An introduction to vibrational properties of glass models

An introduction to vibrational properties
of glass models
Simona ISPAS
[email protected]
Laboratoire Charles Coulomb,
Dépt. Colloı̈des, Verres et Nanomatériaux, UMR 5221
Université Montpellier 2, France
Vibrational properties GDR-VERRES, May 2011 – p.1/20
Outline
Introduction
1st Part : Vibrational density of states (VDOS) of the glass models
1. Computation of the dynamical matrix : analytical calculation and finite
differences method
2. Diagonalization of the dynamical matrix : eigenvectors and eigenvalues
sets
3. True VDOS g(ω) and partial VDOS gα (ω)
2nd Part : Connection to experimental results : VDOS extracted from
neutron diffraction
3rd Part : Mode Analysis : participation ratio, acoustic/optic like mode,
rocking,bending, stretching etc.
4th Part : IR Spectra
5th Part : Raman Spectra
Vibrational properties GDR-VERRES, May 2011 – p.2/20
Vibrational spectra
Experimentally, they can be measured/extracted from :
Neutron scattering
Infrared measurements
Raman, hyper-Raman experiments
For a given structural model, these spectra can be, in principle, computed : using first-principles methods, theoretical models or autocorrelation functions.
Vibrational properties GDR-VERRES, May 2011 – p.3/20
1st part : Vibrational density of states (VDOS)
The phonon density of states (VDOS) over frequency g(ω)
represents the nb. of vibrational states having a frequency in the
range ω and ω + dω
g(ω) =
1
3N − 3
3N
X
k=4
δ(ω − ωk )
Within the harmonic approximation (i.e. small atomic
displacements from their equilibrium positions), g(ω) can be
numerically computed using 2 methods :
• the Fourier transform of the velocity autocorrelation function
Z ∞
1 X
mj hvj (t) · vj (0)i exp(−ıωt)dt
g(ω) ∝
kB T
0
j
• diagonalization of the dynamical matrix
Vibrational properties GDR-VERRES, May 2011 – p.4/20
Dynamical matrix
Given a structural model containing N atoms, characterized by a potential
energy U ({rN }) (classical or ab initio approach)
Any atomic vibration ≡ a linear combination of the normal modes, i.e. the
eigenvectors of the dynamical matrix {en , n = 1, . . . , 3N })
X
(1)
2 n
Di,α;j,β en
=
ω
jβ
n eiα
j,β
with
2
(2)
Ci,α;j,β =
N
∂ U ({r })
∂ri,α ∂rj,β
!
{r0 }
and Di,α;j,β = √
1
mi mj
Ci,α;j,β
The set of 3N-component vectors en is linked to the real space
√1 en
displacement un
≈
i,α
mi i,α
Vibrational properties GDR-VERRES, May 2011 – p.5/20
Dynamical matrix (2)
Methods for computing the dynamical matrix :
analytical calculation in a classical MD approach, for an
effective potential with a given functional form U = U ({rN })
numerical calculation, by finite differences method
Ci,α;j,β =
≈
2
N
∂ U ({r })
∂ri,α ∂rj,β
{r0 }
fj,β (. . . , ri,α + ∆, . . .) − fj,β (. . . , ri,α − ∆, . . .)
2∆
where fj,β is the β component of the forces on atom i.
Numerical diagonalization ⇒ {ω n , en }n=1,..., 3N such that
P n n
P n m
n ei,α ej,β = δij δαβ
i ei ei = δnm and
Vibrational properties GDR-VERRES, May 2011 – p.6/20
True vibrational density of states (VDOS) g(ω)
g(ω) =
1
3N − 3
3N
X
k=4
δ(ω − ωk )
- δ functions broadened by Gaussian functions
In general, the vibrational properties present a strong dependence on the
interaction potential
0.12
-1
DOS [THz ]
0.10
CPMD
CHIK
BKS
0.08
0.06
0.04
0.02
SiO2 glass - A. Carre, PhD thesis
0.00
0
5
10
15
20
25
ω [THz]
30
35
40
SiO2 glass - BKS and CPMD structural models very similar, BUT their
VDOS are far from being similar [Benoit and Kob, EPL (2002)].
