CHAPTER 4 CHEMICAL REACTIONS PRACTICE EXAMPLES 1A (a) Unbalanced reaction: Balance Ca & PO43-: Balance H atoms: Self Check: H3PO4(aq) + CaO(s) 2 H3PO4(aq) + 3 CaO(s) 2 H3PO4(aq) + 3 CaO(s) 6 H + 2 P + 11 O + 3 Ca Ca3(PO4)2(aq) + H2O(l) Ca3(PO4)2(aq) + H2O(l) Ca3(PO4)2(aq) + 3 H2O(l) 6 H + 2 P + 11 O + 3 Ca (b) Unbalanced reaction: Balance C& H: Balance O atoms: Self Check: C3H8(g) + O2(g) C3H8(g) + O2(g) C3H8(g) + 5 O2(g) 3 C + 8 H + 10 O CO2(g) + H2O(g) 3 CO2(g) + 4 H2O(g) 3 CO2(g) + 4 H2O(g) 3 C + 8 H + 10 O (a) Unbalanced reaction: NH3(g) + O2(g) Balance N and H: NH3(g) + O2(g) Balance O atoms: NH3(g) + 7/4 O2(g) Multiply by 4 (whole #): 4 NH3(g) + 7 O2(g) Self Check: 4 N + 12 H + 14 O NO2(g) + H2O(g) NO2(g) + 3/2 H2O(g) NO2(g) + 3/2 H2O(g) 4 NO2(g) + 6 H2O(g) 4 N + 12 H + 14 O (b) Unbalanced reaction: Balance H atoms: Balance O atoms: Balance N atoms: Multiply by 4 (whole #) Self Check: NO2(g) + NH3(g) NO2(g) + 2 NH3(g) 3/2 NO2(g) + 2 NH3(g) 3/2 NO2(g) + 2 NH3(g) 6 NO2(g) + 8 NH3(g) 14 N + 24 H + 12 O N2(g) + H2O(g) N2(g) + 3 H2O(g) N2(g) + 3 H2O(g) 7/4 N2(g) + 3 H2O(g) 7 N2(g) + 12 H2O(g) 14 N + 24 H + 12 O HgS(s) + CaO(s) HgS(s) + 4 CaO(s) HgS(s) + 4 CaO(s) 4 HgS(s) + 4 CaO(s) 4 HgS(s) + 4 CaO(s) 4 Hg + 4 S + 4 O + 4 Ca 1B 2A Unbalanced reaction: Balance O atoms: Balance Ca atoms: Balance S atoms: Balance Hg atoms: Self Check: 66 CaS(s) + CaSO4(s) + Hg(l) CaS(s) + CaSO4(s) + Hg(l) 3 CaS(s) + CaSO4(s) + Hg(l) 3 CaS(s) + CaSO4(s) + Hg(l) 3 CaS(s) + CaSO4(s) + 4 Hg(l) 4 Hg + 4 S + 4 O + 4 Ca Chapter 4: Chemical Reactions 2B CO2(g) + H2O(l) + SO2(g) C7H6O2S(l) + O2 (g) C7H6O2S(l) + O2(g) 7 CO2(g) + H2O(l) + SO2(g) C7H6O2S(l) + O2(g) 7 CO2(g) + H2O(l) + SO2(g) 7 CO2(g) + 3 H2O(l) + SO2(g) C7H6O2S(l) + O2(g) C7H6O2S(l) + 8.5 O2 (g) 7 CO2(g) + 3 H2O(l) + SO2(g) 2 C7H6O2S(l) + 17 O2 (g) 14 CO2(g) + 6 H2O(l) + 2 SO2(g) 14 C + 12 H + 2 S + 38 O 14 C + 12 H + 2 S + 38 O Unbalanced reaction: Balance C atoms: Balance S atoms: Balance H atoms: Balance O atoms: Multiply by 2 (whole #): Self Check: 3A The balanced chemical equation provides the factor needed to convert from moles KClO 3 3 mol O 2 to moles O2. Amount O 2 = 1.76 mol KClO 3 = 2.64 mol O 2 2 mol KClO 3 3B First, find the molar mass of Ag 2 O . 2 mol Ag 107.87 g Ag +16.00 g O = 231.74 g Ag 2 O / mol amount Ag = 1.00 kg Ag 2 O 4A The balanced chemical equation provides the factor to convert from amount of Mg to amount of Mg 3 N 2 . First we must determine the molar mass of Mg 3 N 2 . molar mass = 3mol Mg 24.305g Mg + 2 mol N 14.007 g N = 100.93g Mg 3 N 2 mass Mg 3 N 2 = 3.82g Mg 4B 1000 g 1 mol Ag 2 O 2 mol Ag = 8.63 mol Ag 1.00 kg 231.74 g Ag 2 O 1 mol Ag 2 O 1mol Mg 1mol Mg 3 N 2 100.93g Mg 3 N 2 = 5.29 g Mg 3 N 2 24.31g Mg 3mol Mg 1mol Mg 3 N 2 The pivotal conversion is from H 2 g to CH 3OH (l). For this we use the balanced equation, which requires that we use the amounts in moles of both substances. The solution involves converting to and from amounts, using molar masses. 2 mol H 2 2.016 g H 2 1000 g 1mol CH 3 OH mass H 2 g = 1.00 kg CH 3 OH(l) 1 kg 32.04 g CH 3 OH 1mol CH 3 OH 1mol H 2 mass H 2 g = 126 g H 2 5A The equation for the cited reaction is: 2 NH 3 g + 1.5 O 2 g N 2 (g) + 3H 2 O l The pivotal conversion is from one substance to another, in moles, with the balanced chemical equation providing the conversion factor. 2 mol NH 3 17.0305g NH 3 1mol O 2 mass NH 3 g = 1.00 g O 2 g = 0.710 g NH 3 32.00 g O 2 1.5 mol O 2 1mol H 2 67 Chapter 4: Chemical Reactions 5B 6A 6B 7A 25 O 2 g 8 CO 2 g + 9 H 2 O l 2 1mol C8 H18 12.5 mol O 2 32.00 g O 2 mass O 2 = 1.00 g C8 H18 = 3.50 g O 2 g 114.23g C8 H18 1mol C8 H18 1mol O 2 The equation for the combustion reaction is: C8 H18 l + We must convert mass H 2 amount of H 2 amount of Al mass of Al mass of alloy volume of alloy. The calculation is performed as follows: each arrow in the preceding sentence requires a conversion factor. 1mol H 2 2 mol Al 26.98g Al 100.0 g alloy 1cm3alloy Valloy 1.000 g H 2 2.016 g H 2 3mol H 2 1mol Al 93.7 g Al 2.85g alloy Volume of alloy = 3.34 cm3 alloy In the example, 0.207 g H 2 is collected from 1.97 g alloy; the alloy is 6.3% Cu by mass. This information provides the conversion factors we need. 1.97 g alloy 6.3 g Cu mass Cu = 1.31g H 2 = 0.79 g Cu 0.207 g H 2 100.0 g alloy Notice that we do not have to consider each step separately. We can simply use values produced in the course of the calculation as conversion factors. The cited reaction is 2 Al s + 6 HCl aq 2 AlCl3 aq + 3 H 2 g . The HCl(aq) solution has a density of 1.14 g/mL and contains 28.0% HCl. We need to convert between the substances HCl and H 2 ; the important conversion factor comes from the balanced chemical equation. The sequence of conversions is: volume of HCl(aq) mass of HCl(aq) mass of pure HCl amount of HCl amount of H 2 mass of H 2 . In the calculation below, each arrow in the sequence is replaced by a conversion factor. 1.14 g sol 28.0 g HCl 1mol HCl 3mol H 2 2.016 g H 2 mass H 2 = 0.05 mL HCl aq 1mL soln 100.0 g soln 36.46 g HCl 6 mol HCl 1mol H 2 mass H 2 = 4 104 g H 2 g = 0.4 mg H 2 g 7B Density is necessary to determine the mass of the vinegar, and then the mass of acetic acid. mass CO 2 (g) = 5.00 mL vinegar× 1mol CO2 44.01g CO 2 1.01g 0.040g acid 1mol CH3COOH × × × × 1mL 1g vinegar 60.05g CH3COOH 1mol CH3COOH 1mol CO2 = 0.15g CO2 8A Determine the amount in moles of acetone and the volume in liters of the solution. 