Laser Produced Plasma for EUV Radiation Sources l o o Katsunobu Nishihara (西原 功修) Institute of Laser Engineering, Osaka University r e m h c S t a i d s n io m a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c A a m s a l In collaboration with P r K. Fujima, H. Furukawa, T. Kagawa, Y-G. Kang, T. Kato, F. Koike, R. More, e s T. Nishikawa, A. Sasaki, A. Sunahara, H. Tanuma, V. Zhakhovskii, M. Murakami, a L S. Fujioka, H. Nishimura, Y. Shimada, K. Nagai, N. Miyanaga, Y. Izawa and K. Mima 15 nm CMOS (AMD, 2001) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 1 Outline l o o ), Background on EUVL ( Extreme Ultra Violet Lithography h c ) and choice of emitting material s Radiation from LPP ( Laser Produced Plasma S n r windows o i Source requirements and possible design e t a m i d m Plasmas for EUV Source a u - Basic physics of Laser Produced R S Radiative processesnof Li, Xe and Sn excited atoms d n n iaproduced plasmas a Featurest of laser s O s A n o i t 1 a - Critical Issues and Results to Date in EUV Source Development r Critical issues ( laser conditions)le e c Results to date ( optimization of conversion efficiency, experiment and theory) c Further optimization ( A double pulse, laser wavelength ) a Other problem and mfuture development ( debris, target supply ) s a l P r e s La - Introduction 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 2 Introduction h c S l o o s n io - Background on EUVL ( Extreme Ultra Violet Lithography ) L r e - Radiation from LPP ( Laser Produced Plasma ) and iat m d m choice of emitting material a u R S d n n a n i - Source requirements and possible design windows a s O t s A n o i t 1 a r e l e c c A a m s a l P r e s a 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 3 Moore’s low requires to implement the EUV lithography technology in manufacturing until 2011 Contact illumination Minimum process size, wavelength of light (nm) 3000 2000 1000 700 500 300 200 100 70 50 30 20 s a L 10 1:1 projection lithography Moore’s low x 0.7/3 yr. r e m h c S l o o t a i d s n io m a u R S we n d ak n a n sup i a s s O er r t r t o s A ng n e sup solu o i ti er t 1 res on a olu r Now available@ 90 nm node tie on l e Now possible@ 60 nm node c c A Source: ArF Excimer @193 nm. a will work down to - 45 nm (immersion) m s a l P r e Reduction projection g line i line KrF ArF F2 EUV 13.5 nm 1970 1980 1990 Year 2000 2010 15 nm CMOS (AMD, 2001) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 4 EUVL system consists of reflective mirror optics, because of no transparent lens for EUV. r e m s a L h c S l o o m a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c A a m s a l PEUV lithography system r e t a i d LLNL HP 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 5 s n io Reflectivity of multilayer Mo/Si mirror has a sharp peak (70%) at 13.5 nm l o Reflected olight wave interfear h constructively with each others. s c S n r o i e t a m i d m a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c A a m(nm) Wavelength s a l *M. Wedowski et al., P wavelength vs. photon energy r e 13.0 s nm : 95.4 eV a L 13.5 nm : 91.8 eV Cross section of multilayer mirror Reflectivity 1.0 0.8 0.6 0.4 0.2 0.0 Mo/Be 70.2% @11.34 nm FWHM = 0.27 nm 11 12 Mo/Si 67.5% @ 13.42 nm FWHM = 0.56 nm 13 14 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 6 Laser plasma radiation from a typical 30-100 eV electron temperature plasma Radiation spectrum from laser produced plasma • • t a i d s n io m a u R S Plasma d n n a n i a s O Focusing optics st A n o i recombination t 1 radiation a r ( bound –free transitions ) le e c c A bremsstrahlung a m ) ( free-free transition s a l P r For aneoptically thin plasma: s a LP :P :P = 100:10:1 Spectrum consists of: • lines ( bound-bound transitions ), • r e m h c S l o o Monochromatic EUV imager Tin target lines recomb brem 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 7 Sn, Xe, Li emit strong 13.5 nm light, however their spectra are quite different. 