg/ml Mentha haplocalyx Prunella vulgaris 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Scutellaria baicalensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Lauraceae Cinnamomum cassia P6853 / 19 JF950023 IC50 272.4 µg/ml Cinnamomum cassia 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 252 Loranthaceae Taxillus chinensis P6909 / 75 JF949992 IC50 1213.4 µg/ml Taxillus chinensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Lythraceae Punica granatum P6897 / 63 JF950014 IC50 211.2 µg/ml Punica granatum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Magnoliaceae Magnolia officinalis P6882 / 48 JF950008 IC50 49.1 µg/ml Magnolia officinalis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Melanthiaceae Paris polyphylla P6888 / 54 JF950010 IC50 35.0 µg/ml Paris polyphylla 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 253 Myrsinaceae Lysimachia christinae P6881 / 47 JF949983 IC50 1752.6 µg/ml Lysimachia christinae 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Myrtaceae Eucalyptus robusta P6868 / 34 - IC50 181.4 µg/ml Eucalyptus robusta 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Ophioglossaceae Ophioglossum vulgatum P6885 / 51 JF950009 IC50 469.0 µg/ml Ophioglossum vulgatum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Orchidaceae Dendrobium loddigesii P6860 / 26 JF949999 IC50 232.8 µg/ml Dendrobium loddigesii 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 254 Paeoniaceae Paeonia lactiflora P6886 / 52 JF950026 IC50 294.6 µg/ml Paeonia lactiflora 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Pedaliaceae Harpagophytum procumbens tba / 80 - IC50 692.6 µg/ml Harpagophytum procumbens 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Poaceae Cymbopogon distans P6857 / 23 JF949974 IC50 98.8 µg/ml Cymbopogon distans 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Fallopia japonica (syn. Polygonum cuspidatum) Polygonum aviculare Polygonum multiflorum Rheum officinale Polygonaceae P6894 / 60 JF950004 IC50 317.3 µg/ml P6893 / 59 JF950012 IC50 342.3 µg/ml P6895 / 61 JF949987 IC50 437.4 µg/ml P6898 / 64 JF950015 IC50 270.9 µg/ml Fallopia japonica Polygonum aviculare 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 255 625 1250 2500 5000 Polygonum multiflorum Rheum officinale 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 Concentration [µg/ml] Ranunculaceae Coptis chinensis P6855 / 21 JF950024 IC50 81.8 µg/ml Coptis chinensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Rosaceae Rosa chinensis Rosa laevigata Sanguisorba officinalis P6899 / 65 IC50 266.6 µg/ml P6900 / 66 IC50 1855.4 µg/ml P6901 / 67 JF950016 IC50 158.5 µg/ml Rosa chinensis Rosa laevigata 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] Sanguisorba officinalis Survival [%] 100 50 0 19.5 39 78 156 313 39 78 156 313 Concentration [µg/ml] 150 9.8 19.5 625 1250 2500 5000 Concentration [µg/ml] 256 625 1250 2500 5000 Rubiaceae Hedyotis diffusa P6874 / 40 JF949979 IC50 796.1 µg/ml Hedyotis diffusa 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Rutaceae Evodia lepta Evodia rutaecarpa Phellodendron chinense P6869 / 35 JF949978 IC50 350.7 µg/ml P6870 / 36 IC50 297.4 µg/ml P6890 / 56 JF949986 IC50 487.6 µg/ml Evodia lepta Evodia rutaecarpa 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Phellodendron chinense 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Saururaceae Houttuynia cordata P6875 / 41 JF950006 IC50 575.2 µg/ml Houttuynia cordata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 257 Schisandraceae Kadsura longipedunculata P6879 / 45 JF950007 IC50 86.1 µg/ml Kadsura longipedunculata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Selaginellaceae Selaginella tamariscina P6904 / 70 JF950018 IC50 393.9 µg/ml Selaginella tamariscina 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Valerianaceae Patrinia scabiosaefolia P6889 / 