22.3g CH 3 2 CO× molarity of acetone = 8B 1mol CH 3 2 CO 58.08g CH 3 2 CO 1.25 L soln = 0.307 M The molar mass of acetic acid, HC2 H 3O 2 , is 60.05 g/mol. We begin with the quantity of acetic acid in the numerator and that of the solution in the denominator, and transform to the appropriate units for each. 68 Chapter 4: Chemical Reactions molarity = 15.0 mL HC 2 H 3O 2 1000 mL 1.048g HC 2 H 3O 2 1mol HC 2 H 3O 2 = 0.524 M 500.0 mL soln 1L soln 1mL HC 2 H 3O 2 60.05g HC 2 H 3O 2 9A The molar mass of NaNO 3 is 84.99 g/mol. We recall that “M” stands for “mol /L soln.” 10.8 mol NaNO3 84.99 g NaNO3 1L mass NaNO3 = 125 mL soln = 115 g NaNO3 1000 mL 1L soln 1mol NaNO3 9B We begin by determining the molar mass of Na 2SO 4 10H 2 O . The amount of solute needed is computed from the concentration and volume of the solution. mass Na 2SO 4 10H 2 O = 355 mL soln 1L 1000 mL 322.21 g Na 2SO 4 10H 2 O 1 mol Na 2SO 4 10H 2 O 0.445 mol Na 2SO 4 1 L soln 1 mol Na 2SO 4 10H 2 O 1 mol Na 2SO 4 50.9 g Na 2SO 4 10H 2 O 10A The amount of solute in the concentrated solution doesn’t change when the solution is diluted. We take advantage of an alternative definition of molarity to answer the question: millimoles of solute/milliliter of solution. 0.450 mmol K 2 CrO 4 amount K 2 CrO 4 = 15.00 mL = 6.75 mmol K 2 CrO 4 1 mL soln 6.75 mmol K 2 CrO 4 K 2 CrO 4 molarity, dilute solution = = 0.0675 M 100.00 mL soln 10B We know the initial concentration (0.105 M) and volume (275 mL) of the solution, along with its final volume (237 mL). The final concentration equals the initial concentration times a ratio of the two volumes. V 275mL cf ci i 0105 . M 0122 . M Vf 237 mL 11A The balanced equation is K 2 CrO 4 aq 2 AgNO3 aq Ag 2 CrO 4 s 2 KNO3 aq . The molar mass of Ag 2 CrO 4 is 331.73 g mol . The conversions needed are mass Ag 2 CrO 4 amount Ag 2 CrO 4 (moles) amount K 2 CrO 4 (moles) volume K 2 CrO 4 aq . VK 2CrO4 1.50 g Ag 2 CrO 4 1mol Ag 2 CrO 4 331.73g Ag 2CrO 4 1000 mL solution =18.1mL 1L solution 1mol K 2CrO 4 1L soln 1 mol Ag 2 CrO 4 0.250 mol K 2 CrO 4 11B Balanced reaction: 2 AgNO3(aq) + K2CrO4(aq) Ag2CrO4(s) + 2 KNO3(aq) moles of K2CrO4 = C V = 0.0855 M 0.175 L sol = 0.01496 moles K2CrO4 2 mol AgNO3 = 0.0299 mol AgNO3 moles of AgNO3 = 0.01496 mol K2CrO4 1 mol K 2 CrO 4 69 Chapter 4: Chemical Reactions 0.0299 mol AgNO3 n = 0.1995 L or 2.00 102 mL (0.200 L) of AgNO3 = mol C 0.150 AgNO3 L 1mol Ag 2 CrO 4 331.73 g Ag 2 CrO 4 Mass of Ag2CrO4 formed = 0.01496 moles K2CrO4 1 mol K 2 CrO 4 1mol Ag 2 CrO 4 Mass of Ag2CrO4 formed = 4.96 g Ag2CrO4 VAgNO3 = 12A Reaction: P4 s 6 Cl2 g 4 PCl3 l . We must determine the mass of PCl 3 formed by each reactant. 1 mol P4 4 mol PCl 3 137.33 g PCl 3 953 g PCl 3 123.90g P4 1mol P4 1 mol PCl 3 1 mol Cl 2 4 mol PCl 3 137.33 g PCl 3 mass PCl 3 725 g Cl 2 936 g PCl 3 70.91g Cl 2 6 mol Cl 2 1 mol PCl 3 Thus, a maximum of 936g PCl 3 can be produced; there is not enough Cl 2 to produce any more. mass PCl 3 215 g P4 12B Since data are supplied and the answer is requested in kilograms (thousands of grams), we can use kilomoles (thousands of moles) to solve the problem. We calculate the amount in kilomoles of POCl 3 that would be produced if each of the reactants were completely converted to product. The smallest of these amounts is the one that is actually produced (this is a limiting reactant question). 1kmol PCl3 10 kmol POCl3 amount POCl3 1.00 kg PCl3 0.0121kmol POCl3 137.33kg PCl3 6 kmol PCl3 1kmol Cl2 10 kmol POCl3 amount POCl3 1.00 kg Cl2 0.0235 kmol POCl3 70.905 kg Cl2 6 kmol Cl2 1kmol P4 O10 10 kmol POCl3 amount POCl3 1.00 kg P4 O10 0.0352 kmol POCl3 283.89 kg P4 O10 1kmol P4 O10 Thus, a maximum of 0.0121 kmol POCl3 can be produced. We next determine the mass of the product. 153.33kg POCl3 mass POCl3 0.0121kmol POCl3 1.86 kg POCl3 1 kmol POCl3 13A The 725 g Cl 2 limits the mass of product formed. The P4 s therefore is the reactant in excess. From the quantity of excess reactant we can find the amount of product formed: 953 g PCl 3 936 g PCl 3 = 17 g PCl 3 . We calculate how much P4 this is, both in the traditional way and by using the initial 215 g P4 and final 953 g PCl3 values of the previous calculation. mass P4 17 g PCl 3 1 mol PCl 3 1 mol P4 123.90 g P4 38 . g P4 137.33g PCl 3 4 mol PCl 3 1 mol P4 70 Chapter 4: Chemical Reactions 13B Find the amount of H2O(l) formed by each reactant, to determine the limiting reactant. 1mol H 2 2 mol H 2 O amount H 2 O 12.2 g H 2 6.05 mol H 2 O 2.016 g H 2 2 mol H 2 1mol O 2 2 mol H 2 O amount H 2 O 154 g O 2 9.63 mol H 2 O 32.00 g O 2 1 mol O 2 Since H 2 is limiting, we must compute the mass of O 2 needed to react with all of the H 2 1mol O 2 32.00 g O 2 mass O 2 reacting = 6.05 mol H 2 O produced 96.8g O 2 reacting 2 mol H 2 O 1mol O 2 mass O 2 remaining = 154 g originally present 96.8g O 2 reacting =57 g O 2 remaining 14A The theoretical yield is the calculated maximum mass of product expected if we were to assume that the reaction has no losses (100% reaction). 1mol CH 2 O 30.03g CH 2 O mass CH 2 O g 1.00 mol CH 3OH 30.0 g CH 2 O 1mol CH 3OH 1mol CH 2 O (b) The actual yield is what is obtained experimentally: 25.7 g CH2O (g). (c) The percent yield is the ratio of actual yield to theoretical yield, multiplied by 100%: 25.7 g CH 2O produced % yield = 100 % = 85.6 % yield 30.0 g CH 2 O calculated (a) 14B First determine the mass of product formed by each reactant. 1mol P4 4 mol PCl3 137.33g PCl3 mass PCl3 = 25.0 g P4 = 111g PCl3 123.90 g P4 1mol P4 1mol PCl3 1mol Cl2 4 mol PCl3 137.33g PCl3 = 118g PCl3 70.91g Cl2 6 mol Cl 2 1mol PCl3 Thus, the limiting reactant is P4 , and 111 g PCl 3 should be produced. This is the theoretical maximum yield. The actual yield is 104 g PCl 3 . Thus, the percent yield of the reaction is 104 g PCl 3 produced 100 % 93.7% yield. 111g PCl 3 calculated mass PCl3 = 91.5g Cl 2 15A The reaction is 2 NH 3 (g) + CO 2 (g) CO NH 2 2 (s) + H 2 O(l) . We need to distinguish between mass of urea produced (actual yield) and mass of urea predicted (theoretical yield). mass CO 2 = 50.0 g CO NH 2 2 produced 44.01g CO 2 1mol CO 2 100.0 g predicted 87.5 g produced 41.8 g CO 2 needed 71 1mol CO NH 2 2 60.1g CO NH 2 2 1mol CO 2 1mol CO NH 2 2 Chapter 4: Chemical Reactions 15B Care must be taken to use the proper units/labels in each conversion factor. Note, you cannot calculate the molar mass of an impure material or mixture. mass C6 H11OH = 45.0 g C 6 H10 produced 100.0 g C6 H10 cal'd 1mol C 6 H10 86.2 g C 6 H10 produc'd 82.1g C 6 H10 1mol C 6 H11OH 1mol C6 H10 100.2 g pure C6 H11OH 100.0 g impure C 6 H11OH 69.0 g impure C 6 H11OH 1mol C 6 H11OH 92.3 g pure C 6 H11OH 16A We can trace the nitrogen through the sequence of reactions. We notice that 4 moles of N (as 4 mol NH 3 ) are consumed in the first reaction, and 4 moles of N (as 4 mol NO) are produced. In the second reaction, 2 moles of N (as 2 mol NO) are consumed and 2 moles of N (as 2 mol NO 2 ) are produced. In the last reaction, 3 moles of N (as 3 mol NO 2 ) are consumed and just 2 moles of N (as 2 mol HNO 3 ) are produced. 