1.2 Sn S nO2 (59%) S nO2(23%) 7 6 O 5+ 2p-4d @12.9 nm 5 4 3 2 1 0 O 5+ 2p-4p @11.6 nm s a L O 5+ 2p-3d @17.3 nm e m rS o h c 1 ol LPP_norm DPP_norm 0.8 t a i d 0.6 s n io m a u R S d n n a n i a s O t s A n o i t 1 wavelength (nm) a r e l e Details of emission mechanisms c c A for each material a will be discussed later. m s a l P r e 0.4 6+ O 1s2p-1s7d @7.9 nm 0.2 0 6 Li O 5+ 2p-3p @15.0 nm Xe relative inensity Sn intensity @ 13.5nm (a.u.) 8 8 10 12 14 16 18 20 22 w a ve length ( nm) 9 10 11 12 13 14 wavelemgth (nm) wavelength (nm) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 8 15 16 17 High-power and high-reputation EUV light source is required for EUV lithography. EUV source requirements l o o Wavelength 13.5 nm (2% bandwidth) --> Sn, Xe, Li EUV Power 115 – 180 W (@ intermediate focus point) > 300 W (@ plasma source) 1 ~ 3.3 mm2Sr r e m h c S t a i d m a u Frequency R S 10 - 100 kHz d n n a n Conversion efficiency from laser to EUV a i s O st A n >1% o i t 1 a r Power stability ± 0.3% (3s, average over 50 shots) e l e c Life time 100 Gshots (about half year) c A a m Mo/Si s a multilayer collector mirror l P Laser r e s a Plasma L intermediate focus point Etendue 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 9 s n io LLNL HP We have experimentally and theoretically shown that the source requirements for practical use can be achieved. executive summary l o laser intensity dependence of EUVopower hintermediate focus point s the conversion efficiency (Sn) c at S n r o e =η S I τ tεi R P 0.04 a m i = 280 W > 115 W d m a u R S d 0.03 n laser intensity : I = 10 W/cm , theory n a n i a O pulse width : τ = 5 ns, st As n o i repetition rate : R = 10 kHz , t 1 0.02 a r plasma size ( ε = 3 mm str ) : e l e φ ≈870μm c c conversion efficiency : A 0.01 a η = 0.03 m from high density s a efficiency of focusing system : l P 0 ε = ε ε ε ε = 0.32 r 10 10 10 e s 5/2π, 0.55, 0.9, 0.8 a laser intensity (W/cm2) L EUV conversion effeciency CEt CEh EUV L EUV total 11 L EUV p 2 t EUV 10 11 12 total Ω R te 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 10 td p 2 Basic physics of Laser Produced Plasmas for EUV Source h c S l o o - Radiative processes of Li, Xe and Sn excited atoms L r e t - Features of laser produced plasmas a m i d mand radiation density, temperature a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c A a m s a l P r e s a 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 11 s n io Sn, Xe, Li emits strong 13.5 nm light, Their spectral profiles are quite different. 1.2 Sn S nO2 (59%) S nO2(23%) 7 6 5+ O 2p-4d @12.9 nm 5 4 5+ O 2p-4p @11.6 nm 5+ O 2p-3p @15.0 nm 5+ O 2p-3d @17.3 nm r e m 1 0.8 t a i d 0.6 0.4 6+ O 1s2p-1s7d @7.9 nm 2 s n io 0.2 1 0 6 s a L h c S l o o LPP_norm DPP_norm m a u R S d n n a n i a s O t s A n o i t 1 a Sn UTA r e l (Unresolved Transition Array) e c c A Xe a m (optical thick case) s a l P Li thin line r e 3 0 Li Xe relative inensity Sn intensity @ 13.5nm (a.u.) 8 8 10 12 14 16 18 20 22 w a ve le ngth ( nm) 9 10 11 12 13 14 wavelemgth (nm) (single transition) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 12 15 16 17 Lithium Atomic Process 13.5 nm => Lyman- α (1s-2p) 0 eV -122 eV 3 s a L 0 3 1 1 s n io 1s-2p 1s-3p t a i d m a u R S d n n a n i a s O t s A n o i t 1 a H-like Ground (1s) ler ce, n = 2 ( S , S ,cP P ) a A m s Te = 30 eV, Ni = 10 a l Stark Broadening P r e He-like Ground (1s ) 1 -197 eV -202 eV r e m Fully Ionized n = 3 (3p, 3s, 3d) n = 2 (2p, 2s) h c S l o o 1 1,2,3 Lithium Ground 2 (1s22s) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 13 19 cm-3 Atomic structure of Xe (atomic number 54) and Sn (atomic number 50) principal quantum number Xe Sn n=5 n=4 n=3 n=2 n s=t 1 total orbital angular momentum r e m h c S l o o l = 0, l = 1, l = 2, l = 3, (5s)2 (5p)6 8 (4s)2 (4p)6 (4d)10 (4d-5p) transition Xe+10 (3s)2 (3p)6 (3d)10 (2s)2 (2p)6 (1s)2 t a i d m a u R S d n n a n i a s O A n o i t 1 a r e n=5 (5s) (5p) el cc (4d) (4d-4f) transition Sn n=4 (4s) A (4p) a n=3 (3s) (3p) (3d) m n = 2 as (2s) (2p) l (1s) n =P1 r e s 2 2 2 6n n’ 10 2 6 10 2 6 +8 - +14 2 La s n io 2n2, n ≥ l + 1 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 14 Emission at 13.5 nm comes from only Xe+10 ion stage corresponding to 4d-5p resonance transitions r e m h c S EUV spectra from individual charge state ions l o o 4d-5p d m a u R S d n n a n i a s O t s A n HULLAC io t 1 a r e l