55 JF949985 IC50 159.4 µg/ml Patrinia scabiosaefolia 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Verbenaceae Verbena officinalis P6910 / 76 JF950020 IC50 334.7 µg/ml Verbena officinalis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 258 Violaceae Viola yezoensis P6911 / 77 JF949993 IC50 297.5 µg/ml Viola yezoensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Zingiberaceae Alpinia galanga Alpinia oxyphylla P6837 / 03 P6917 / 78 - Alpinia galanga IC50 111.7 µg/ml IC50 213.8 µg/ml Alpinia oxyphylla 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 259 625 1250 2500 5000 10.4.4 Methanol extracts: T. b. brucei Andrographis paniculata Acanthaceae P6838 / 04 JF949965 IC50 28.8 µg/ml P6848 / 14 JF949970 IC50 77.2 µg/ml P6844 / 10 P6845 / 11 P6849 / 15 P6854 / 20 P6902 / 68 JF950021 JF949968 JF950022 JF949973 JF949988 Andrographis paniculata 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Amaranthaceae Celosia cristata Celosia cristata 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Apiaceae Bupleurum chinense Bupleurum marginatum Centella asiatica Cnidium monnieri Saposhnikovia divaricata Bupleurum chinense IC50 120.8 µg/ml IC50 111.9 µg/ml IC50 44.7 µg/ml IC50 17.9 µg/ml IC50 999.5 µg/ml Bupleurum marginatum 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 260 125 313 625 1250 2500 5000 Centella asiatica Cnidium monnieri 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 125 313 625 1250 2500 5000 Concentration [µg/ml] Saposhnikovia divaricata 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Araliaceae Eleutherococcus senticosus Panax ginseng China Panax ginseng Korea Panax notoginseng P6919 / 79 P8088 / 81 P8086 / 81 P6887 / 53 Eleutherococcus senticosus JF950028 JF950029 JF950030 IC50 17.3 µg/ml IC50 319.0 µg/ml IC50 1075.0 µg/ml IC50 469.6 µg/ml Panax ginseng China 150 100 100 Survival [%] Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 625 1250 2500 5000 Concentration [µg/ml] Panax ginseng Korea Panax notoginseng 150 100 100 Survival [%] Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 261 Arecaceae Areca catechu P6840 / 06 - IC50 118.1 µg/ml Areca catechu 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Asclepiadaceae Cynanchum paniculatum P6858 / 24 JF949975 IC50 39.3 µg/ml P6841 / 07 P6842 / 08 P6839 / 05 P6850 / 16 P6851 / 17 P6852 / 18 P6863 / 29 P6905 / 71 P6906 / 72 P6908 / 74 JF949966 JF949967 JF949994 JF949971 JF949972 JF950000 JF949989 JF949990 JF950019 Cynanchum paniculatum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Asteraceae Artemisia annua Artemisia capillaris Arctium lappa Centipeda minima Chrysanthemum indicum Chrysanthemum morifolium Eclipta prostata Senecio scandens Siegesbeckia orientalis Taraxacum officinale Artemisia annua IC50 51.2 µg/ml IC50 51.9 µg/ml IC50 2229.0 µg/ml IC50 13.3 µg/ml IC50 15.3 µg/ml IC50 24.9 µg/ml IC50 39.6 µg/ml IC50 18.6 µg/ml IC50 12.3 µg/ml IC50 64.9 µg/ml Artemisia capillaris 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 262 125 313 625 1250 2500 5000 Arctium lappa Centipeda minima 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 125 313 625 1250 2500 5000 125 313 625 1250 2500 5000 125 313 625 1250 2500 5000 Concentration [µg/ml] Chrysanthemum indicum Chrysanthemum morifolium 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 Concentration [µg/ml] Eclipta prostrata Senecio scandens 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 Concentration [µg/ml] Siegesbeckia orientalis Taraxacum officinale 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 263 Berberidaceae Berberis bealei P6883 / 49 P6862 / 28 P6865 / 31 Dysosma versipellis Epimedium koreanum Berberis bealei JF949996 IC50 7.8 µg/ml IC50 53.2 µg/ml JF950002 IC50 12.6 µg/ml Dysosma versipellis 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Epimedium koreanum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Brassicaceae