1000 g NH 3 1mol NH 3 4 mol NO 2 mol NO 2 mass HNO3 = 1.00 kg NH 3 1kg NH 3 17.03g NH 3 4 mol NH 3 2 mol NO 2 mol HNO 3 63.01g HNO 3 = 2.47 103 g HNO 3 3 mol NO 2 1 mol HNO 3 16B mass KNO3 = 95 g NaN 3 1 mol NaN 3 2 mol KNO3 102 g KNO3 2 mol Na 65.03 g NaN3 2 mol NaN 3 10 mol Na 1 mol KNO3 29.80 30 g KNO3 mass SiO 2 (1) = 1.461 mol NaN 3 2 mol Na 1 mol K 2 O 1 mol SiO 2 64.06 g SiO 2 2 mol NaN 3 10 mol Na 1 mol K 2 O 1 mol SiO 2 9.36 g 9.4 g SiO 2 mass SiO 2 (2) = 1.461 mol NaN 3 2 mol Na 5 mol Na 2 O 1 mol SiO 2 64.06 g SiO 2 2 mol NaN 3 10 mol Na 1 mol Na 2 O 1 mol SiO 2 46.80 g 47 g SiO 2 Therefore, the total mass of SiO2 is the sum of the above two results. Approximately 56 g of SiO2 and 30 g of KNO3 are needed. 17A To determine the mass% for each element, 1 mol Al 3 mol H 2 2.016 g H 2 mass Al = (m) g Al × × × = (m) 0.1121 g Al 26.98 g Al 2 mol Al 1 mol H 2 mass Mg = (1.00-m) g Al × 1 mol Mg × 1 mol H 2 24.305 g Mg 1 mol Mg × 2.016 g H 2 1 mol H 2 = (1.00-m) 0.0829 g Mg Now, we note that the total mass of H2 generated is 0.107 g. Therefore, 72 Chapter 4: Chemical Reactions Mass H2 = (m)(0.1121) + (1.00-m)(0.0829) = 0.107 Solving for m gives a value of 0.82 g. Therefore, mass of Al = 0.83 g. Since the sample is 1.00 g, Mg is 17 wt%.. mass of Mg = 1.00 – 0.83 = 0.17 g, or 17 wt%. 17B Mass of CuO and Cu2O is done in identical fashion to the above problem: mass CuO = (1.500-x) g CuO × 1 mol CuO × 1 mol Cu 79.545 g CuO 1 mol CuO × 63.546 g Cu 1 mol Cu = (1.500-x) 0.7989 mass Cu 2 O = (x) g Cu 2 O × 1 mol Cu 2 O × 2 mol Cu 143.091 g Cu 2 O 1 mol Cu 2 O × 63.546 g Cu 1 mol Cu = (x) 0.8882 g Cu 2 O Now, we note that the total mass of pure Cu is 1.2244 g. Therefore, Mass Cu = (1.500-x)(0.7989) + (x)(0.8882) = 1.2244 Solving for x gives a value of 0.292 g. Therefore, mass of Cu2O = 0.292 mass % of Cu2O = 0.292/1.500 × 100 = 19.47% INTEGRATIVE EXAMPLE A. Balancing the equation gives the following: C6 H10 O4 (l) 2NH 3 (g) 4H 2 C6 H16 N 2 (l) 4H 2 O Stepwise approach: The first step is to calculate the number of moles of each reactant from the masses given. 1000 g 1 mol. 28.4 mol 1 kg 146.16 g 1000 g 1 mol. 32.1 mol mol NH3 = 0.547 kg 1 kg 17.03 g 1000 g 1 mol. 85.3 mol mol H 2 = 0.172 kg 1 kg 2.016 g mol C6 H10 O 4 = 4.15 kg 73 Chapter 4: Chemical Reactions To determine the limiting reagent, calculate the number of moles of product that can be obtained from each of the reactants. The reactant yielding the least amount of product is the limiting reagent. mol of C6 H16 N 2 from C6 H10 O4 = 28.4 mol mol of C6 H16 N 2 from NH3 = 32.1 mol 1 mol C6 H16 N 2 28.4 mol 1 mol C6 H10 O 4 1 mol C6 H16 N 2 16.05 mol 2 mol NH3 1 mol C6 H16 N 2 21.3 mol 4 mol H 2 NH3 yields the fewest moles of product, and is the limiting reagent. mol of C6 H16 N 2 from H 2 = 85.3 To calculate the % yield, the theoretical yield must first be calculated using the limiting reagent: Theoretical yield = 16.05 mol C6 H16 N 2 % yield = 116.22 g C6 H16 N 2 1 kg 1.865 kg 1 mol C6 H16 N 2 1000 g 1.46 kg 78.3% yield 1.865 kg Conversion pathway Approach: mol of C6 H16 N 2 from C6 H10 O4 = 4.15 kg C6 H10 O4 mol of C6 H16 N 2 from NH3 = 0.547 kg NH3 1 mol C6 H16 N 2 1000 g 1 mol. 28.4 mol 1 kg 146.16 g 1 mol C6 H10 O 4 1 mol C6 H16 N 2 1000 g 1 mol. 16.05 mol 1 kg 17.03 g 2 mol NH 3 1 mol C6 H16 N 2 1000 g 1 mol. 21.3 mol 1 kg 2.016 g 4 mol H 2 NH3 yields the fewest moles of product and is therefore the limiting reagent The % yield is determined exactly as above mol of C6 H16 N 2 from H 2 = 0.172 kg H 2 B. Balancing the equation gives the following: Zn(s) + 2HCl(aq) ZnCl2 (aq) + H 2 (g) Stepwise approach: To determine the amount of zinc in sample, the amount of HCl reacted has to be calculated first: Before reaction: 0.0179 M HCl 750.0 mL 74 1L 0.0134 mol HCl 1000 mL Chapter 4: Chemical Reactions After reaction: 0.0043 M HCl 750.0 mL 1L 0.00323 mol HCl 1000 mL moles of HCl consumed = 0.0134 – 0.00323 = 0.0102 mol Based on the number of moles of HCl consumed, the number of moles of Zn reacted can be determined: 1 mol Zn 65.39 g Zn 0.3335 g Zn 2 mol HCl 1 mol Zn 0.3335 g Zn reacted Purity of Zn = 100 = 83.4% pure 0.4000 g Zn in sample 0.0102 mol HCl Conversion pathway Approach: 0.0179 - 0.0043 M HCl 750.0 mL 1L 1000 mL 0.0102 mol HCl Note that we can only subtract concentrations in the above example because the volume has not changed. Had there been a volume change, we would have to individually convert each concentration to moles first. 1 mol Zn 65.39 g Zn 0.0102 mol HCl / 0.4000 g 100 83.4 % Zn 2 mol HCl 1 mol Zn EXERCISES Writing and Balancing Chemical Equations 1. (a) 2 SO3 2 SO 2 O 2 (b) Cl2 O7 H 2 O 2 HClO 4 (c) 3 NO 2 H 2 O 2 HNO3 NO (d) PCl3 3 H 2 O H 3 PO3 3 HCl 3. (a) 3 PbO + 2 NH 3 3 Pb + N 2 + 3 H 2 O (b) 2 FeSO 4 Fe 2 O3 2 SO 2 + 1 2 O 2 or 4 FeSO 4 2 Fe 2 O3 4 SO 2 + O 2 (c) 6 S2 Cl2 16 NH 3 N 4 S4 12 NH 4 Cl +S8 (d) C3 H 7 CHOHCH(C2 H 5 )CH 2 OH 23 2 O 2 8 CO 2 + 9 H 2 O or 2 C3 H 7 CHOHCH(C2 H5 )CH 2 OH 23 O 2 16 CO 2 +18 H 2 O 75 Chapter 4: Chemical Reactions 5. (a) 2 Mg s + O 2 g 2 MgO s (b) 2 NO g + O 2 g 2 NO 2 g (c) 2 C2 H 6 g + 7 O 2 g 4 CO 2 g + 6 H 2 O l (d) Ag 2 SO 4 aq + BaI2 aq BaSO4 s + 2 AgI s 7. (a) 2 C4 H10 (l) +13O 2 g 8CO 2 g +10 H 2 O l (b) 2 CH 3 CH(OH)CH 3 (l) + 9 O 2 g 6 CO 2 g + 8 H 2 O l (c) CH 3 CH(OH)COOH s + 3O 2 g 3CO 2 g + 3H 2 O l 9. (a) NH 4 NO3 s N2 O g + 2 H2 O g (b) Na 2 CO3 aq + 2 HCl aq 2 NaCl aq + H 2 O l + CO 2 g (c) 2 CH 4 g + 2 NH 3 g + 3O 2 g 2 HCN g + 6 H 2 O g 11. Unbalanced reaction: Balance H atoms: Balance O atoms: Balance N atoms: Multiply by 2 (whole #) Self Check: N2H4(g) + N2O4(g) H2O(g) + N2(g) N2H4(g) + N2O4(g) 2 H2O(g) + N2(g) N2H4(g) + 1/2 N2O4(g) 2 H2O(g) + N2(g) N2H4(g) + 1/2 N2O4(g) 2 H2O(g) + 3/2 N2(g) 2 N2H4(g) + N2O4(g) 4 H2O(g) + 3 N2(g) 6N+8H+4O 6N+8H+4O Stoichiometry of Chemical Reactions 13. In order to write the balanced chemical equation for the reaction, we will need to determine the formula of the chromium oxide product. First determine the number of moles of chromium and oxygen, and then calculate the mole ratio. 