e c c A a 13.5 nm 11 nm m s charge exchange spectroscopy : a l P r e s La iat 4d-4f Intensity / arb. units s n io q = 18 17 16 15 14 13 4d-5p 12 13.5nm 4d-5f ECR Ion Source 11 10 9 q=8 Xe+q Æ + ( He, Ar, Xe) Grazing Incidence Spectrometer Gas Xe+q-1 ( n, l ) Æ Xe+q-1 ( n’, l’ ) + hν Cooled CCD Xeq+ - He 6 MCI TMP TMP 12 18 Wavelength / nm 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 15 24 Electron temperature (~30eV) should be chosen properly for Xe Abundance of Xe ions (temperature dependence) r e m h c S l o o CRE Collisional Radiative Equilibrium m a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c Xe A a m s a l P r e t a i d +10 s a L 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 16 s n io Optically thick plasma is required for increase 13.5 nm emission for Xe. In optical thick plasma, emission around 11 nm is limited by Planck Optically thick r e m h c S l o o Optically thinner t a i d s n io m a u R S d n n a n i a s O t s A n 170 ps o long pulse 15 ns shortipulse t 1 a r e l e c c Spectral shape strongly modified by A opacity and satellite lines a m s a l P r e s La 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 17 Radiation flux is limited by Planck distribution function l o o πI (dν/dλ)Δλ h c s S n r 1.66 x 10 W/cm (T=33.8eV) o i e t a m i d m a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c A a m s a l P r e Planck distribution function 13 nm (95.4eV) 2% bandwidth νp 9 s a L 2 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 18 Many ion species contribute to the UTA (Unresolved Transition Array) in Xe EUV spectra from individual charge state ions 1 A A a m s la exchange spectroscopy : 13.5 nm Pcharge r e s a L 4d-4f Æ Sn+q-1 ( n’, l’ ) + hν t a i d nd Ra s n io 13 12 Snq+ - Xe 11 4d-5p 10 9 4d-5f 8 q=7 6 Sn+q + ( He, Ar, Xe) Æ Sn+q-1 ( n, l ) q = 15 14 a On n o i t a r e l e c c Intensity / arb. units st sia S n um r e m h c S l o o 5 5 10 15 20 25 30 Wavelength / nm 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 19 35 40 Spectral shift and narrowing occur for ions having 4d-open valence shell, due to configuration interaction. The Sn UTA is due to 4p64dn Æ ( 4p54dn+1 + 4dn-14f + 4dn-15p ) (n=0,1,,,9) transitions. 4f 4d 4p s n io 4f iat 4d 4p d m a u R Overlapping of wave function S only 4f-excitation d n causes resonant interaction n a n i a O among them st As n o i t 1 a r e l e c c A a m s a l P r e 4f and 4pexcitation s a L e m rS ch l o o only 4p-excitation 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 20 Opacity effects are important in Sn : proper pulse duration is required (will be discussed later) target; wavelength; pulse duration : spot size; s a L plane Sn foil 1.064 μm (1 beam/normal incidence) 2.2 ns (Gaussian) 660 μmφ r e m h c S l o o 8.0 ns (Gaussian) 480 μmφ m a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c A a m s a l P r e laser intensity 1011 W/cm2 t a i d s n io Opacity measurement is important (will be discussed later) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 21 Example of radiation spectrum of a body with a temperature which decreases toward the surface r e m s a L h c S l o o m a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c A a m s a l P r e t a i d 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 22 s n io Features of laser produced high Z plasma, which consists of two regions. High density region: high density / low temperature Corona region : high temperature / low density / LTE / b-f absorption / CRE / M-, N- band emission / isothermal expansion r e m 11 h c S l o o 2 Sn 1w 1X10 W/cm 2.2ns 1023 60 10 t a i d s n io m aT u 50 10 R S 8 constant d n T n a n i a s O 40 10 t s A n o n (x, t) = n e 6 i t 1 a r 30 10 v e l laser e c 4 c x 20 10 A v(x, t) = + c a t m s 2 10 10 a Sn target l <Z> P r e 10 I = 10 W/cm s 0 0 a -50 0 50 100 150 L ns τ = 2.2 e e 20 i 19 fluid velocity (X10 6cm/s) 21 ni Te (eV), <Z> ion density (cm-3) 22 i 18 L L 11 2 17 Position (μm) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 23 0 s − x cst Most of absorbed energy flux is emitted by radiation, and EUV (13.5 nm) emission from corona. 