Capsella bursa-pastoris Isatis indigotica (root) Isatis indigotica (leaf) P6846 / 12 P6877 / 43 P6878 / 44 Capsella bursa-pastoris JF949997 IC50 60.9 µg/ml JF949981 IC50 94.6 µg/ml JF949981 IC50 14.6 µg/ml Isatis indigotica (root) 150 100 100 Survival [%] Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Isatis indigotica (leaf) Survival [%] 100 50 0 0.98 1.95 3.91 7.81 15.63 31.25 62.5 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 150 0.49 0.49 125 313 625 1250 2500 5000 Concentration [µg/ml] 264 125 313 625 1250 2500 5000 Caprifoliaceae Lonicera confusa P6880 / 46 JF949982 IC50 38.0 µg/ml P6892 / 58 JF950027 IC50 119.5 µg/ml P6891 / 57 JF950011 IC50 84.2 µg/ml P6859 / 25 JF949998 IC50 61.0 µg/ml Lonicera confusa 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Convallariaceae Polygonatum kingianum Polygonatum kingianum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Cupressaceae Platycladus orientalis Platycladus orientalis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Dryopteridaceae Cyrtomium fortunei Cyrtomium fortunei 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 265 Ephedraceae Ephedra sinica P6864 / 30 JF950001 IC50 23.4 µg/ml P6866 / 32 JF950003 IC50 51.6 µg/ml Ephedra sinica 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Equisetaceae Equisetum hiemale Equisetum hiemale 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Euphorbiaceae Croton tiglium P6856 / 22 Croton tiglium 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 266 - IC50 150.4 µg/ml Fabaceae Abrus cantoniensis Acacia catechu Cassia tora Desmodium styracifolium Glycyrrhiza inflata Spatholobus suberectus Sutherlandia frutescens P6835 / 01 P6836 / 02 P6847 / 13 P6861 / 27 P6873 / 39 P6907 / 73 tba / 83 JF949964 JF949969 JF949976 JF950025 JF949991 - Abrus cantoniensis IC50 73.5 µg/ml IC50 50.8 µg/ml IC50 276.9 µg/ml IC50 40.1 µg/ml IC50 39.0 µg/ml IC50 67.8 µg/ml IC50 87.4 µg/ml Acacia catechu 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 313 625 1250 2500 5000 313 625 1250 2500 5000 Concentration [µg/ml] Cassia tora Desmodium styracifolium 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 125 Concentration [µg/ml] Glycyrrhiza inflata Spatholobus suberectus 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 267 125 Sutherlandia frutescens 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Geraniaceae Geranium wilfordii Pelargonium sidoides P6867 / 33 tba / 82 Geranium wilfordii JF949977 IC50 13.3 µg/ml IC50 18.3 µg/ml Pelargonium sidoides 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 Concentration [µg/ml] Ginkgoaceae 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Ginkgo biloba P6872 / 38 JF950005 IC50 39.3 µg/ml P6876 / 42 JF949980 IC50 23.6 µg/ml Ginkgo biloba 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Hypericaceae Hypericum japonicum Hypericum japonicum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 268 Iridaceae Belamcanda chinensis P6843 / 09 JF949995 IC50 80.2 µg/ml P6884 / 50 P6896 / 62 P6903 / 69 JF949984 IC50 16.2 µg/ml JF950013 IC50 25.1 µg/ml JF950017 IC50 86.2 µg/ml Belamcanda chinensis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Lamiaceae Mentha haplocalyx Prunella vulgaris Scutellaria baicalensis Mentha haplocalyx Prunella vulgaris 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 Concentration [µg/ml] 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Scutellaria baicalensis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Lauraceae Cinnamomum cassia P6853 / 19 Cinnamomum cassia 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 269 JF950023 IC50 13.4 µg/ml Loranthaceae Taxillus chinensis P6909 / 75 JF949992 IC50 59.2 µg/ml P6897 / 63 JF950014 IC50 8.1 µg/ml P6882 / 48 JF950008 IC50 4.3 µg/ml P6888 / 54 JF950010 IC50 11.8 µg/ml Taxillus chinensis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Lythraceae