1 mol Cr 0.01325 mol Cr 52.00 g Cr 1 mol O 2 2 mol O # mol O 0.636 g O 2 0.03975 mol O 32.00 g O 2 1 mol O 2 # mol Cr 0.689 g Cr 0.03975 mol O 3 mol O = Therefore, the formula for the product is CrO3. 0.01325 mol Cr 1 mol Cr Balanced equation = 2 Cr(s) + 3 O2(g) 2 CrO3(s) 76 Chapter 4: Chemical Reactions 15. The conversion factor is obtained from the balanced chemical equation. 1mol Cl2 7.26 mol Cl2 70.90 g Cl2 2 mol FeCl 3 = 4.84 mol FeCl 3 moles FeCl 3 = 7.26 mol Cl 2 3 mol Cl 2 515 g Cl2 17. (a) Conversion pathway approach: 1mol KClO3 3mol O 2 32.8g KClO3 = 0.401mol O 2 122.6 g KClO3 2 mol KClO3 Stepwise approach: 1mol KClO3 32.8g KClO3 = 0.268 mol KClO3 122.6 g KClO3 0.268 mol KClO3 (b) 3mol O 2 = 0.402 mol O 2 2 mol KClO3 Conversion pathway approach: mass KClO3 = 50.0 g O 2 1mol O 2 32.00 g O 2 2 mol KClO3 122.6 g KClO3 128g KClO 3 3 mol O 2 1mol KClO3 Stepwise approach: 50.0 g O 2 1mol O 2 32.00 g O 2 1.56 mol O 2 2 mol KClO3 3 mol O 2 1.04 mol KClO3 (c) = 1.56 mol O 2 = 1.04 mol KClO3 122.6 g KClO3 1mol KClO3 = 128 g KClO3 Conversion pathway approach: mass KCl = 28.3g O 2 1mol O 2 2 mol KCl 74.55g KCl = 43.9 g KCl 32.00 g O 2 3mol O 2 1mol KCl Stepwise approach: 77 Chapter 4: Chemical Reactions 28.3g O 2 1mol O 2 = 0.884 mol O 2 32.00 g O 2 0.884 mol O 2 2 mol KCl = 0.589 mol KCl 3mol O 2 0.589 mol KCl 19. 74.55g KCl = 43.9 g KCl 1mol KCl Balance the given equation, and then solve the problem. 2 Ag 2 CO3 s 4Ag s + 2 CO 2 g + O 2 g mass Ag 2 CO 3 = 75.1g Ag 21. 1mol Ag 107.87 g Ag 2 mol Ag 2 CO3 4 mol Ag 275.75 g Ag 2 CO3 1mol Ag 2 CO 3 = 96.0 g Ag 2 CO 3 The balanced equation is CaH2(s) + 2 H2O(l) Ca(OH)2(s) + 2 H2(g) 1mol CaH 2 2 mol H 2 2.016 g H 2 (a) mass H 2 = 127 g CaH 2 = 12.2 g H 2 42.094 g CaH 2 1mol CaH 2 1mol H 2 1mol CaH 2 2 mol H 2 O 18.0153 g H 2 O (b) mass H 2 O = 56.2 g CaH 2 = 48.1 g H 2 O 42.094 g CaH 2 1mol CaH 2 1 mol H 2 O (c) mass CaH 2 = 8.12×1024 molecules H 2 × 1mol H 2 6.022×10 23 molecules H 2 × 1mol CaH 2 2 mol H 2 × 42.094 g CaH 2 1mol CaH 2 mass CaH 2 = 284 g CaH 2 23. The balanced equation is Fe 2 O3 s + 3C s 2 Fe l + 3CO g 1 kmol Fe 1 kmol Fe 2 O 3 159.7 kg Fe 2 O 3 = 748 kg Fe 2 O 3 55.85 kg Fe 2 kmol Fe 1 kmol Fe 2 O 3 748 kg Fe 2 O 3 % Fe 2 O 3 in ore = 100% = 79.7% Fe 2 O 3 938 kg ore mass Fe 2 O 3 = 523 kg Fe 25. B10H14 + 11 O2 5 B2O3 + 7 H2O % by mass B10 H14 = # g B10 H14 100 # g B10 H14 + # g O 2 1 mol B10H14 reacts with 11 mol O2 (exactly) mass B10 H14 = 1 mol B10 H14 mass O 2 = 11 mol O 2 122.22 g B10 H14 = 122.22 g B10 H14 1 mol B10 H14 32.00 g O 2 = 352.00 g O 2 1 mol O 2 78 Chapter 4: Chemical Reactions % by mass B10 H14 = 27. 122.22 g B10 H14 100 = 25.8% 122.22 g B10 H14 + 352.00 g O 2 2 Al s + 6 HCl aq 2 AlCl3 aq + 3H 2 g . First determine the mass of Al in the foil. 1cm 2.70 g = 9.15g Al 10 mm 1cm3 1 mol Al 3 mol H 2 2.016 g H 2 mass H 2 = 9.15 g Al = 1.03 g H 2 26.98 g Al 2 mol Al 1 mol H 2 mass Al = 10.25cm 5.50 cm 0.601mm 29. First write the balanced chemical equation for each reaction. 2 Na s + 2 HCl aq 2 NaCl aq + H 2 g 2 Al s + 6 HCl aq 2 AlCl3 aq + 3 H 2 g Mg s + 2 HCl aq MgCl 2 aq + H 2 g Zn s + 2 HCl aq ZnCl 2 aq + H 2 g Three of the reactions—those of Na, Mg, and Zn—produce 1 mole of H2(g). The one of these three that produces the most hydrogen per gram of metal is the one for which the metal’s atomic mass is the smallest, remembering to compare twice the atomic mass for Na. The atomic masses are: 2 23 u for Na, 24.3 u for Mg, and 65.4 u for Zn. Thus, among these three, Mg produces the most H 2 per gram of metal, specifically 1 mol H 2 per 24.3 g Mg. In the case of Al, 3 moles of H 2 are produced by 2 moles of the metal, or 54 g Al. This reduces as follows: 3 mol H 2 / 54 g Al = 1 mol H 2 / 18 g Al. Thus, Al produces the largest amount of H 2 per gram of metal. Molarity 31. (a) (b) (c) 2.92 mol CH 3 OH = 0.408 M 7.16 L 7.69 mmol CH 3CH 2OH CH 3CH 2OH molarity (M) = = 0.154 M 50.00 mL CH 3 OH molarity (M) = CO NH 2 2 molarity (M) = 25.2 g CO NH 2 2 275 mL 1mol CO NH 2 2 60.06 g CO NH 2 2 1000 mL 1L = 1.53 M 33. (a) Conversion pathway approach: 150.0 g C12 H 22 O11 1000 mL 1 mol C12 H 22 O11 [C12 H 22 O11 ] = × × = 1.753 M 250.0 mL soln 1L 342.3 g C12 H 22 O11 79 Chapter 4: Chemical Reactions Stepwise approach: 150.0 g C12 H 22 O11× 1 mol C12 H 22 O11 = 0.4382 mol C12 H 22 O11 342.3 g C12 H 22 O11 1L = 0.2500 L 1000 mL 0.4382 mol C12 H 22 O11 [C12 H 22 O11 ] = = 1.753 M 0.2500 L 250.0 mL soln× (b) Conversion pathway approach: 98.3 mg solid 97.9 mg CO(NH 2 ) 2 1 mmol CO(NH 2 ) 2 [CO(NH 2 ) 2 ] = × × 5.00 mL soln 100 mg solid 60.06 mg CO(NH 2 ) 2 = 0.320 M CO(NH 2 ) 2 Stepwise approach: 98.3 mg solid × 97.9 mg CO(NH 2 ) 2 96.2 mg CO(NH 2 ) 2 100 mg solid 96.2 mg CO(NH 2 ) 2 × 1 g CO(NH 2 ) 2 = 0.0962 g CO(NH 2 ) 2 1000 mg CO(NH 2 ) 2 0.0962 g CO(NH 2 ) 2 × 1 mol CO(NH 2 ) 2 = 1.60 10-3 mol CO(NH 2 ) 2 60.06 g CO(NH 2 ) 2 1L = 0.00500 L 1000 mL 1.60 10-3 mol CO(NH 2 ) 2 [CO(NH 2 ) 2 ] = = 0.320 M 0.00500 L 5.00 mL soln × (c) Conversion pathway approach: 125.0 mL CH 3 OH 0.792 g 1 mol CH 3 OH [CH 3 OH] = × × = 0.206 M 15.0 L soln 1 mL 32.04 g CH 3 OH Stepwise approach: 125.0 mL CH 3OH 0.792 g 1 mol CH 3OH [CH 3OH] = × × = 0.206 M 15.0 L soln 1 mL 32.04 g CH 3OH 0.792 g = 99.0 g CH 3OH 1 mL 1 mol CH 3OH 99.0 g CH 3OH × = 3.09 mol CH 3OH 32.04 g CH 3OH 125.0 mL CH 3OH × [CH 3OH] = 3.09 mol CH 3OH = 0.206 M 15.0 L soln 80 Chapter 4: Chemical Reactions 35. (a) mass C6 H12 O 6 = 75.0 mL soln (b) VCH3OH = 2.25 L soln 1L 1000 mL 0.350 mol C 6 H12 O 6 1L soln 180.16 g C6 H12 O 6 1mol C 6 H12 O 6 = 4.73g 0.485 mol 32.04 g CH 3OH 1mL = 44.1 mL CH 3OH 1L 1mol CH 3OH 0.792 g 85 mg C6 H12 O6 1 mmol C6 H12 O6 1g 10 dL 1 mol C6 H12 O6 1 dL blood 1000 mg 1 L 180.16 g C6 H12 O6 110-3 mol C6 H12 O6 mmol C6 H12 O6 = 4.7 L mol C6 H12 O6 (b) Molarity 4.7 103 L 37. (a) 39. First we determine each concentration in moles per liter and find the 0.500 M solution. 