10 0.2 19 10 Electron 1018 -0.2 17 10 0.0 -50 L as 0 50 100 Position (μm) -0.4 150 1.0 1022 0.5 0.0 -0.5 -1.0 ion density (cm-3) 0.4 1.5 9 0.6 11 2 Sn 1w 1X10 W/cm 2.2ns 1023 2 2 EUV Radiation 20 t a i d s n io e 1020 40 vi 30 1019 20 1018 10 1017 -50 0 10 50 i 1021 60 50 100 Position (μm) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 24 0 150 8 6 4 2 0 fluid velocity (X10 6cm/s) 2.0 EUV flux (X10 W /cm ) ion density (cm-3) 1021 0.8 11 ni 2.5 m a u R S d n n a n i a s O n t s A n o T i t 1 a r e l e c c A a m s a l P r e Laser 1022 r e m 1.0 Energy flux (X10 W/cm ) 1023 h c S l o o Te (eV), <Z> various energy fluxes in laser ablation Self–absorption of EUV radiation can not be ignored for tin. 10 10 ni 1022 1019 12 11 1018 s a L 1017 -50 10 ion density (cm-3) 1020 11 s n io 2 Sn 1w 1X10 W/cm 2.2ns 1023 3 ion density (cm-3) 10 t a i d m a u 10 R S d n n a n i a s O t s A n n o T 10 ti 1 a r e l e c c A 10 a m s a l P r 10 e0 50 100 150 13 21 h c S Energy source (W/cm /13.5nm 2%BW) 10 22 r e m 14 e 20 10 40 vi 30 1019 20 1018 10 1017 -50 0 50 100 Position (μm) Position (μm) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 25 10 50 i 1021 60 0 150 8 6 23 l o o Te (eV), <Z> EUV ( 2% bandwidth ) emissivity, self absorption 6 4 2 0 From energy flux conservation in isothermal expansion region, various loss fluxes and electron temperature can be estimated. ion density (cm-3) 10 ni Te 10 1017 -50 40 vi 1020 18 10 50 1021 1019 60 30 8 Te (eV), <Z> 22 2 6 4 l o o corona plasma: isothermal expansion (density, velocity) fluid velocity (X10 6cm/s) 11 Sn 1w 1X10 W/cm 2.2ns 1023 r e m h c S − x t v( x, t ) = ia+ cs ad t x cs t ni ( x, t ) = n 0 e m u R S d n n a n i a s O t s A kinetic energy loss flux 1. expansion n o 1I = d 1 mv n dx + 1 mcrantci = 3 Z ( n , T ) n T c dt ∫ 2 2e l e c 2. ionization and internalc energy loss flux A 3 ⎡ ⎤ a I = ⎢ Em( n , T ) + Z ( n , T )T ⎥ n c 2 ⎣s ⎦ a l P 3. r radiation energy flux e ⎞ ⎛ s a I j ( n , T ) exp ⎜ − κ ( n , T ) d x ′ ⎟ dxd ν = 20 2 10 0 50 100 Position (μm) 0 150 s n io 0 ∞ 2 kin 2 s i * 0 s 0 e 0 e s 0 * ion L ion 0 e 0 ∞ ∞ rad ∫∫ 0 0 e e 0 s ∞ ν i e ⎜ ⎝ ∫ x ν i e ⎟ ⎠ 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 26 Dependence of various loss fluxes and electron temperature (difference of their dependence for Sn and Li) st 10 10 1 A sia kinetic 9 10 10 10 r e s s a l P S n T e a m 11 10 um 10 10 d n n a O ionization n o i t a r e l e c Ac 10 d a R iat s n io 100 ionization radiation 9 10 kinetic 9 10 T e 10 10 10 2 2 laser intensity [W/cm ] Radiation loss dominates for Sn, Ionization and kinetic loss increase at low intensity. La l o o Li, 20ns electron temperature [eV] radiation r e m 2 11 10 h c S loss fluxes [W/cm ] 100 electron temperature [eV] loss fluxes [W/cm 2] Sn, 5ns laser intensity [W/cm ] Ionization loss dominates at low intensity and kinetic loss increases at high intensity for Li. 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 27 Critical Issues and Results to Date in EUV Source Development h c S l o o - Critical issues atomic data, conversion efficiency, optimization r e m t a i d m a u R S d n n a n i a s O t s A n - Further optimization o i t 1 pulse duration, laser wavelength, double pulse etc. a r e l e c - Other problems andcfuture development A fast ion, debris mitigation and target supply a m s a l P r e s La - Results to date (optimization of conversion efficiency) laser, experiments, simulation and modeling 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 28 s n io Research Issues: Understanding of Atomic Processes materials and transitions for 13.5 nm emission 1.2 Sn 7 6 5+ O 2p-3p @15.0 nm 5+ O 2p-4d @12.9 nm 5 Xe Sn SnO2 (59%) SnO2(23%) 1 relative inensity intensity @ 13.5nm (a.u.) 8 e m 0.8 rS ch LPP_norm DPP_norm l o o Li t a i d s n io m a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c A Sn: Sn - Sn (4d-4f) a Xe: Xe (4d-5p) Li: Ly-α (many lines 10 ) (narrow bandwidth) m (more than 100 lines) s a transitions are not assigned for Sn and Xe yet l P r e s understanding of atomic processes Importance of atomic data base a L 4 5+ O 2p-4p @11.6 nm 3 5+ O 2p-3d @17.3 nm 0.6 0.4 6+ O 1s2p-1s7d @7.9 nm 2 0.2 1 0 0 6 8 10 12 14 16 18 20 22 wavelength (nm) +8 +14 9 10 11 12 13 14 15 16 17 wavelemgth (nm) +10 