Punica granatum Punica granatum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Magnoliaceae Magnolia officinalis Magnolia officinalis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Melanthiaceae Paris polyphylla Paris polyphylla 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 270 Myrsinaceae Lysimachia christinae P6881 / 47 JF949983 IC50 52.1 µg/ml Lysimachia christinae 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Myrtaceae Eucalyptus robusta P6868 / 34 - IC50 16.3 µg/ml Eucalyptus robusta 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Ophioglossaceae Ophioglossum vulgatum P6885 / 51 JF950009 IC50 33.2 µg/ml P6860 / 26 JF949999 IC50 27.6 µg/ml Ophioglossum vulgatum 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Orchidaceae Dendrobium loddigesii Dendrobium loddigesii 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 271 Paeoniaceae Paeonia lactiflora P6886 / 52 JF950026 IC50 11.7 µg/ml Paeonia lactiflora 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Pedaliaceae Harpagophytum procumbens tba / 80 - IC50 21.4 µg/ml Harpagophytum procumbens 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Poaceae Cymbopogon distans P6857 / 23 JF949974 IC50 18.9 µg/ml P6894 / 60 JF950004 IC50 19.0 µg/ml P6893 / 59 P6895 / 61 P6898 / 64 JF950012 IC50 49.1 µg/ml JF949987 IC50 62.1 µg/ml JF950015 IC50 24.5 µg/ml Cymbopogon distans 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Polygonaceae Fallopia japonica (syn. Polygonum cuspidatum) Polygonum aviculare Polygonum multiflorum Rheum officinale Fallopia japonica Polygonum aviculare 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 272 125 313 625 1250 2500 5000 Polygonum multiflorum Rheum officinale 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 3.91 Concentration [µg/ml] 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Ranunculaceae Coptis chinensis P6855 / 21 JF950024 IC50 0.4 µg/ml P6899 / 65 P6900 / 66 P6901 / 67 IC50 12.5 µg/ml IC50 102.9 µg/ml JF950016 IC50 4.0 µg/ml Coptis chinensis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Rosaceae Rosa chinensis Rosa laevigata Sanguisorba officinalis Rosa chinensis Rosa laevigata 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Sanguisorba officinalis Survival [%] 100 50 0 0.98 1.95 3.91 7.81 15.63 31.25 62.5 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 150 0.49 0.49 125 313 625 1250 2500 5000 Concentration [µg/ml] 273 125 313 625 1250 2500 5000 Rubiaceae Hedyotis diffusa P6874 / 40 JF949979 IC50 24.9 µg/ml P6869 / 35 P6870 / 36 P6890 / 56 JF949978 IC50 44.4 µg/ml IC50 29.5 µg/ml JF949986 IC50 14.1 µg/ml Hedyotis diffusa 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Rutaceae Evodia lepta Evodia rutaecarpa Phellodendron chinense Evodia lepta Evodia rutaecarpa 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 0.49 0.98 1.95 Concentration [µg/ml] 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Phellodendron chinense 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Saururaceae Houttuynia cordata P6875 / 41 Houttuynia cordata 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 274 JF950006 IC50 97.6 µg/ml Schisandraceae Kadsura longipedunculata P6879 / 45 JF950007 IC50 11.8 µg/ml Kadsura longipedunculata 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Selaginellaceae Selaginella tamariscina P6904 / 70 JF950018 IC50 33.4 µg/ml Selaginella tamariscina 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Valerianaceae Patrinia scabiosaefolia P6889 / 55 JF949985 IC50 19.0 µg/ml Patrinia scabiosaefolia 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Verbenaceae Verbena officinalis P6910 / 76 JF950020 IC50 20.5 µg/ml Verbena officinalis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 275 Violaceae Viola yezoensis P6911 / 77 JF949993 IC50 24.7 µg/ml Viola yezoensis 150 Survival [%] 100 