0.500 g KCl 1 mol KCl 1000 mL (a) [KCl] = = 6.71 M KCl 1 mL 74.551 g KCl 1L 36.0 g KCl 1 mol KCl (b) [KCl] = = 0.483 M KCl 1L 74.551 g KCl 7.46 mg KCl 1 g KCl 1 mol KCl 1000 mL (c) [KCl] = = 0.100 M KCl 1 mL 1000 mg KCl 74.551 g KCl 1L 373 g KCl 1 mol KCl (d) [KCl] = = 0.500 M KCl 10.00 L 74.551 g KCl Solution (d) is a 0.500 M KCl solution. 41. We determine the molar concentration for the 46% by mass sucrose solution. 1 mol C12 H 22 O11 46 g C12 H 22 O11 × 342.3 g C12 H 22 O11 [C12 H 22 O11 ] = = 1.6 M 1 mL 1L 100 g soln× × 1.21 g soln 1000 mL The 46% by mass sucrose solution is the more concentrated. 2.05 mol KNO3 1L = 0.0820 M 0.250 L diluted solution 0.01000 L conc'd soln 43. [KNO3 ] = 45. Both the diluted and concentrated solutions contain the same number of moles of K 2SO 4 . This number is given in the numerator of the following expression. 0.198 mol K 2 SO 4 0.125 L 1L K 2 SO 4 molarity = = 0.236 M K2SO4 0.105 L 81 Chapter 4: Chemical Reactions 47. Let us compute how many mL of dilute (d) solution we obtain from each mL of concentrated (c) solution. Vc Cc = Vd Cd becomes 1.00 mL 0.250M = x mL 0.0125 M and x = 20 Thus, the ratio of the volume of the volumetric flask to that of the pipet would be 20:1. We could use a 100.0-mL flask and a 5.00-mL pipet, a 1000.0-mL flask and a 50.00-mL pipet, or a 500.0-mL flask and a 25.00-mL pipet. There are many combinations that could be used. Chemical Reactions in Solutions 49. (a) 1L 0.163 mol AgNO 3 1 mol Na 2S 1000 mL 1 L soln 2 mol AgNO 3 78.05g Na 2S = 0.177 g Na 2 S 1mol Na 2 S mass Na 2S = 27.8 mL (b) mass Ag 2S = 0.177 g Na 2S 51. 1mol Ag 2S 247.80 g Ag 2S = 0.562 g Ag 2S 78.05 g Na 2S 1mol Na 2S 1mol Ag 2S The molarity can be expressed as millimoles of solute per milliliter of solution. 0.186 mmol AgNO3 1mmol K 2 CrO 4 1mL K 2 CrO 4 aq VK CrO = 415 mL 2 4 1mL soln 2 mmol AgNO3 0.650 mmol K 2 CrO 4 VK 53. 1mol Na 2S 2CrO4 = 59.4 mL K 2CrO 4 The balanced chemical equation for the reaction is: 2 HNO3(aq) + Ca(OH)2(aq) Ca(NO3)2(aq) + 2H2O(l) # mol HNO3 0.02978 L soln 0.0142 mol Ca(OH) 2 2 mol HNO3 8.46 104 mol HNO3 1 L soln 1 mol Ca(OH) 2 All of the HNO3 that reacts was contained in the initial, undiluted 1.00 mL sample. Since the moles of HNO3 are the same in the diluted and undiluted solutions, one can divide the moles of HNO3 by the volume of the undiluted solution to obtain the molarity. Molarity 55. 8.46 104 mol HNO3 mol HNO3 8.46 103 0.00100 L L We know that the Al forms the AlCl 3 . 1mol Al 1mol AlCl3 mol AlCl3 = 1.87 g Al = 0.0693mol AlCl3 26.98g Al 1mol Al 0.0693 mol AlCl3 1000 mL = 2.91 M AlCl3 (b) [AlCl3 ] = 23.8 mL 1L (a) 82 Chapter 4: Chemical Reactions 57. The volume of solution determines the amount of product. 0.186 mol AgNO3 1mol Ag 2 CrO 4 331.73g Ag 2 CrO 4 1L mass Ag 2 CrO 4 = 415 mL 1000 mL 1L soln 2 mol AgNO3 1mol Ag 2 CrO 4 mass Ag 2 CrO 4 = 12.8 g Ag 2 CrO 4 59. mass Na = 155mL soln 1L 0.175mol NaOH 2 mol Na 22.99g Na 1000 mL 1L soln 2 mol NaOH 1mol Na = 0.624g Na 61. The mass of oxalic acid enables us to determine the amount of NaOH in the solution. 0.3126 g H 2 C 2O 4 1000 mL 1mol H 2C 2 O 4 2 mol NaOH = 0.2649 M NaOH = 26.21mL soln 1L soln 90.04 g H 2 C2 O 4 1mol H 2 C2 O 4 Determining the Limiting Reactant 63. The limiting reactant is NH 3 . For every mole of NH3(g) that reacts, a mole of NO(g) forms. Since 3.00 moles of NH3(g) reacts, 3.00 moles of NO(g) forms (1:1 mole ratio). 65. First we must determine the number of moles of NO produced by each reactant. The one producing the smaller amount of NO is the limiting reactant. 2 mol NO mol NO = 0.696 mol Cu = 0.464 mol NO 3mol Cu Conversion pathway approach: mol NO = 136 mL HNO3 aq × 6.0 mol HNO3 1L 2 mol NO × × = 0.204 mol NO 1000 mL 1L 8 mol HNO3 Stepwise approach: 1L 0.136 L HNO3 1000 mL 6.0 mol HNO3 0.136 L × 0.816 mol HNO3 1L 2 mol NO 0.816 mol HNO3× = 0.204 mol NO 8 mol HNO3 136 mL HNO3 aq × Since HNO3(aq) is the limiting reactant, it will be completely consumed, leaving some Cu unreacted. 83 Chapter 4: Chemical Reactions 67. First we need to determine the amount of Na 2 CS3 produced from each of the reactants. 2 mol Na 2 CS3 1.26 g 1mol CS2 n Na 2CS3 (from CS2 ) = 92.5 mL CS2 = 1.02 mol Na 2 CS3 1mL 76.14 g CS2 3mol CS2 2 mol Na 2 CS3 n Na 2CS3 (from NaOH) = 2.78 mol NaOH = 0.927 mol Na 2 CS3 6 mol NaOH 154.2 g Na 2 CS3 = 143g Na 2 CS3 Thus, the mass produced is 0.927 mol Na 2 CS3 1mol Na 2 CS3 69. Ca OH 2 s + 2 NH 4 Cl s CaCl2 aq + 2 H 2 O(l) + 2 NH 3 g First compute the amount of NH 3 formed from each reactant in this limiting reactant problem. 2 mol NH 3 1mol NH 4 Cl n NH3 (from NH 4 Cl) = 33.0 g NH 4 Cl = 0.617 mol NH 3 53.49 g NH 4 Cl 2 mol NH 4 Cl 1mol Ca OH 2 2 mol NH 3 = 0.891mol NH 3 74.09 g Ca OH 2 1mol Ca OH 2 Thus, 0.617 mol NH 3 should be produced as NH4Cl is the limiting reagent. n NH3 (from Ca(OH) 2 ) = 33.0 g Ca OH 2 mass NH 3 = 0.617 mol NH 3 17.03g NH 3 1mol NH 3 = 10.5 g NH 3 Now we will determine the mass of reactant in excess, Ca(OH)2. 1mol Ca OH 2 74.09 g Ca OH 2 Ca OH 2 used = 0.617 mol NH3 = 22.9 g Ca OH 2 mol NH3 1mol Ca OH 2 b g 2 excess mass Ca OH 2 = 33.0 g Ca OH 2 22.9 g Ca OH 2 = 10.1 g excess Ca OH 2 71. The number of grams of CrSO4 that can be made from the reaction mixture is determined by finding the limiting reagent, and using the limiting reagent to calculate the mass of product that can be formed. The limiting reagent can determined by calculating the amount of product formed from each of the reactants. Whichever reactant produces the smallest amount of product is the limiting reagent. 