Vibrational properties GDR-VERRES, May 2011 – p.7/20
Decomposition of the VDOS
Decomposition into partial VDOS gα (ω), i.e. according to the weights of the
different species :
gα (ω) =
1
3N − 3
3N X
X
k=4 i∈α
|eki |2 δ(ω − ωk )
E.g. For α = Si, BO, NBO, Na in a NS4 glass, Ispas et al. JNCS 2005
3
bands
FHWM=35 cm−1 ) :
g(ω) or gα(ω)
total
Si
BO
NBO
Na
main
(Gaussian
broadening
LF bands (≤ 500 cm−1 ): Na and
O (bending and rocking) motions
MF bands (500-900 cm−1 ): Si
and BO complex motions
0
200
400
600
800
-1
ω [cm ]
1000
1200
1400
HF bands (≥ 900 cm−1 ): Si-NBO
and Si-BOVibrational
stretching
motions
properties GDR-VERRES, May 2011 – p.8/20
2nd part : VDOS - connection to experimental results
The dynamical structure factor S(Q, ω) measured in inelastic neutron
scattering (INS) is roughly proportional to the true VDOS ⇒ need to
consider approximations and simplifications.
Taraskin & Elliott [PRB 55 (1997)] - a correction function connecting the true
and effective VDOS : G(ω) = C(ω)g(ω), with G(ω) called effective VDOS
2
2.0
G(ω) =C(ω)g(ω)x 10 [cm]
3
1.5
3
g (ω) x 10 [cm]
CPMD
1
0.5
0
0
200 400 600 800 1000 1200 1400
-1
ω (cm )
CPMD
Price et al (1985)
Fabiani et al (2008)
1.5
1.0
0.5
0.0
0
200
400
600
800
1000
1200
1400
-1
ω [cm ]
CPMD data - SiO2 glass [Benoit & Kob EPL (2002)]
Vibrational properties GDR-VERRES, May 2011 – p.9/20
3rd part : Analysis of modes
Complete knowledge of {ω n , en }n=1,..., 3N ⇒ detailed analysis of
the nature of the vibrational excitations [Taraskin & Elliott, PRB 56
(1997)]
participation ratio
phase quotient
Bridging oxygen motions
...
Vibrational properties GDR-VERRES, May 2011 – p.10/20
Analysis of modes - participation ratio
NS4 glass [Ispas et al. JNCS (2005)] - ab initio versus Classical Forces Fields
(VFF)
1
VFF
CP
0.8
0.6
pc
pc (ωp ) =
0.4
N
X
|ui (ωp )|2
i=1
N
X
N
0.2
0
0
i=1
300 600 900 1200
-1
ω [cm ]
300
600
900 1200
-1
ω [cm ]
!2
|ui (ωp )|4
→ extended mode ≈ 1,
→ strongly localized mode ≈ 1/N
⇒ ab initio (CP) modes are more localized than the classical VFF ones
Vibrational properties GDR-VERRES, May 2011 – p.11/20
Analysis of modes - Bridging Oxygen motions
X
SBO (ωp ) =
BO
|ui (ωp ) · r̂i−i′ |2
X
|ui (ωp )|2
XBO
|ui (ωp ) · r̂i+i′ |2
BBO (ωp ) =
BO
X
|ui (ωp )|2
X BO
|ui (ωp ) · r̂∆ |2
RBO (ωp ) =
BO
X
|ui (ωp )|
2
BO
SBO + BBO + RBO = 1
p = 1, 2, . . . 3 × N
1
stretching
0.8
SBO0.6
0.4
0.2
1
bending
0.8
BBO0.6
0.4
0.2
1 rocking
0.8
RBO0.6
0.4
0.2
0
0
[ Bell et al, J Phys C 3 (1970)]
strong frequency dependent
200
CP
VFF
BO
Si
Si
BO
Si
Si
BO
Si
400
600 -1800
ω [cm ]
Si
1000 1200
NS4 glass model
VFF overestimates the stretching
in the MF range : stretching/bending mixed motions
Vibrational properties
GDR-VERRES, May 2011 – p.12/20
Analysis of modes - phase quotient
NS4 glass [Ispas et al. JNCS (2005)]
qΣ (ωn ) =
N
X
i,j
N
X
i,j
ui (ωn ) · uj (ωp )
|ui (ωp ) · uj (ωp )|
1
CP
VFF
0.5
qΣ
0
-0.5
-1
0
200 400 600 800 1000 1200
-1
ω [cm ]
Vibrational properties GDR-VERRES, May 2011 – p.13/20
4th part - IR spectrum
Classical MD - computation using time correlation functions
Dielectric function:
ǫ(ω) − ǫ∞ =
hJ~ · J~iω =
~ (t) =
M
X
β
3ǫ0 V
R∞
0
h
~ (0)2 i + 2πıωhM
~ ·M
~ iω +2hM
~ · J~iω +
hM
2πıωt
e
hJ~(t) · J~(0)idt, J~(t) =
µ
~ i (t)- total induced dipole moment
X
ı
2πω
hJ~ · J~iω
qi~
v i (t), - charge current
i
i
4
GeO2 glass - ǫ2 = Im ǫ
Classical MD, DIPPIM potential
(DIPole Polarizable Ion Model)
Marrocchelli, Salanne et al., Molec.