50 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] Zingiberaceae Alpinia galanga Alpinia oxyphylla P6837 / 03 P6917 / 78 Alpinia galanga - IC50 15.4 µg/ml IC50 2.0 µg/ml Alpinia oxyphylla 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 125 313 625 1250 2500 5000 Concentration [µg/ml] 0.49 0.98 1.95 3.91 7.81 15.63 31.25 62.5 Concentration [µg/ml] 276 125 313 625 1250 2500 5000 10.4.5 Water extracts: HeLa Andrographis paniculata Acanthaceae P6838 / 04 JF949965 IC50 576.0 µg/ml Andrographis paniculata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Amaranthaceae Celosia cristata P6848 / 14 JF949970 IC50 2773.5 µg/ml Celosia cristata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Apiaceae Bupleurum chinense Bupleurum marginatum Centella asiatica Cnidium monnieri Saposhnikovia divaricata P6844 / 10 P6845 / 11 P6849 / 15 P6854 / 20 P6902 / 68 Bupleurum chinense JF950021 JF949968 JF950022 JF949973 JF949988 IC50 339.3 µg/ml IC50 838.1 µg/ml IC50 1436.8 µg/ml IC50 775.5 µg/ml IC50 1024.7 µg/ml Bupleurum marginatum 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 277 625 1250 2500 5000 Centella asiatica Cnidium monnieri 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 Concentration [µg/ml] Saposhnikovia divaricata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Araliaceae Eleutherococcus senticosus Panax ginseng China Panax ginseng Korea Panax notoginseng P6919 / 79 IC50 430.0 µg/ml P8088 / 81 JF950028 IC50 2594.6 µg/ml P8086 / 81 JF950029 IC50 2594.6 µg/ml P6887 / 53 JF950030 IC50 1574.9 µg/ml Eleutherococcus senticosus Panax ginseng China 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 625 1250 2500 5000 Concentration [µg/ml] Panax ginseng Korea Panax notoginseng 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 278 Arecaceae Areca catechu P6840 / 06 - IC50 378.1 µg/ml Areca catechu 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Asclepiadaceae Cynanchum paniculatum P6858 / 24 JF949975 IC50 693.9 µg/ml Cynanchum paniculatum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Asteraceae Artemisia annua Artemisia capillaris Arctium lappa Centipeda minima Chrysanthemum indicum Chrysanthemum morifolium Eclipta prostrata Senecio scandens Siegesbeckia orientalis Taraxacum officinale P6841 / 07 P6842 / 08 P6839 / 05 P6850 / 16 P6851 / 17 P6852 / 18 P6863 / 29 P6905 / 71 P6906 / 72 P6908 / 74 JF949966 JF949967 JF949994 JF949971 JF949972 JF950000 JF949989 JF949990 JF950019 Artemisia annua IC50 775.5 µg/ml IC50 561.7 µg/ml IC50 516.3 µg/ml IC50 207.2 µg/ml IC50 583.4 µg/ml IC50 1045.8 µg/ml IC50 667.0 µg/ml IC50 607.9 µg/ml IC50 542.8 µg/ml IC50 708.5 µg/ml Artemisia capillaris 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 279 625 1250 2500 5000 Arctium lappa Centipeda minima 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 625 1250 2500 5000 625 1250 2500 5000 625 1250 2500 5000 Concentration [µg/ml] Chrysanthemum indicum Chrysanthemum morifolium 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 Concentration [µg/ml] Eclipta prostrata Senecio scandens 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 Concentration [µg/ml] Siegesbeckia orientalis Taraxacum officinale 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 280 Berberidaceae Berberis bealei Dysosma versipellis Epimedium koreanum P6883 / 49 JF949996 IC50 659.4 µg/ml P6862 / 28 IC50 1274.8 µg/ml P6865 / 31 JF950002 IC50 280.2 µg/ml Berberis bealei Dysosma versipellis 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 Concentration [µg/ml] Epimedium koreanum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Brassicaceae Capsella bursa-pastoris Isatis indigotica (root) Isatis indigotica (leaf) P6846 / 12 JF949997 IC50 2406.4 µg/ml P6877 / 43 JF949981 IC50 2427.4 µg/ml P6878 / 44 JF949981 IC50 1223.5 µg/ml Capsella bursa-pastoris Isatis indigotica (root) 