An introduction to vibrational properties of glass models Simona ISPAS [email protected] Laboratoire Charles Coulomb, Dépt. Colloı̈des, Verres et Nanomatériaux, UMR 5221 Université Montpellier 2, France Vibrational properties GDR-VERRES, May 2011 – p.1/20 Outline Introduction 1st Part : Vibrational density of states (VDOS) of the glass models 1. Computation of the dynamical matrix : analytical calculation and finite differences method 2. Diagonalization of the dynamical matrix : eigenvectors and eigenvalues sets 3. True VDOS g(ω) and partial VDOS gα (ω) 2nd Part : Connection to experimental results : VDOS extracted from neutron diffraction 3rd Part : Mode Analysis : participation ratio, acoustic/optic like mode, rocking,bending, stretching etc. 4th Part : IR Spectra 5th Part : Raman Spectra Vibrational properties GDR-VERRES, May 2011 – p.2/20 Vibrational spectra Experimentally, they can be measured/extracted from : Neutron scattering Infrared measurements Raman, hyper-Raman experiments For a given structural model, these spectra can be, in principle, computed : using first-principles methods, theoretical models or autocorrelation functions. Vibrational properties GDR-VERRES, May 2011 – p.3/20 1st part : Vibrational density of states (VDOS) The phonon density of states (VDOS) over frequency g(ω) represents the nb. of vibrational states having a frequency in the range ω and ω + dω g(ω) = 1 3N − 3 3N X k=4 δ(ω − ωk ) Within the harmonic approximation (i.e. small atomic displacements from their equilibrium positions), g(ω) can be numerically computed using 2 methods : • the Fourier transform of the velocity autocorrelation function Z ∞ 1 X mj hvj (t) · vj (0)i exp(−ıωt)dt g(ω) ∝ kB T 0 j • diagonalization of the dynamical matrix Vibrational properties GDR-VERRES, May 2011 – p.4/20 Dynamical matrix Given a structural model containing N atoms, characterized by a potential energy U ({rN }) (classical or ab initio approach) Any atomic vibration ≡ a linear combination of the normal modes, i.e. the eigenvectors of the dynamical matrix {en , n = 1, . . . , 3N }) X (1) 2 n Di,α;j,β en = ω jβ n eiα j,β with 2 (2) Ci,α;j,β = N ∂ U ({r }) ∂ri,α ∂rj,β ! {r0 } and Di,α;j,β = √ 1 mi mj Ci,α;j,β The set of 3N-component vectors en is linked to the real space √1 en displacement un ≈ i,α mi i,α Vibrational properties GDR-VERRES, May 2011 – p.5/20 Dynamical matrix (2) Methods for computing the dynamical matrix : analytical calculation in a classical MD approach, for an effective potential with a given functional form U = U ({rN }) numerical calculation, by finite differences method Ci,α;j,β = ≈ 2 N ∂ U ({r }) ∂ri,α ∂rj,β {r0 } fj,β (. . . , ri,α + ∆, . . .) − fj,β (. . . , ri,α − ∆, . . .) 2∆ where fj,β is the β component of the forces on atom i. Numerical diagonalization ⇒ {ω n , en }n=1,..., 3N such that P n n P n m n ei,α ej,β = δij δαβ i ei ei = δnm and Vibrational properties GDR-VERRES, May 2011 – p.6/20 True vibrational density of states (VDOS) g(ω) g(ω) = 1 3N − 3 3N X k=4 δ(ω − ωk ) - δ functions broadened by Gaussian functions In general, the vibrational properties present a strong dependence on the interaction potential 0.12 -1 DOS [THz ] 0.10 CPMD CHIK BKS 0.08 0.06 0.04 0.02 SiO2 glass - A. Carre, PhD thesis 0.00 0 