Seasonal and Inter-annual Changes in Dinoflagellates Community Composition in Near-shore Alabama Waters Lucie Novoveská1, William L. Smith2, Carol P. Dorsey2 and Hugh L. MacIntyre3 1Dauphin Island Sea Lab and University of South Alabama, USA Department of Public Health, USA 3Dalhousie University, Canada 2Alabama Why Dinoflagellates? Dinoflagellates are causing Harmful Algal Blooms (HABs) HABs may impact the entire ecosystem (toxin production, oxygen depletion, etc.) 75-80% of toxic phytoplankton species are dinoflagellates (Cembella 2003) ~2000 living dinoflagellate species, 1700 are marine (Taylor et al. 2008) Prorocentrum minimum bloomed in winter and spring in 2003, 2005, 2007, 2009 and 2011 in coastal Alabama. Picture courtesy of ADPH Karlodinium veneficum bloomed in summer 2007. Fish tested positive for karlotoxin (KmTx2) (Dr. Place University of Maryland, Center for Environmental Science). Goal Our goal is to describe the temporal variability in dinoflagellate community composition in nearshore Alabama waters and to relate it to environmental changes. Sample Collection Alabama Department of Public Health collected samples at 4 sites bi-weekly over a 10-year period (1999-2008). For each sample, dinoflagellate composition was described and temperature and salinity were measured at the time of collection. Data hurdles... Missing data Changes in names: synonyms Gonyaulax monilata to Alexandrium monilatum Changes in counting personnel: Karenia spp. to Karenia mikimotoi High degree of merging: Prorocentrum minimum var. triangulatum Prorocentrum minimum var. minimum Prorocentrum minimum var. mariae-lebouiae From Jacob Larsen 114 taxonomic groups in 37 genera (22 ecosystem disruptive species) Akashiwo sanguinea Ceratium trichoceros Heterocapsa rotundata Podolampas spp Proto. depressum Alexandrium monilatum Ceratium tripos Heterocapsa spp. Podolampas palmipes Proto. divergens Alexandrium spp. Cochlodinium spp. Heterocapsa triquetra Polykrikos kofoidii Proto. grande Amphidiniopsis kofoidii Dinophysis acuminata Karenia brevis Polykrikos schwartzii Proto. leonis Amphidiniopsis spp Dinophysis acuta Karenia mikimotoi Polykrikos spp. Proto. oblongum Amphidinium carterae Dinophysis caudata Karenia papilionaceae Pronoctiluca acuta Proto. pallidum Amphidinium klebsii Dinophysis spp. Karenia spp. Pronoctiluca pelagica Proto. pellucidum Amphidinium spp. Diplopsalis lenticula Karlodinium venficum Prorocentrum compressum Proto. pentagonum Balechina coerulea Diplopsalis spp. Katodinium glaucum P. concavum Proto. punctulatum Brachidinium capitatum Goniodoma polyedricum Katodinium spp. P. conicum Proto. quinquecorne Ceratium carriense Gonyaulax diegensis Krypto. foliaceum P. emarginatum Protoperidinium spp. Ceratium furca Gonyaulax digitale Kryptoperidinium spp. P. gracile Proto. steidingerae Ceratium fusus Gonyaulax minima Lingulodinium polyedrum P. lima Ceratium hircus Gonyaulax polygramma Lingulodinium spp. P. mexicanum Pyrophacus horologium Ceratium horridum Gonyaulax spp. Noctiluca scintillans P. micans Pyrophacus spp. Ceratium incisum Gonyaulax spinifera Oxyphysis oxytoxoides P. minimum Pyrophacus steinii Ceratium kofoidii Gymnodinium spp. Oxyphysis spp. P. rostratum Scripsiella spp. Ceratium lineatum Gymn. splendens Oxytoxum scolopax P. scutellum Scripsiella trochoidea Ceratium macroceros Gyrodinium estuariale Paleophalacroma spp. Prorocentrum spp. Ceratium massiliense Gyrodinium simplex Phalacroma biceps P. triestinum Spatulodinium pseudonoctiluca Ceratium pentagonum Gyrodinium spp. Phalacroma rotundatum Protoperidinium claudicans Ceratium spp. Gyrodinium spirale Pheopolykrikos hartmannii Proto. conicum Ceratium symmetricum Heterocapsa niei Pheopolykrikos spp. Proto. crassipes Pyrodinium bahamense Takayama pulchella Torodinium teredo Unidentified Dinoflagellate Karenia brevis 35,000 Number of cells per liter Monthly Average 30,000 25,000 20,000 15,000 10,000 5,000 0 1 2 3 4 5 6 7 8 9 10 11 12 Alexandrium monilatum Monthly Average Number of cells per liter 4,000 3,000 2,000 1,000 0 1 2 3 4 5 6 7 8 9 10 11 12 Average Dinoflagellate Composition per Month Multi-dimensional Scaling Analysis (MDS) of Dinoflagellate Composition 02 01 winter 12 fall 11 03 spring 