2 mol CrSO 4 148.06 g CrSO 4 = 236.90 g CrSO 4 4 mol Zn 1 mol CrSO 4 2 mol CrSO 4 148.06 g CrSO 4 1.7 mol K 2Cr2 O7 = 503.40 g CrSO 4 1 mol K 2 Cr2 O7 1 mol CrSO 4 3.2 mol Zn 5.0 mol H 2SO 4 2 mol CrSO 4 148.06 g CrSO 4 = 211.51 g CrSO 4 7 mol H 2SO 4 1 mol CrSO 4 H2SO4 is the limiting reagent since it produces the least amount of CrSO4. Therefore, the maximum number of grams of CrSO4 that can be made is 211.51 g. 84 Chapter 4: Chemical Reactions Theoretical, Actual, and Percent Yields 73. 75. 1 mol CCl4 = 1.80 mol CCl4 153.81g CCl4 Since the stoichiometry indicates that 1 mole CCl 2 F2 is produced per mole CCl 4 , the use of 1.80 mole CCl 4 should produce 1.80 mole CCl2 F2 . This is the theoretical yield of the reaction. 1mol CCl2 F2 (b) 187g CCl2 F2 = 1.55 mol CCl2 F2 120.91g CCl2 F2 The actual yield of the reaction is the amount actually produced, 1.55 mol CCl2 F2 . 1.55mol CCl 2 F2 obtained (c) % yield = 100 % 861% . yield 1.80 mol CCl 2 F2 calculated (a) 277 grams CCl 4 actual yield 100 % theoretical yield The actual yield is given in the problem and is equal to 28.2 g. In order to determine the theoretical yield, we must find the limiting reagent and do stoichiometry. % yield = Conversion pathway approach: 1 mol Al 2 O3 2 mol Na 3 AlF6 209.94 g Na 3 AlF6 7.81 g Al 2 O3 32.2 g Na 3 AlF6 101.96 g Al 2 O3 1 mol Al 2 O3 1 mol Na 3 AlF6 0.141 mol 2 mol Na 3 AlF6 209.94 g Na 3 AlF6 3.50 L 34.5 g Na 3 AlF6 1L 6 mol NaOH 1 mol Na 3 AlF6 Stepwise approach: Amount of Na3AlF6 produced from Al2O3 if all Al2O3 reacts 1 mol Al 2 O3 7.81 g Al 2 O3 = 0.0766 mol Al 2 O3 101.96 g Al 2 O3 0.0766 mol Al 2 O3 2 mol Na 3 AlF6 = 0.153 mol Na 3 AlF6 1 mol Al 2 O3 209.94 g Na 3 AlF6 32.1 g Na 3AlF6 1 mol Na 3 AlF6 Amount of Na3AlF6 produced from NaOH if all NaOH reacts 0.153 mol Na 3AlF6 85 Chapter 4: Chemical Reactions 3.50 L 0.141 mol NaOH 0.494 mol NaOH 1L 2 mol Na 3 AlF6 = 0.165 mol Na 3 AlF6 6 mol NaOH 209.94 g Na 3 AlF6 0.165 mol Na 3 AlF6 34.5 g Na 3AlF6 1 mol Na 3 AlF6 0.494 mol NaOH Al2O3 is the limiting reagent. % yield = 28.2 g 100 % 87.6% 32.2 g 81. A less-than-100% yield of desired product in synthesis reactions is always the case. This is because of side reactions that yield products other than those desired and because of the loss of material on the glassware, on filter paper, etc. during the various steps of the procedure. A main criterion for choosing a synthesis reaction is how economically it can be run. In the analysis of a compound, on the other hand, it is essential that all of the material present be detected. Therefore, a 100% yield is required; none of the material present in the sample can be lost during the analysis. Therefore analysis reactions are carefully chosen to meet this 100 % yield criterion; they need not be economical to run. Consecutive Reactions, Simultaneous Reactions 84. Here we need to determine the amount of CO 2 produced from each reactant. C3 H8 g + 5O 2 g 3CO 2 g + 4 H 2 O l 2 C4 H10 g +13O 2 g 8CO 2 g +10 H 2 O l 72.7g C3 H8 1mol C3 H8 3mol CO 2 = 20.1mol CO 2 100.0 g mixt. 44.10 g C3 H8 1mol C3 H8 27.3g C4 H10 1mol C4 H10 8 mol CO 2 n CO2 (from C 4 H10 ) = 406 g mixt. = 7.63mol CO 2 100.0 g mixt 58.12 g C4 H10 2 mol C4 H10 44.01g CO 2 mass CO 2 = 20.1 + 7.63 mol CO 2 = 1.22 103 g CO 2 1mol CO 2 n CO2 (from C3 H 8 ) = 406 g mixt. 86. Balanced Equations: C2H6(g) + 7 2 O2(g) 2 CO2(g) + 3 H2O(l) CO2(g) + Ba(OH)2(aq) BaCO3(s) + H2O(l) Conversion pathway approach: mass C2 H6 = 0.506 g BaCO3 1mol BaCO3 197.3g BaCO3 Stepwise approach: 86 1mol CO 2 1mol BaCO3 2 mol C 2 H 6 4 mol CO 2 30.07 g C 2 H 6 1mol C 2 H 6 = 0.0386 g C 2 H 6 Chapter 4: Chemical Reactions 0.506 g BaCO 3 1mol BaCO3 197.3g BaCO3 2.56 10-3mol BaCO3 2.56 10-3mol CO 2 = 2.56 10-3 mol BaCO3 1mol CO 2 1mol BaCO3 2 mol C 2 H 6 4 mol CO 2 1.28 10-3 mol C 2 H 6 = 2.56 10-3 mol CO 2 = 1.28 10-3 mol C2 H 6 30.07 g C 2 H 6 = 0.0386 g C 2 H 6 1 mol C 2 H 6 87. NaI(aq)+ AgNO3(aq) AgI(s )+ NaNO3(aq) (multiply by 4) (multiply by 2) 2 AgI(s) + Fe(s) FeI2(aq) + 2 Ag(s) (unchanged) 2 FeI2(aq) + 3 Cl2(g) 2 FeCl3(aq) + 2 I2(s) 4NaI(aq) + 4AgNO3(aq) + 2Fe(s) + 3Cl2(g) 4NaNO3(aq) + 4Ag(s) + 2FeCl3(aq) + 2I2(s) For every 4 moles of AgNO3, 2 moles of I2(s) are produced. The mass of AgNO3 required 1 mol I 2 (s) 4 mol AgNO3 (s) 169.873 g AgNO3 (s) 1000 g I 2 (s) = 1.00 kg I2(s) 253.809 g I 2 (s) 2 mol I 2 (s) 1 mol AgNO3 (s) 1 kg I 2 (s) = 1338.59 g AgNO3 per kg of I2 produced or 1.34 kg AgNO3 per kg of I2 produced 89. (a) SiO2(s) + 2 C(s) Si(s) + 2 CO(g) Si(s) + 2 Cl2(g) → SiCl4(l) SiCl4(l) + 2 H2(g) → Si(s, ultrapure) + 4 HCl(g) (b) 1 kg Si (ultrapure, s) 1 mol SiCl 4 1000 g 1 mol Si 1 mol Si 1kg 28.09 g 1 mol Si ultrapure 1 mol SiCl4 2 mol C 12.01 g C = 885 g C 1 mol Si 1 mol C 1 mol SiCl 4 2 mol Cl2 1000 g 1 mol Si 1 kg Si (ultrapure, s) 1kg 28.09 g 1 mol Si ultrapure 1 mol SiCl4 70.91 g Cl2 = 5.05 103 g Cl 2 1 mol Cl2 1 kg Si (ultrapure, s) 1000 g 1 mol Si 2 mol H 2 2.016 g H 2 = 144 g H 2 1kg 28.09 g 1 mol Si ultrapure 1 mol H 2 87 Chapter 4: Chemical Reactions 91. The reactions are as follows. MgCO3(s) → MgO(s) + CO2(g) CaCO3(s) → CaO(s) + CO2(g) % by mass of MgCO3 = g MgCO3 100 % g MgCO3 + g CaCO3 Let m = mass, in grams, of MgCO3 in the mixture and let 24.00 − m = mass in grams of CaCO3 in the mixture. Convert from g MgCO3 to g CO2 to obtain an expression for the mass of CO2 produced by the first reaction. 1 mol MgCO3 1 mol CO 2 44.01 g CO 2 g CO 2 from MgCO3 m g MgCO3 84.32 g MgCO3 1 mol MgCO3 1 mol CO 2 Convert from g CaCO3 to g CO2 to obtain an expression for the mass of CO2 produced by the second reaction. 