5 10 15 20 25 ω [THz] 30 35 40 SiO2 glass - BKS and CPMD structural models very similar, BUT their VDOS are far from being similar [Benoit and Kob, EPL (2002)]. Vibrational properties GDR-VERRES, May 2011 – p.7/20 Decomposition of the VDOS Decomposition into partial VDOS gα (ω), i.e. according to the weights of the different species : gα (ω) = 1 3N − 3 3N X X k=4 i∈α |eki |2 δ(ω − ωk ) E.g. For α = Si, BO, NBO, Na in a NS4 glass, Ispas et al. JNCS 2005 3 bands FHWM=35 cm−1 ) : g(ω) or gα(ω) total Si BO NBO Na main (Gaussian broadening LF bands (≤ 500 cm−1 ): Na and O (bending and rocking) motions MF bands (500-900 cm−1 ): Si and BO complex motions 0 200 400 600 800 -1 ω [cm ] 1000 1200 1400 HF bands (≥ 900 cm−1 ): Si-NBO and Si-BOVibrational stretching motions properties GDR-VERRES, May 2011 – p.8/20 2nd part : VDOS - connection to experimental results The dynamical structure factor S(Q, ω) measured in inelastic neutron scattering (INS) is roughly proportional to the true VDOS ⇒ need to consider approximations and simplifications. Taraskin & Elliott [PRB 55 (1997)] - a correction function connecting the true and effective VDOS : G(ω) = C(ω)g(ω), with G(ω) called effective VDOS 2 2.0 G(ω) =C(ω)g(ω)x 10 [cm] 3 1.5 3 g (ω) x 10 [cm] CPMD 1 0.5 0 0 200 400 600 800 1000 1200 1400 -1 ω (cm ) CPMD Price et al (1985) Fabiani et al (2008) 1.5 1.0 0.5 0.0 0 200 400 600 800 1000 1200 1400 -1 ω [cm ] CPMD data - SiO2 glass [Benoit & Kob EPL (2002)] Vibrational properties GDR-VERRES, May 2011 – p.9/20 3rd part : Analysis of modes Complete knowledge of {ω n , en }n=1,..., 3N ⇒ detailed analysis of the nature of the vibrational excitations [Taraskin & Elliott, PRB 56 (1997)] participation ratio phase quotient Bridging oxygen motions ... Vibrational properties GDR-VERRES, May 2011 – p.10/20 Analysis of modes - participation ratio NS4 glass [Ispas et al. JNCS (2005)] - ab initio versus Classical Forces Fields (VFF) 1 VFF CP 0.8 0.6 pc pc (ωp ) = 0.4 N X |ui (ωp )|2 i=1 N X N 0.2 0 0 i=1 300 600 900 1200 -1 ω [cm ] 300 600 900 1200 -1 ω [cm ] !2 |ui (ωp )|4 → extended mode ≈ 1, → strongly localized mode ≈ 1/N ⇒ ab initio (CP) modes are more localized than the classical VFF ones Vibrational properties GDR-VERRES, May 2011 – p.11/20 Analysis of modes - Bridging Oxygen motions X SBO (ωp ) = BO |ui (ωp ) · r̂i−i′ |2 X |ui (ωp )|2 XBO |ui (ωp ) · r̂i+i′ |2 BBO (ωp ) = BO X |ui (ωp )|2 X BO |ui (ωp ) · r̂∆ |2 RBO (ωp ) = BO X |ui (ωp )| 2 BO SBO + BBO + RBO = 1 p = 1, 2, . . . 3 × N 1 stretching 0.8 SBO0.6 0.4 0.2 1 bending 0.8 BBO0.6 0.4 0.2 1 rocking 0.8 RBO0.6 0.4 0.2 0 0 [ Bell et al, J Phys C 3 (1970)] strong frequency dependent 200 CP VFF BO Si Si BO Si Si BO Si 400 600 -1800 ω [cm ] Si 1000 1200 NS4 glass model VFF overestimates the stretching in the MF range : stretching/bending mixed motions Vibrational properties GDR-VERRES, May 2011 – p.12/20 Analysis of modes - phase quotient NS4 glass [Ispas et al. JNCS (2005)] qΣ (ωn ) = N X i,j N X i,j ui (ωn ) · uj (ωp ) |ui (ωp ) · uj (ωp )| 1 CP VFF 0.5 qΣ 0 -0.5 -1 0 200 400 600 800 1000 1200 -1 ω [cm ] Vibrational properties GDR-VERRES, May 2011 – p.13/20 4th part - IR spectrum Classical MD - computation using time correlation functions Dielectric function: ǫ(ω) − ǫ∞ = hJ~ · J~iω = ~ (t) = M X β 3ǫ0 V R∞ 0 h ~ (0)2 i + 2πıωhM ~ ·M ~ iω +2hM ~ · J~iω + hM 2πıωt e hJ~(t) · J~(0)idt, J~(t) = µ ~ i (t)- total induced dipole moment X ı 2πω hJ~ · J~iω qi~ v i (t), - charge current i i 4 GeO2 glass - ǫ2 = Im ǫ Classical MD, DIPPIM potential (DIPole Polarizable Ion Model) Marrocchelli, Salanne et al., Molec. Phys. 107 (2009)] ε2 3 2 1 0 200 400 600 800 1000 1200 Vibrational properties GDR-VERRES, May 2011 – p.14/20 IR spectrum - from ab initio data Formalism [Resta, Rev. Mod. Phys. 66 (1994), Pasquarello & Car, PRL 79 (1997), Umari, PhD thesis (2003)] : High frequency dielectric tensor : (ǫ∞ )ij = δij + 4π Born effective charges ∗ ZI,jk =− ∂ 2 Etot ∂rIj ∂Ek ≡ ∂ 2 Etot ∂Ei ∂Ej ∂FIj ∂Ek Real part of the of dielectric function ǫ(ω) : 4π X |F n |2 ǫ1 (ω) = ǫ∞ − 2 V n ω 2 − ωn Imaginary part of the of dielectric function ǫ(ω) : 4π 2 X |F n |2 ǫ2 (ω) = δ(ω − ωn ) V n 2ωn n X e ∗ where ǫ∞ = Tr(ǫ∞ )ij /3 and Fjn = ZI,jk √ Ik MI I,k Vibrational properties GDR-VERRES, May 2011 – p.15/20 IR spectrum - from ab initio data (2) SiO2 glass, ab initio approach [Matsubara, Ispas, Kob (to be submitted)] Theor.[cm−1 ] Exp.[cm−1 ] TO1 435 457 LO1 479 501 TO2 800 810 LO2 811 820 TO3 1054 1076 LO3 1246 1256 Exp. Kirk, Phys. Rev. B (1988) Main bands in ǫ2 and −Im(1/ǫ) : overall well described with errors at most ≈ 30cm−1 and good agreement to previous calculations [Umari & Pasquarello (2005), Giacomazzi et al. (2009)] Vibrational properties GDR-VERRES, May 2011 – p.16/20 5th part - Raman spectrum Nonresonant Stokes Raman spectra : ↔ k Ik ∝ |einc α escatt | 2 nB (ωk ) +1 ωk where αkij = X lm eklm √ ∂Ei ∂Ek ∂ulm Mm ∂ 3 Etot Models for computing polarizabilities (∂ 2 Etot /∂Ei ∂Ek ) and its derivatives : Bond polarizability (BP) model : the polarizabilities is modeled in terms of bond contributions [Alben et al, PRB 11 (1975); N. Zotov et al, PRB 60 (1999), Rahmani et al. PRB 68 (2003)] Direct calculation as 2nd order derivatives of the total energy with respect to the applied electric fields [Umari & Pasquarello PRL 89 (2002), Lazzeri & Mauri PRL 90 (2003)] Vibrational properties GDR-VERRES, May 2011 – p.17/20 5th part - Raman spectrum (2) Reduced Raman Spectra (arb. units) NS4 glass, BP model - Ispas et al. JNCS (2005), using two sets of {ω n , en }n=1,..., 3N , CP and VFF 100 80 60 20 Exp. spectrum CP VFF 10 0 600 700 800 900 40 20 0 200 400 600 800 1000 1200 -1 ω [cm ] Vibrational properties GDR-VERRES, May 2011 – p.18/20 5th part - Raman spectrum (3) B2 O3 glass, ab initio approach - Ferlat, Charpentier et al. PRL (2008) Raman peak at ≈ 800 cm−1 : probe of the fraction f of Boroxol rings Vibrational properties GDR-VERRES, May 2011 – p.19/20 Summary Nowdays atomistic simulations may generate reliable structural models for simple glasses Calculations of the vibrational properties of the structural models and confrontation to experimental results Some thermodynamical properties can be computed, e.g. specific heat The detailed analysis of the nature of the vibrational excitations may help to getting better insights into the relations of the local structure (bonding angles, distance, ...) with the experimental vibrational spectra Vibrational properties GDR-VERRES, May 2011 – p.20/20
© Copyright 2026 Paperzz