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] Isatis indigotica (leaf) Survival [%] 100 50 0 19.5 39 78 156 313 39 78 156 313 Concentration [µg/ml] 150 9.8 19.5 625 1250 2500 5000 Concentration [µg/ml] 281 625 1250 2500 5000 Caprifoliaceae Lonicera confusa P6880 / 46 JF949982 IC50 812.2 µg/ml Lonicera confusa 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Convallariaceae Polygonatum kingianum P6892 / 58 JF950027 IC50 2321.7 µg/ml Polygonatum kingianum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Crassulaceae Rhodiola rosea P6920 / 84 - IC50 144.4 µg/ml Rhodiola rosea 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Cupressaceae Platycladus orientalis P6891 / 57 JF950011 IC50 428.2 µg/ml Platycladus orientalis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 282 Dryopteridaceae Cyrtomium fortunei P6859 / 25 JF949998 IC50 567.4 µg/ml Cyrtomium fortunei 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Ephedraceae Ephedra sinica P6864 / 30 JF950001 IC50 193.1 µg/ml Ephedra sinica 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Equisetaceae Equisetum hiemale P6866 / 32 JF950003 IC50 1058.2 µg/ml Equisetum hiemale 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Euphorbiaceae Croton tiglium P6856 / 22 Croton tiglium 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 283 - IC50 1052.7 µg/ml Fabaceae Abrus cantoniensis Acacia catechu Cassia tora Desmodium styracifolium Glycyrrhiza inflata Spatholobus suberectus Sutherlandia frutescens P6835 / 01 P6836 / 02 P6847 / 13 P6861 / 27 P6873 / 39 P6907 / 73 tba / 83 JF949964 JF949969 JF949976 JF950025 JF949991 - Abrus cantoniensis IC50 587.1 µg/ml IC50 157.5 µg/ml IC50 1519.3 µg/ml IC50 651.4 µg/ml IC50 2288.0 µg/ml IC50 174.1 µg/ml IC50 1670.7 µg/ml Acacia catechu 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 625 1250 2500 5000 625 1250 2500 5000 Concentration [µg/ml] Cassia tora Desmodium styracifolium 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 Concentration [µg/ml] Glycyrrhiza inflata Spatholobus suberectus 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 284 Sutherlandia frutescens 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Geraniaceae Geranium wilfordii Pelargonium sidoides P6867 / 33 JF949977 IC50 62.1 µg/ml tba / 82 IC50 62.2 µg/ml Geranium wilfordii Pelargonium sidoides 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] Ginkgoaceae 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Ginkgo biloba P6872 / 38 JF950005 IC50 1717.0 µg/ml Ginkgo biloba 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Hypericaceae Hypericum japonicum P6876 / 42 JF949980 IC50 445.5 µg/ml Hypericum japonicum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 285 Iridaceae Belamcanda chinensis P6843 / 09 JF949995 IC50 1378.8 µg/ml Belamcanda chinensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Lamiaceae Mentha haplocalyx Prunella vulgaris Scutellaria baicalensis P6884 / 50 JF949984 IC50 519.1 µg/ml P6896 / 62 JF950013 IC50 341.3 µg/ml P6903 / 69 JF950017 IC50 150.0 µg/ml Mentha haplocalyx Prunella vulgaris 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Scutellaria baicalensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Lauraceae Cinnamomum cassia P6853 / 19 JF950023 IC50 713.6 µg/ml Cinnamomum cassia 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 286 Loranthaceae Taxillus chinensis P6909 / 75 JF949992 IC50 1023.2 µg/ml Taxillus chinensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Lythraceae Punica granatum P6897 / 63 JF950014 IC50 152.4 µg/ml Punica granatum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Magnoliaceae Magnolia officinalis P6882 / 48 JF950008 IC50 451.5 µg/ml Magnolia officinalis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Melanthiaceae Paris polyphylla P6888 / 54 JF950010 IC50 42.6 µg/ml Paris polyphylla 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 