04 10 summer 05 07 09 08 Strong seasonal cycle Bray- Curtis Similarity: Stress 0.05 (Primer E) 06 Annual Average Number of cells per liter 25,000 Karenia brevis 20,000 15,000 10,000 5,000 0 10,000 Alexandrium monilatum Number of cells per liter Annual Average 8,000 6,000 4,000 2,000 0 Average Dinoflagellate Composition per Year Multi-dimensional Scaling Analysis (MDS) of Dinoflagellate Composition P. micans (10%) 1999 2007 2005 2008 K. brevis (37%) K. brevis (35%) K. brevis (31%) H. triquetra (8%) 2004 2001 2000 A. monilatum (18%) 2003 P. scutellum (13%) 2006 P. minimum (14%) P. micans (12%) 2002 Shifts between the years Bray- Curtis Similarity: Stress 0.09 (Primer E) Primer E: SIMPER analysis Dinoflagellate Community Composition vs. Environmental Data Temperature and Salinity combined explained 32% of monthly variation among dinoflagellate community (p=0.01) but it did not significantly explain interannual variation (Primer E: BIOENV analysis) Acquired Data: River Discharge (Daily Values) AL Perd ido Bay USGS stations (red) in nearshore Alabama waters Acquired Data: Climate Indices (Monthly Values) Multivariate El Niño/Southern Oscillation (ENSO) North Atlantic Oscillation (NAO) East Pacific/ North Pacific Pattern (EP/NP) NAO Pacific/ North American Pattern (PNA) Madden Julian Oscillation (MJO) 2.5 ENSO + ENSO NAO - 1.5 -1.5 -1.5 -2.5 -2.5 2008 2008 2007 2007 2006 2006 2005 2005 2004 2004 2003 2003 2002 2002 2001 2001 -0.5 -0.5 2000 2000 0.5 1999 1999 Normalized Normalizedanomalies anomalies Tropical Northern Atlantic Index (TNA) Phytoplankton and Climate Indices ENSO: Moore, S.K. et al., 2010. The relative influences of El Nino Southern Oscillation and Pacific Decadal Oscillation on paralytic shellfish toxin accumulation in Pacific Northwest shellfish. L&O 55(6): 2262-2274. Ochoa, J.L., 2003. ENSO phenomenon and toxic red tides in Mexico. Geofisica Internacional, 42(3): 505-515. NAO: Edwards, M. et al., 2006. Regional climate change and harmful algal blooms in the northeast Atlantic. L&O 51(2): 820-829. Belgrano, A et al., 1999. North Atlantic Oscillation primary productivity and toxic phytoplankton in the Gullmar Fjord, Sweden (1985-1996). Proc. R. Soc. 266(1418): 425-430. MJO: Isoguchi, O. and Kawamura, H., 2006. MJO-related summer cooling and phytoplankton blooms in the South China Sea in recent years. Geo. Res. L. 33(16). Which environmental variables are driving the dinoflagellate composition? Environmental variables: Climate indices daily values were interpolated from monthly values. Discharge, temperature and 6 climate indices data were averaged per 2-week interval: 2 weeks prior collections, 2-4 weeks prior collection and 4-6 weeks prior collections. Dinoflagellate composition: Biweekly data for 4 sites more than 80% similar average across the sites Which environmental variables are driving the dinoflagellate composition? (PRIMER E: BIOENV analysis) Average per year and month: ENSO (Rho = 0.20, p = 0.01, n = 120) Average per year: ENSO, NAO, PNA (Rho = 0.66, p = 0.01, n = 10), ENSO alone (Rho = 0.41) Discharge (m3 s-1) 1500 1200 900 600 300 0 -1.2 -0.8 -0.4 0 0.4 ENSO (MEI) 0.8 1.2 Big portion of inter-annual variation in dinoflagellate composition was explained by climate indices. Ideally, we would have more data… Grazing Competition Nutrients Viral lysis Dinos Light Conclusions Analysis of water samples collected from AL coastal waters over 10 years showed strong seasonal cycle. Significant portion of monthly variation in dinoflagellate composition was explained by temperature and salinity. There was a relationship between inter-annual dinoflagellate composition variability and El Nino Southern Oscillation. Acknowledgement We thank personnel at the Baldwin County Health Department and Alabama Department of Environmental Management (ADEM), particularly Camilla English and Suzie Farr, for sample collection. We also thank Lei Hu for help with database work. Average Dinoflagellate Composition per Site Beach Samples There is a difference in dinoflagellate composition going from East to West. Average Density of Dinoflagellates per Year Pattern is driven by Prorocentrum minimum bloom in 2003, 2004, 2005 and 2007.
© Copyright 2026 Paperzz