1 mol CaCO3 1 mol CO 2 44.01 g CO 2 g CO 2 from CaCO3 (24.00 m) g CaCO3 100.09 g CaCO3 1 mol CaCO3 1 mol CO 2 The sum of these two expressions is equal to 12.00 g CO2. Thus: 44.01 44.01 m 84.32 (24.00 m) 100.09 12.00 Solve for m: m = 17.60 g % by mass of MgCO3 = 17.60 g 100 % = 73.33 % 24.00 g INTEGRATIVE AND ADVANCED EXERCISES 93. (a) CaCO 3 (s) CaO(s) CO 2 (g) (b) 2 ZnS(s) 3 O 2 (g) 2 ZnO(s) 2 SO 2 (g) (c) C 3 H 8 (g) 3 H 2 O(g) 3 CO(g) 7 H 2 (g) (d) 4 SO2(g) + 2 Na2S(aq) + Na2CO3(aq) CO2(g) + 3 Na2S2O3(aq) 88 Chapter 4: Chemical Reactions 95. The balanced equation is as follows: 2 LiOH(s) + CO2(g) → Li2CO3(s) + H2O(l) Conversion pathway approach: g LiOH 1.00 103 g CO 2 1 mol CO 2 2 mol LiOH 23.95 g LiOH 3 astronauts 6 days astronaut day 44.01 g CO2 1 mol CO2 1 mol LiOH 1.96 104 g LiOH Stepwise approach: 1.00 103 g CO 2 1 mol CO 2 mol CO 2 = 22.7 astronaut day 44.01 g CO 2 astronaut day mol CO 2 mol CO 2 22.7 3 astronauts 68.2 astronaut day day mol CO 2 68.2 6 days 409 mol CO 2 day 2 mol LiOH 409 mol CO 2 = 818 mol LiOH 1 mol CO 2 23.95 g LiOH 818 mol LiOH 1.96 104 g LiOH 1 mol LiOH 96. mass CaCO3 = 0.981g CO 2 % CaCO 3 = 1mol CO 2 44.01g CO 2 1mol CaCO 3 100.1g CaCO3 = 2.23g CaCO3 1mol CO 2 1mol CaCO3 2.23 g CaCO 3 100% = 68.0% CaCO 3 (by mass) 3.28 g sample 98. Assume 100g of the compound FexSy, then: Number of moles of S atoms = 36.5g/32.066 g S/mol = 1.138 moles Number of moles of Fe atoms = 63.5g/ 55.847g Fe/mol = 1.137 moles So the empirical formula for the iron –containing reactant is FeS Assume 100g of the compound FexOy, then: Number of moles of O atoms = 27.6g/16.0 g O/mol = 1.725 moles Number of moles of Fe atoms = 72.4g/ 55.847g Fe/mol = 1.296 moles So the empirical formula for the iron-containing product is Fe3O4 Balanced equation: 3 FeS + 5 O2 Fe3O4 + 3 SO2 89 Chapter 4: Chemical Reactions 99. M CH 3CH 2OH = mol CH 3CH 2 OH volume of solution mol CH 3CH 2OH 50.0 mL 0.7893 Molarity 101. g CH 3CH 2 OH 1 mol CH 3CH 2 OH = 0.857 mol mL 46.07 g CH 3CH 2 OH 0.857 mol CH 3CH 2OH 8.88 M CH 3CH 2 OH 0.0965 L solution Let V be the volume of 0.149 M HCl(aq) that is required. moles of HCl in solution C = moles HCl in solution A + moles HCl in solution B (V + 0.100) × 0.205 M = (V × 0.149 M ) + (0.100 × 0.285 M) Solve for V: V = 0.143 L = 143 mL 105. We can compute the volume of Al that reacts with the given quantity of HCl. 1L 12.0 mol HCl 2 mol Al 27.0 g Al 1cm3 VAl 0.05 mL 0.002 cm3 1000 mL 1L 6 mol HCl 1mol Al 2.70 g Al 0.002 cm3 10 mm volume area 0.2 cm 2 thickness 0.10 mm 1cm 106. Here we need to determine the amount of HCl before and after reaction; the difference is the amount of HCl that reacted. 1.035 mol HCl initial amount HCl 0.05000 L 0.05175 mol HCl 1L 0.812 mol HCl final amount HCl 0.05000 L 0.0406 mol HCl 1L 1 mol Zn 65.39 g Zn mass Zn (0.05175 0.0406) mol HCl 0.365 g Zn 2 mol HCl 1 mol Zn 2 CO 2 (g) 3 H 2 O(l) 114. CH 3CH 2OH(l) 3O 2 (g) (CH 3CH 2 ) 2 O (l) 6 O 2 (g) 4 CO 2 (g) 5 H 2O(l) Since this is classic mixture problem, we can use the systems of equations method to find the mass percents. First we let x be the mass of (C2H5)2O and y be the mass of CH3CH2OH. Thus, x + y = 1.005 g or y = 1.005 g – x We then construct a second equation involving x that relates the mass of carbon dioxide formed to the masses of ethanol and diethyl ether., viz. 90 Chapter 4: Chemical Reactions 1.963 g CO 2 1 mol C2 H 5 2 O 1 mol CO 2 4 mol CO 2 x g (C2 H 5 ) 2 O 44.010 g CO 2 74.123 g C2 H 5 2 O 1 mol C2 H 5 2 O (1.005 x) g CH3CH 2 OH 0.04460 0.05396 x 0.04363 0.04341x 1 mol CH 3CH 2 OH 2 mol CO 2 46.07 g CH3CH 2 OH 1 mol CH3CH 2 OH x 0.092 g C2 H 5 2 O 0.04460 0.04363 0.092 g C2 H 5 2 O 0.05396 0.04341 100% 9.2% C2 H 5 2 O 1.005 g mixture % CH 3CH 2 OH (by mass) 100.0% – 9.2% (C2 H5 )2 O 90.8% CH 3CH 2 OH % (CH3CH 2 )2 O (by mass) 115. % Cu (by mass) # g Cu 100 0.7391 g mixture Let x = the mass, in grams, of CuCl2 in the mixture. Let 0.7391 – x = mass in grams of FeCl3. Total moles AgNO3 = mol AgNO3 react with CuCl2 + mol AgNO3 react with FeCl3 Total moles AgNO3 = 0.8691 L 0.1463 mol = 0.01271 mol AgNO3 1L To obtain an expression for the amount of AgNO3 consumed by the first reaction, convert from grams of CuCl2 to moles of AgCl: 2 mol AgNO3 1 mol CuCl2 mol AgNO3 that reacts with CuCl2 x g CuCl2 134.45 g CuCl2 1 mol CuCl2 2x mol AgNO3 that reacts with CuCl 2 = 0.014875x 134.45 To obtain an expression for the amount of AgNO3 consumed by the second reaction, convert from grams of FeCl3 to moles of AgNO3: 1 mol FeCl3 3 mol AgNO3 162.21 g FeCl3 1 mol FeCl3 mol AgNO3 that reacts with FeCl3 (0.7391 x) 0.018496 = 0.013668 0.018496x The sum of these two expressions is equal to the total number of moles of AgNO3 : mol AgNO3 that reacts with FeCl3 (0.7391 x) g FeCl3 Total moles AgNO3 = 0.014875x + 0.013668 – 0.018496x = 0.01271 x = 0.2646 g CuCl2 This is the mass of CuCl2 in the mixture. We must now convert this to the mass of Cu in the mixture. 91 Chapter 4: Chemical Reactions # g Cu 0.2646 g CuCl2 % Cu 1 mol CuCl2 1 mol Cu 63.546 g Cu 0.1253 g Cu 134.45 g CuCl2 1 mol CuCl2 1 mol Cu 0.1253 g Cu 100 % 16.95 % 0.7391 g 116. 1 mol Cu 2 0.766 mol Cu 2 0.307 2.50 mol Cu 2 63.55 g Cu 2 222- 1 mol CrO 4 mol CrO 4 =35.6 g CrO 4 × = 0.307 mol CrO 4 2- ÷0.307 1.00 mol CrO 4 2115.99 g (a) mol Cu 2 48.7 g Cu 2 1 mol OH mol OH =15.7 g OH × = 0.923 mol OH - ÷0.307 3.01 mol OH 17.01 g OH Empirical formula: Cu 5 (CrO 4 ) 2 (OH)6 - - (b) 5 CuSO 4 (aq) 2 K 2 CrO 4 (aq) 6 H 2O (l) Cu 5 (CrO 4 ) 2 (OH)6 (s) 2 K 2SO 4 (aq) 3 H 2SO 4 (aq) 117. We first need to compute the empirical formula of malonic acid. 1 mol C 34.62 g C 2.883 mol C 2.883 1.000 mol C 12.01 g C 1 mol O 3.88 g H 3.84 mol O 2.883 1.33 mol H 1.01 g H 1 mol O 61.50 g O 3.844 mol O 2.883 1.333 mol O 16.00 g O Multiply each of these mole numbers by 3 to obtain the empirical formula C3H4O4. Combustion reaction: C3 H 4 O 4 (l) 2 O 2 (g) 3 CO 2 (g) 2 H 2 O(l) 118. 2 Al (s) + Fe2O3 → Al2O3 + 2 Fe 1 mol Fe 2 O3 159.69 g Fe 2 O3 1 mol Al mass of Fe 2 O3 2.5 g Al 7.4 g Fe 2O3 needed 26.982 g Al 2 mol Al 2 mol Fe 2 O3 Using 2.5 g Al2O3, only 7.4 g of Fe2O3 needed, but there are 9.5 g available. Therefore, Al is the limiting reagent. 