5 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 29 Research Issues: Optimization of LPP – EUV Source laser energy, intensity and pulse duration in order to satisfy light source requirement h c s EUV source power = 350 W/2πsrS n r o repetition rate = 10 kHz i e t a m i d m 10 a u 2% R S 1 mm sr d n 4% n a n i a s O 2% understanding of dependence t s A n 10 o of the conversion efficiency on i 4% 1 t a ・laser intensity and r 1.7 J e l ・pulse duration 0.86 J e c 10 c A 3.3 mm sr a m s importance of EUV data base a l 10 P r e1 10 100 s a L laser pulse duration (ns) 12 EUV conversion efficiency Laser intensity (W/cm2) l o o optimum laser intensity to obtain a maximum conversion efficiency from laser energy to EUV radiation energy of13.5 nm with 2% bandwidth 2 Etendue = (source size = 700µm) 11 laser energy 10 2 Etendue = (source size = 1300µm) 9 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 30 d θ l o o understanding of dependence of the conversion efficiency on ・laser intensity (optimum ele. temp.), ・pulse duration (plasma size) and ・laser wavelength (ion density) Optically thin limit I EUV(θ) = const Etendue ≈ 1-3 mm2sr r e m Optically thick limit I EUV(θ) = cos(θ) h c S t a i d s n io m a u R S importance of EUV data base d n op n a ticn i a 1000 a s O 0.25 μmlly t 10.6 μm st A 1.06 μm0.53 μm oo ion thi t τ =20 1 optim a ck r u m 10 e l de e ns 100 c 5 i tyop c dA tic e pth all a yt 2 pr oo od m s uc tha t i n l 10 P r 10 10 se 10 10 a L ion number density (cm ) multi dimensional expansion 20ns L 10ns 10 10 5ns 5 5 2ns 2 1ns 17 18 etendue limit 1mm2sr (Ω=π) plasma scale length (μm) 800-1200 µm Research Issues: Optimization of LPP – EUV Source 2 1 1 one dimensional expansion 20 19 -3 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 31 Theoretical values near 13.5 nm agree with observation for Xe, but not for 4d-4f transitions with schematic differences of 0.4 nm for Xe & Sn. comparison of theory and exp. comparison of theory and exp. Xe energy levels Sn energy levels agreement of theory and exp. spectra Xe, 13.5 nm Normalized Intensity TMU CXS Xe 12.5 13 11+ - He 18 r e m 批 : He target 16 披 : HULLAC 13.5 14 14.5 14 12 4d-5p 4d-5f 10 t a i d 13.5nm 8 6 4 6 8 10 12 14 16 18 Wavelength /nm NIST HULLAC Cowan s a L Grasp h c S 捧 : Xe target l o o m a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c A a m s a l P r e Wavelength / nm EUVA 4d-4f Charge state of Xe ions NIST data Xe 10+ 20 12.5 13 13.5 14 14.5 wavelength [nm] 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 32 s n io An ideally “uniform” EUV radiator was produced by GEKKO-XII laser, to obtain laser intensity dependence of the conversion efficiency without lateral energy loss and geometrical effects. spherically uniform plasmas h c S l o o Laser : GEKKOXII, 12 beams wavelength: ω (1.056 mm) intensity: 1010 ~ 1012 W/cm2 pulse width: 1.2 ns (FWHM, Gaussian) r e m t a i d m a u R S d Target n chamber n a n i a s O t Target : s A n o i t 1 Sn coated on a plastic ball a r 300~2000 mm ( mostly 700 μm ) e l e c c A Diagnostics (XST: time resolved): a m E-MON ( 13.5 nm 2% bandwidth ) s a l transmission grating (TDI) + CCD P er grazing incident spectrometers (GIS) f s a L s n io GXII laser: 12beam、20kJ/1ns 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 33 φ 10 Hz / 10kHz Laser System, Target Chamber for EUV Lithography 6 mm Rod 80 W r e m h c S l o o 2004.6.12 AM2:00 t a 斜入射回折格子 i d m a u R S d n n a n NFP i FFP a s O t EUV単色カメラ s A n o i t 1 G = 1.45 a r e l f = 200 e EUVエネルギーモニター c mm c A a m s a l P r e s La 4 mm Rod 30 W s n io 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 34 透過型回折格子 Diagnostics ion (Thomson parabola) Slit (500 祄) monochromatic EUV mini-calorimeter neutral particle (LIF) Spherical mirror r e m h c S l o o Back-illuminated CCD camera t a i d m a u R S θ d n n a n i a s O t s A n o Laser i t 1 a r e l e c c 共同利用実験設備 A a m s a l P r e Target Δλ= 0.057 nm @ 17.3 nm Δ x = 50 祄 Grating (1200 grooves/mm) λ Schwarzschild microscope Mo/Si ML mirrors filter: Zr/CH (0.4/0.5祄) Streak camera 45ٛ 10 ns, 10 Hz ?3 J on target, Optical probe Photo diode electron density Interferometer (interferometer) Zr/CH filter s a L Δx = 