1 Architectural Challenges for mm-scale Sensor Nodes 2013. 9. 29. Yoonmyung Lee, Ye-Sheng Kuo, Pat Pannuto, Ron Dreslinski, Prabal Dutta, David Blaauw Department of Electrical Engineering and Computer Science The University of Michigan, Ann Arbor mm-Scale Sensor Nodes 2 [1] [2] [3] [4] [5] [6] § Emergence of mm-scale systems § Smaller form-factor § Cheaper price [1] G. Chen et al. ISSCC 2010 [2] G. Chen et al. ISSCC 2011 [3] Y. Lee etal. ISSCC 2012 [4] P-J. Chen et al. JMEMS 2010 [5] R. Haque et al. MEMS 2011 [6] R. Casanaov ISSCC 2009 2 mm-Scale Sensor Nodes 3 § Key enabler: Low power circuit technologies Energy optimal operation - f / V scaling - Super-pipelining Standby mode operation Low power antenna Low power f-ref Radio duty-cycling Low power (<nW) Small uncertainty Temperature sensitivity Low power (<nW) Efficient mode conversion Radio Control Data Memory Instruction Memory Timer CPU Energy Harvesting Wake Up Control Sensor Power Mgmt Low leakage (<pW/b) Small cell area Robustness Harvesting from < µW < mm3 harvester Low voltage harvesting Sporadic availability Wide range Iload Efficient mode conversion Brown-out detection Low voltage ADC Low power sensors / interfaces 3 Challenges in mm-Scale Sensors 4 § Building a “SYSTEM” out of low power building blocks § Integration requirements § Volume limit § Energy limit § Controllability § Extremely wide application space § Medical / Environmental Structural Integrity / Surveillance Building Management / and so on … 4 Layer Based Modular Architecture 5 § Layer approach § Maximizing Si area in limited volume § Modularization § Technology optimization Generic Layers r 1 ye La 2 r ye La 3 r ye La 4 r ye La r 5 ye La Application-specific Layers Processor Imager Motion Detection Flash Memory Pressure Sensing (C to D) Temperature Sensing Decap ECG monitor Strain Sensing (R to D) Battery Light Sensing Analog Voltage (ADC) Power Mng. E-Harvesting Near Field Radio Far Field Radio 5 Inter-Layer Interconnect 6 § How are the layers connected? § Delivery of Power § Control § Data exchange § Traditional solutions 1 er y La 2 r ye La 3 r ye a L r 4 ye a L r 5 ye a L § I2C § Bidirectional – pull up resistor power § Distributed clock control – clock generation on each device § SPI § >3 wires - limited expansion § No slave TX initiation / slave ACK § No slave to slave § Need low power solution for control & data exchange 6 MBus: Low Power Inter-Layer Interconnect 7 § MBus § 1 Master, multiple Slave layers § 2 wires: CLK, DATA § Unidirectional: Daisy-chained Layer 1 Layer 2 CLK DATA CLK La bi tch t 2 Dr bi ive t 2 La bi tch t 1 Dr bi ive t 1 La bi tch t 0 Dr bi ive t 0 § 2 phase clocking: Improve setup/hold tolerance § for arbitrary layer combination § for irregular loading Set up Margin Hold Margin DATA 7 MBus: Low Power Inter-Layer Interconnect DATA (idle) PMU (in Master) Standby Slave § Interrupt by clock blocking è Prioritize messages è Reset bus Clock blocking = INT request Wait for an event PMU mode switch Active (send clock) TX request Send Data Data toggle wo CLK = INT grant IN bi T Ct t 1 rl (idle) IN bi T Ct t 0 rl è No clock generation on other layers è Slave request TX by DATA pull down è Request wake up by DATA pull down CLK St a IN rt o T f § CLK driven by Master layer 8 CLK_IN CLK_OUT DATA § Termination sequence è Utilize interrupt as termination sequence è Enable slave ACK (control bit) & arbitrary length message 8 1st System 9 § Motion detection surveillance sensor § Application specific: Motion detector layer § Motion detection in standby mode (200nW) § Data transmission in active mode (40µW) CPU (180nm) SRAM(3kB: retentive) PMU DECAP Motion detection pixel array (180nm) Thin-film Li Battery TX Radio (180nm) Motion Detection & Imager (130nm) 9 2nd System 10 § Implantable medical sensor (tumor pressure monitoring) § Application specific: MEMS pressure sensor CDC conversion CPU (180nm) SRAM(3kB: retentive) PMU DECAP (180nm) Thin-film Li Battery TX Radio CDC Converter (180nm) [Pressure Readout from mouse] MEMS Pressure Sensor 10 3rd System 11 § Imager and Temperature monitoring § Application specific: Imager Temperature sensor Imager (130nm) Timer Temperature Sensor Thin-film Li Battery DSP CPU (65nm) SRAM(16kB:non-retentive) CPU (180nm) SRAM(3kB: retentive) PMU DECAP (180nm) 11 12 Thank You 12
© Copyright 2026 Paperzz