Phys. 107 (2009)]
ε2
3
2
1
0
200
400
600
800
1000
1200
Vibrational properties GDR-VERRES, May 2011 – p.14/20
IR spectrum - from ab initio data
Formalism [Resta, Rev. Mod. Phys. 66 (1994), Pasquarello & Car, PRL 79
(1997), Umari, PhD thesis (2003)] :
High frequency dielectric tensor : (ǫ∞ )ij = δij + 4π
Born effective charges
∗
ZI,jk
=−
∂ 2 Etot
∂rIj ∂Ek
≡
∂ 2 Etot
∂Ei ∂Ej
∂FIj
∂Ek
Real part of the of dielectric function ǫ(ω) :
4π X |F n |2
ǫ1 (ω) = ǫ∞ −
2
V n ω 2 − ωn
Imaginary part of the of dielectric function ǫ(ω) :
4π 2 X |F n |2
ǫ2 (ω) =
δ(ω − ωn )
V n 2ωn
n
X
e
∗
where ǫ∞ = Tr(ǫ∞ )ij /3 and Fjn =
ZI,jk
√ Ik
MI
I,k
Vibrational properties GDR-VERRES, May 2011 – p.15/20
IR spectrum - from ab initio data (2)
SiO2 glass, ab initio approach [Matsubara, Ispas, Kob (to be submitted)]
Theor.[cm−1 ]
Exp.[cm−1 ]
TO1
435
457
LO1
479
501
TO2
800
810
LO2
811
820
TO3
1054
1076
LO3
1246
1256
Exp. Kirk, Phys. Rev. B (1988)
Main bands in ǫ2 and −Im(1/ǫ) : overall well described with errors at most
≈ 30cm−1 and good agreement to previous calculations [Umari &
Pasquarello (2005), Giacomazzi et al. (2009)]
Vibrational properties GDR-VERRES, May 2011 – p.16/20
5th part - Raman spectrum
Nonresonant Stokes Raman spectra :
↔
k
Ik ∝ |einc α escatt |
2 nB (ωk )
+1
ωk
where
αkij =
X
lm
eklm
√
∂Ei ∂Ek ∂ulm Mm
∂ 3 Etot
Models for computing polarizabilities (∂ 2 Etot /∂Ei ∂Ek ) and its derivatives :
Bond polarizability (BP) model : the polarizabilities is modeled in terms
of bond contributions [Alben et al, PRB 11 (1975); N. Zotov et al, PRB
60 (1999), Rahmani et al. PRB 68 (2003)]
Direct calculation as 2nd order derivatives of the total energy with
respect to the applied electric fields [Umari & Pasquarello PRL 89
(2002), Lazzeri & Mauri PRL 90 (2003)]
Vibrational properties GDR-VERRES, May 2011 – p.17/20
5th part - Raman spectrum (2)
Reduced Raman Spectra (arb. units)
NS4 glass, BP model - Ispas et al. JNCS (2005), using two sets of
{ω n , en }n=1,..., 3N , CP and VFF
100
80
60
20
Exp. spectrum
CP
VFF
10
0
600
700
800
900
40
20
0
200
400
600
800 1000 1200
-1
ω [cm ]
Vibrational properties GDR-VERRES, May 2011 – p.18/20
5th part - Raman spectrum (3)
B2 O3 glass, ab initio approach - Ferlat, Charpentier et al. PRL (2008)
Raman peak at ≈ 800 cm−1 : probe of the fraction f of Boroxol rings
Vibrational properties GDR-VERRES, May 2011 – p.19/20
Summary
Nowdays atomistic simulations may generate reliable structural
models for simple glasses
Calculations of the vibrational properties of the structural models
and confrontation to experimental results
Some thermodynamical properties can be computed, e.g. specific
heat
The detailed analysis of the nature of the vibrational excitations
may help to getting better insights into the relations of the local
structure (bonding angles, distance, ...) with the experimental
vibrational spectra
Vibrational properties GDR-VERRES, May 2011 – p.20/20