15 祄 Δt = 2.6 ns s n io Grazing-incidence flat field spectrometer x E-mon Δt = 1 ns Mo/Si ML mirror Gated CCD camera t 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 35 x Conversion efficiency of uniformly irradiated spherical target target; laser; wavelength; pulse duration : 3.5 Conversion Efficiency(%) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 L Sn coated spherical CH Gekko-XII/Nd glass laser/12 beams 1.053 μm 1.2 ns (Gaussian) r e m h c S l o o m a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c A a E-mon m s TGS a l P r e as10 10 2 3 4 5 6 7 11 2 10 2 Intensity (W/cm ) Y. Shimada et al., Appl. Phys. Lett., 86, 051501 (2005). 3 4 5 6 7 t a i d 12 10 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 36 s n io Comparison of experimental and theoretical EUV spectra for spherical target IL= 9E+10 W/cm2 IL=3E+11 W/cm2 e m 1000 500 0 2000 2000 1500 1500 Intensity (a.u.) Intensity (a.u.) y( ) 1500 1000 5 10 Wavelength (nm) 15 20 0 t a i d s n io 1000 500 500 0 IL=9E+11 W/cm2 m a u R S d n n a n i a s O t s A n o i t 1 a r simulations e l e c c A a m s a l P r e s La experiments 2000 rS o h c ol 0 0 5 10 Wavelength (nm) 15 20 0 5 10 Wavelength (nm) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 37 15 20 Opacity of Sn heated by thermal radiation (TR = 50 eV) has been measured Schematic of opacity measurement Sn Opacity Sn plate for probing x-ray source r e m Thermal radiation (TR = 50 eV) h c S Time Laser inlet hole l o o m u S n n a n i a s O st A n o i t 1 a r e l σ e c c A a m s a l P r e Opacity sample Observation window (Sn with CH tamper) Dog-bone gold cavity t a i dnm 13.5 a R d s n io Wavelength ① Opacity (Sn) ② Self-emission (Sn) 100 TR = (EL/ )1/4 7 6 Time (ns) Time (ns) 2 3 4 2 3 4 5 5 5 12 14 16 18 10 12 14 (CH) 16 18 ④10 ③ Opacity Self-emission (CH) 4 1 3 Wavelength (nm) Time (ns) Radiation temperature (eV) 8 Time (ns) L as 1 1 9 2 3 4 5 2 3 4 5 6 7 8 9 2 3 100 Laser energy (J) 4 Wavelength (nm) 1 2 3 4 5 5 6 7 8 9 1000 10 12 14 16 18 Wavelength (nm) 10 12 14 16 18 Wavelength (nm) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 38 Theoretical opacity obtained from HULLAC code roughly agrees with the experiments, but not in detail. Absorption spectrum of 30-eV tin 1.2 1.0 Transmission um Experiment (raw) Experiment (smooth) st 0.8 1 0.6 ia s A S n 0.4 0.2 0.0 8 10 12 P r e m s la 14 A a 16 r e m h c S l o o a R d HULLAC n a On n o i t a r e l e c c t a i d 18 Wavelength (nm) s a L 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 39 s n io Conversion efficiency from laser to EUV emission is obtained from various loss fluxes determined from power balance. l o o conversion efficiency 11 10 r e m electron temperature [eV] loss fluxes [W/cm 2] 100 e 10 9 10 10 10 EUV EUV , CR + I EUV , HD t a i d I rad + I ion + I kin m I a u T R S I = d n 2 n a n i a s O t ionization s A n o (T ) I =I i t 1 a r e l kinetic e c c 10 A 10 a laser intensity m[W/cm ] s a l P r e radiation 10 hI c ηS = rad , EUV EUV , CR EUV , HD P , EUV R 11 2 laser intensity dependences of various loss flux and electron temperature radiation loss dominates (Sn, n0 = 4x1019 cm-3, 1.2ns) s a L s n io 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 40 2σ T R4 = I rad 2 Theoretical conversion efficiency obtained from the power balance model agrees fairly well with the experiments with tin, in which CE 3% is achieved at 5x1010 - 1011 W/cm2. l o laser intensity dependence of opower EUV h the conversion efficiency atcintermediate focus pointns S r P = η S I τ εtioR 0.04 e a m i m = 280 W a >d 115 W u R S 0.03 d n theory n n a laser intensity : I = 10 W/cm , i a s O st A n pulse width : τ = 5 ns, o i t 1 0.02 repetition rate : R = 10 kHz , a r e plasma size ( ε = 3 mm str ) : l e c φ ≈870μm c 0.01 A conversion efficiency : a from high density m η = 0.03 s a l efficiency of focusing system : 0 P r 10 10 10 ε = ε ε ε ε = 0.32 e s laser intensity (W/cm2) 5/2π, 0.55, 0.9, 0.8 a L EUV conversion effeciency CEt CEh EUV L EUV total 11 L EUV p 2 t EUV 10 11 12 total Ω R te td 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 41 p 2 Electron density obtained from 2d radiation hydrodynamic simulation agrees well with experiments, which indicates spherical expansion. 