1 mol Al 2 mol Fe 55.85 g Fe 5.2 g Fe 26.982 g Al 2 mol Al 1 mol Fe 2 O3 (b) Mass of excess Fe2O3 = 9.5 g – 7.4 = 2.1 g (a) Mass of Fe 2.5 g Al 92 Chapter 4: Chemical Reactions 119. Compute the amount of AgNO3 in the solution on hand and the amount of AgNO3 in the desired solution. the difference is the amount of AgNO3 that must be added; simply convert this amount to a mass. 0.0500 mmol AgNO 3 amount AgNO 3 present 50.00 mL 2.50 mmol AgNO 3 1 mL soln 0.0750 mmol AgNO 3 amount AgNO 3 desired 100.0 mL 7.50 mmol AgNO 3 1 mL soln 1 mol AgNO 3 169.9 g Ag NO 3 mass AgNO 3 (7.50 2.50) mmol AgNO 3 1000 mmol AgNO 3 1 mol AgNO 3 0.850 g AgNO 3 120. The balanced equation for the reaction is: S8(s) + 4 Cl2(g) 4 S2Cl2(l) Both “a” and “b” are consistent with the stoichiometry of this equation. Neither bottom row box is valid. Box (c) does not account for all the S8, since we started out with 3 molecules, but end up with 1 S8 molecule and 4 S2Cl2 molecules. Box (d) shows a yield of 2 S8 molecules and 8 S2Cl2 molecules so we ended up with more sulfur atoms than we started with. This, of course, violates the Law of Conservation of Mass. 121. The pertinent equations are as follows: C3 N 3 OH 3 3 HNCO (g) 8 HNCO + 6 NO 2 7 N 2 + 8 CO 2 + 4 H 2 O The above mole ratios are used to calculate moles of C3N3(OH)3 assuming 1.00 g of NO2. 1 mol C3 N 3 (OH)3 1 mol NO 2 8 mol HNCO mass C3 N 3 (OH)3 1.00 g NO 2 46.00 g NO 2 6 mol NO 2 3 mol HNCO 129.1 g mol C3 N 3 (OH)3 1.25 g C3 N 3 (OH)3 1 mol C3 N 3 (OH)3 123. There are many ways one can go about answering this question. We must use all of the most concentrated solution and dilute this solution down using the next most concentrated solution. Hence, start with 345 mL of 01.29 M then add x mL of the 0.775 M solution. The value of x is obtained by solving the following equation. 1.29 M 0.345 L 0.775 M x 1.25 M = (0.345 x) L 1.25 M (0.345 x) L = 1.29 M 0.345 L 0.775 M x 043125 + 1.25x 0.44505 0.775 x Thus, 0.0138 0.475 x x 0.029 L or 29 mL A total of (29 mL + 345 mL) = 374 mL may be prepared this way. 93 Chapter 4: Chemical Reactions 127. (a) 2 C3H6(g) + 2 NH3(g) + 3 O2(g) 2 C3H3N(l) + 6 H2O(l) (b) For every kilogram of propylene we get 0.73 kilogram of acrylonitrile; we can also say that for every gram of propylene we get 0.73 gram of acrylonitrile. One gram of propylene is 0.0238 mol of propylene. The corresponding quantity of NH3 is 0.0238 mol or 0.405 g; then because NH3 and C3H6 are required in the same molar amount (2:2) for the reaction, 0.405 of a kg of NH3 will be required for every 0.73 of a kg of acrylonitrile. To get 1000 kg of acrylonitrile we need, by simple proportion, 1000×(0.405)/0.73 = 555 kg NH3. SELF-ASSESSMENT EXERCISES 135. The answer is (d). Start balancing in the following order: N, O, H and Cu 3 Cu (s) + 8 HNO3 3 Cu(NO3 ) 2 + 4 H 2 O + 2 NO 136. The answer is (d). To determine the number of moles of NH3, used the balanced equation: 2 mol NH 3 # moles NH 3 = 1 mol H 2 O = 0.666 3 mol H 2 O 137. The answer is (a). To determine the number of moles of NH3, use the balanced equation: 2 KMnO4 (s) + 10 KI + 8 H2SO4 6 K 2SO4 + 2 MnSO4 + 5 I2 + 8 H 2O 5 KMnO 4 6 mol K 2SO 4 = 15 mol K 2SO 4 2 mol KMnO 4 6 mol K 2SO 4 = 3 mol K 2SO 4 10 mol KI 6 mol K 2SO 4 5 H 2SO 4 = 3.75 mol K 2SO 4 8 mol H 2SO 4 5 KI 138. The answer is (a). To determine the answer, used the balanced equation: 2 Ag 2 (CO3 ) (s) 4 Ag + 2 CO 2 + O 2 The ratio between O2 and CO2 is 1:2. 139. The answer is (c). To solve this, calculate the number of moles of NaNO3. mol NaNO3 = 1.00 M × 1.00 L = 1.00 mol. 85.0 g 1.00 mol NaNO3 = 85.0 g NaNO3 1 mol Concentration = 85.0 g NaNO3/L. While (b) also technically gives you the correct value at 25 °C, it is not the definition of molarity. 94 Chapter 4: Chemical Reactions 140. The answer is (d). There is no need for calculation, because a starting solution of 0.4 M is needed to make a 0.50 M solution, and the only way to make a more concentrated solution is to evaporate off some of the water. 141. The answer is (b). To determine the molarity, number of moles of LiBr need to be determined first. Therefore, weight% concentration needs to be converted to number of moles with the aid of the density: Conc. = 5.30% by mass = 5.30 g LiBr/100 g solution Volume of solution = mass / Density = 100 g sol'n 1 mL = 96.15 mL 1.040g 1 mol LiBr = 0.0610 mol 86.84 g LiBr 0.0610 mol 1000 mL Molarity = = 0.635 M 96.15 mL 1L mol LiBr = 5.30 g LiBr 142. The answer is (d). To determine % yield, calculate the theoretical mole yield: 1 mol CCl2 F mol CCl2 F = 2.00 mol CCl 4 = 2.00 mol CCl2 F 1 mol CCl4 % yield = 1.70 mol 100 = 85.0% 2.00 mol 143. To balance the below equations, balance C first, then O and finally H. (a) 2 C8H18 + 25 O2 → 16 CO2 + 18 H2O (b) For this part, we note that 25% of the available carbon atoms in C8H18 form CO and the remainder for CO2. Therefore, 2 C8H18 + 25 O2 → 12 CO2 + 4 CO + 18 H2O 144. To determine the compound, the number of moles of each compound needs to be determined, which then helps determine number of moles of emitted CO2: 95 Chapter 4: Chemical Reactions mass CO 2 = 1.000 g CaCO3 1 mol CaCO3 1 mol CO 2 44.0 g CO 2 100.08 g CaCO3 1 mol CaCO3 1 mol CO 2 = 0.4396 g CO 2 mass CO 2 = 1.000 g MgCO3 1 mol MgCO3 1 mol CO 2 44.0 g CO 2 1 mol CO 2 84.30 g MgCO3 1 mol CaCO3 = 0.5219 g CO 2 mass CO 2 = 1.000 g CaCO3 MgCO3 2 mol CO 2 1 mol dolomite 184.38 g dolomite 1 mol dolomite 44.0 g CO 2 = 0.4773 g CO 2 1 mol CO 2 Therefore, dolomite is the compound. 145. The answer is (b). First, the total amount of carbon in our mixture of CH4 and C2H6 must be determined by using the amount of CO2 1 mol CO 2 1 mol C 12.01 g C = 0.758 g C 44.01 g CO2 1 mol CO 2 1 mol C Then, the amounts of CH4 and C2H6 can be determined by making sure that the moles of carbon for both add up to 0.0631: mass of C = 2.776 g CO 2 1 mol CH 4 1 mol C 12.01 g C xg 1 mol CH 4 1 mol C 16.05 g CH 4 1 mol C2 H 6 2 mol C 12.01 g C + (1.000-x) = 0.757 g C (from CO 2 ) 1 mol C 2 H 6 1 mol C 30.08 g C2 H 6 0.748 x + (1-x)(0.798) = 0.757 x = mass of CH 4 = 0.82 g, or 82% of a 1.00 g sample 146. The answer is (c). To do this, perform a stepwise conversion of moles of reactants to moles of products, as shown below: 4.00 mol NH 3 2 mol HNO3 2 mol NO 2 4 mol NO = 2.67 mol HNO3 4 mol NH 3 2 mol NO 3 mol NO 2 96
© Copyright 2026 Paperzz