287 Myrsinaceae Lysimachia christinae P6881 / 47 JF949983 IC50 431.4 µg/ml Lysimachia christinae 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Myrtaceae Eucalyptus robusta P6868 / 34 - IC50 15.8 µg/ml Eucalyptus robusta 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Ophioglossaceae Ophioglossum vulgatum P6885 / 51 JF950009 IC50 1780.1 µg/ml Ophioglossum vulgatum 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Orchidaceae Dendrobium loddigesii P6860 / 26 JF949999 IC50 294.4 µg/ml Dendrobium loddigesii 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 288 Paeoniaceae Paeonia lactiflora P6886 / 52 JF950026 IC50 287.3 µg/ml Paeonia lactiflora 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Pedaliaceae Harpagophytum procumbens tba / 80 - IC50 733.4 µg/ml Harpagophytum procumbens 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Poaceae Cymbopogon distans P6857 / 23 JF949974 IC50 486.1 µg/ml Cymbopogon distans 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Fallopia japonica (syn. Polygonum cuspidatum) Polygonum aviculare Polygonum multiflorum Rheum officinale Polygonaceae P6894 / 60 JF950004 IC50 596.4 µg/ml P6893 / 59 JF950012 IC50 488.6 µg/ml P6895 / 61 JF949987 IC50 928.0 µg/ml P6898 / 64 JF950015 IC50 670.9 µg/ml Fallopia japonica Polygonum aviculare 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 289 625 1250 2500 5000 Polygonum multiflorum Rheum officinale 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 19.5 39 78 Concentration [µg/ml] 156 313 625 1250 2500 5000 Concentration [µg/ml] Ranunculaceae Coptis chinensis P6855 / 21 JF950024 IC50 101.0 µg/ml Coptis chinensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Rosaceae Rosa chinensis Rosa laevigata Sanguisorba officinalis P6899 / 65 IC50 135.8 µg/ml P6900 / 66 IC50 781.7 µg/ml P6901 / 67 JF950016 IC50 87.0 µg/ml Rosa chinensis Rosa laevigata 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] Sanguisorba officinalis Survival [%] 100 50 0 19.5 39 78 156 313 39 78 156 313 Concentration [µg/ml] 150 9.8 19.5 625 1250 2500 5000 Concentration [µg/ml] 290 625 1250 2500 5000 Rubiaceae Hedyotis diffusa P6874 / 40 JF949979 IC50 1542.7 µg/ml Hedyotis diffusa 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Rutaceae Evodia lepta Evodia rutaecarpa Phellodendron chinense P6869 / 35 JF949978 IC50 971.0 µg/ml P6870 / 36 IC50 185.6 µg/ml P6890 / 56 JF949986 IC50 750.3 µg/ml Evodia lepta Evodia rutaecarpa 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Phellodendron chinense 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Saururaceae Houttuynia cordata P6875 / 41 JF950006 IC50 2835.9 µg/ml Houttuynia cordata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 291 Schisandraceae Kadsura longipedunculata P6879 / 45 JF950007 IC50 167.6 µg/ml Kadsura longipedunculata 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Selaginellaceae Selaginella tamariscina P6904 / 70 JF950018 IC50 703.4 µg/ml Selaginella tamariscina 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Valerianaceae Patrinia scabiosaefolia P6889 / 55 JF949985 IC50 525.5 µg/ml Patrinia scabiosaefolia 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Verbenaceae Verbena officinalis P6910 / 76 JF950020 IC50 416.9 µg/ml Verbena officinalis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] 292 Violaceae Viola yezoensis P6911 / 77 JF949993 IC50 1459.2 µg/ml Viola yezoensis 150 Survival [%] 100 50 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 Concentration [µg/ml] Zingiberaceae Alpinia galanga Alpinia oxyphylla P6837 / 03 P6917 / 78 - Alpinia galanga IC50 2357.3 µg/ml IC50 1802.2 µg/ml Alpinia oxyphylla 100 100 Survival [%] 150 Survival [%] 150 50 50 0 0 9.8 19.5 39 78 156 313 625 1250 2500 5000 9.8 Concentration [µg/ml] 19.5 39 78 156 313 Concentration [µg/ml] 293 625 1250 2500 5000 294 295
© Copyright 2026 Paperzz