2d radiation-hydro simulation r e m h c S l o o 1D Sim. 2D Sim. with 1D cond. 2D Sim. m a u R S d n n a n i a s O t s A n o i t 1 a r e l e c c A a m s a l P r e electron density measurement t a i d s n io 電子密度干渉計測 0.53-µm (2ω) probe Target surface s a L with interference of 2 ω or 4 ω 0 200 400 Distance (µm) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 42 @2ω EUV発光ピーク @4ω Critical Issues and Results to Date in EUV Source Development h c S l o o - Critical issues atomic data, conversion efficiency, optimization r e m t a i d m a u R S d n n a n i a s O t s A n - Further optimization o i t 1 pulse duration, laser wavelength, double pulse etc. a r e l (theoretical and experimental works) e c c A - Other problemsaand future development m mitigation and target supply fast ion,sdebris a l P r e s La - Results to date laser, experiments, simulation and theoretical model 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 43 s n io Further optimization for 1μm laser (Sn : planer target) Dependence of max. conversion efficiency,optimum pulse duration and required laser intensity (dotted line) on electron temperature and ion density h c max. CE (solid line; %) pulse width (solid line:ns) ns S r o 80 i 80 e t a m i d m a u 50 R S 50 d n n a n i a s O t s A n o 30 30 ti 1 a r e l 20 20 e c c A a m s 10 10 a l 10 10 10 10 10 10 10 10 P r ion density [cm ] ion density [cm ] e s 1μm laser,max CE = 3 % at 10 -10 W/cm , and 2 ns a For L electron temperature [eV] electron temperature [eV] l o o 17 18 19 -3 20 17 10 18 11 19 -3 2 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 44 20 High conversion efficiency was obtained at 2.3 ns pulse duration, which agrees with theoretical prediction. l o o Dependence of CE on pulse duration and laser intensity 2.0 m a u R S d n n a n i a s O 1.5 t s A n o i t 1 a r e l e c c 1.0 A 1.2 ns pulse duration a m 2.3 ns pulse duration s 5.6 ns pulse duration a l P 8.5 ns pulse duration r e 0.5 Conversion efficiency (%) s a L r e m h c S 10 10 2 3 4 5 6 78 11 2 3 10 Laser intensity (W/cm2) t a i d 4 5 6 78 1012 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 45 s n io Optimization for different laser wavelength : absorption lengths of both laser and EUV lights should be comparable. dependence of absorption lengths of laser and EUV dotted line:13.5nm absorption length (cm) Solid line:10.6μm laser absorption length (cm) optimum density h c S s n io optimum density m u S d n n a n i a s O t s A n o i t 1 a r e l e c c A a m s a l P r e 10.6 μm s a L r e m l o o 破線:13.5nm EUV (cm) 実線:1.06μm laser (cm) t a i d μm 1.06 a R 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 46 Optimum parameters for different laser wavelengths l o o High density region (1.06μm laser): high intensity,short pulse h c S Low density region (10.6μm laser): low intensity,long pulse 80 t a i d optimum pulse width (ns) m 80 a u R S d n n a n i 50 a s O t s A n o i t 1 a r 30 e l e c c 20 A a m s a l P 10 r e 10 10 10 10 10 10 electron temperature [eV] electron temperature [eV] Max. CE (white solid line:%) r e m 50 30 20 10 1017 L as 18 ion density 19 [cm-3] 20 17 s n io 18 ion density 19 [cm-3] 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 47 1020 Increase of conversion efficiency with double pulses (Miyazaki) l o o 6% r e m h c S t a i d m a u R S d n n a n i a s O t s A n o i t 1 a r e l e Experimental conditions, c c Main pulse: A 1.064 μm/ 10 ns/ 10 -10 W/cm , a m spot size : 175 μm , 3x10 W/cm s a Pre-pulse: l P 532 nm/ 8 ns/ 2x10 W/cm r e Target: 11 φ s a L s n io 12 11 10 T. Higashiguchi et al., APL 88, 201503 (2006) T. Higashiguchi et al., SPIE 6151, 615145 (2006). 2 2 2 liquid micro-jet with SnO2 (6-17%) 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 48 Research Issues: Mitigation of Fast Ions and Debris l o o damage of collector mirror by fast ion and neutral atoms intermediate focus point r e m h c S development of ・ high replete target supply ・ minimum mass target t a i d m a u understanding of R S d n ・ dependence of fast ion spectrum n a n i a on laser parameters and s O t s A n target initial density etc. o i t 1 ・ charge exchange and a r e recombination processes l e c ・ mitigation by such as c A magnetic field a m s a l P r e laser to irradiation optical system EUVsource collecting mirror s a L s n io MD with electron dynamics 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 49 Isothermal expansion with finite target mass causes fast ions. 10-1 10 Present model (α =1, ε0=1.7 keV) 10-4 10-5 -6 10 10-1 r e m -2 10-3 0 10 1 Maximum ion energy predicted by the present analytical model Normalized spectrum dN/dε Normalized spectrum dN/dε 10 1 0 h c S l o o Maximum ion energy predicted by the present analytical model t a i d Experiment m a u R S d n n a 10 n i a Experiment s O Present model t s A n (α =3, ε = 3.0 keV) o i t 1 a 10 r 1 10 0.1 1 10 e l Ion kinetic energy ε (keV) ce Ion kinetic energy ε (keV) c A a m s a l P Details can be presented r se on Thursday by Murakami 10-2 -3 0 -4 0.1 Quasi-Planar Expansion Quasi-Spherical Expansion 100 μm 500 μm La 10 - 20 μm レーザー レーザー Xe液体ジェット Sn固体平板ターゲット 1st Asia Summer School on Laser Plasma Acceleration and Radiation, Beijing, Aug. 7-11, 06 50 s n io Minimum mass target is required to reduce neutral atoms l o o CE of EUV & emission from neutral atoms vs thickness of Sn 1.5 r e m 800 Conversion efficiency (%) m a u 600 R S d n n a n i 1.0 a s O t s A n o i 400 t 1 a r e l e c 0.5 c A 200 a m s Emission of Sn a l P 0.0 r 0 e 10 100 1000 as 0+ L 5 6 78 2 3 4 5 6 78 2 3 t a i d Emission intensity from Sn(I) atoms EUV-CEs h c S s n io 4 5 678 Sn layer thickness (nm) 1st Asia Summer School on Laser Plasma Acceleration 51 and Radiation, Beijing, Aug. 7-11, 06 PoP 05, 06 Minimum mass target can be realized with use of a droplet target and punch-out target Concept of the punch-out target Punch-out target Droplet target prepulse s a L r e m h c S l o o 100 m/s m a u R S d main laser n n a n i a s O t s A n o i t 1 a r e l e c c A a m s a l P r e t a i d 1st Asia Summer School on Laser Plasma Acceleration 52 and Radiation, Beijing, Aug. 7-11, 06 s n io Fast ion energy can be reduced for low initial target density Maximum ion energy ⎛ Λ2 ⎛ Λ2 ⎞ ⎞ 1 2 Emax = mi v max ≈ 2 z Te ln⎜⎜ ln⎜⎜ ⎟⎟ ⎟⎟ 2 ⎝ 2 ⎝ 2 ⎠⎠ 2 0 2 2 0 13 0 e R z n0 n R Λ = 2 = ∝ λ De ε 0 Te Te 2 Nr= e m h c S4π 3 l o o R n0 = const 3 0 t a i d m a u Punch-out target,double pulseScan reduce initial density and fastR ion energy d n n a n i a s O t s A n o i t 1 a r e l e c c A a m s a l P Single pulse r e Dual pulses s (Δτ = 100 ns) La 10 6 Sn 1+ Ion number Sn 3+ 10 5 Punch -out Sn 1+ Sn 2+ Sn 2+ Static 10 4 10 3 3 4 5 6 7 8 9 2 10 3 Ion energy (eV) 3 4 5 6 7 8 9 □ ○ 10 4 1st Asia Summer School on Laser Plasma Acceleration 53 and Radiation, Beijing, Aug. 7-11, 06 s n io Mitigation of fast ions by magnetic field Gyro-radius of fast ions (2miEmax ) v R L = max = ZeB ωci 12 B=1T Emax = 10 keV Z=1 e m rS ch l o o R = 11 cm s n io L t a i Stability of expanding plasmaddepends m u on B-field configuration Ra S d n n a n i a s O t s A n Reduction of damage by B-field o i t 1 a r e l e c c A a m s a l P r e Ion signal [a.u.] 1 s a L 0.1 0.01 0.001 0.0001 0 0.2 0.4 0.6 0.8 center magnetic field [T] 1st Asia Summer School on Laser Plasma Acceleration 54 and Radiation, Beijing, Aug. 7-11, 06 1 1.2 Summary l o osource can be achieved I have shown that laser-produced-plasma EUV h c s for practical use of next generation lithography S n r o i although technical problems, such asedebris mitigation, still remain. t a m i d m a u R S d n n a n i a s O t s A n o i Understanding important 1 of fundamental physicsraistalways for any practical applications. e l e c c A a m s a l P r e s La 1st Asia Summer School on Laser Plasma Acceleration 55 and Radiation, Beijing, Aug. 7-11, 06 Acknowledgements l o o Thanks for providing power point files for the lecture, especially r e m S. Fujioka, M. Murakami, (ILE) T. Higashiguchi (Miyazaki) T. Nishikawa (Okayama) G. O’Sullivan (Dublin) A. Sunahara, (ILT) st A. Sasaki, (JAEA) H. Tanuma (TMU) h c S m a u R S d n n a n i a s O A n o i t 1 a r e l e c c A a m 謝謝 Thank you for your attention s a l P r e s La t a i d 1st Asia Summer School on Laser Plasma Acceleration 56 and Radiation, Beijing, Aug. 7-11, 06 s n io
© Copyright 2026 Paperzz