SHORT LEG: EXACT VALUES OF SIN PRACTICE MEDIUM LEG: LONG LEG: Find each exact value without using a calculator. Leave your answers in fractional form. (1) sin(150) ______ (2) sin(225) ______ (3) sin(60) ______ (4) sin(90) ______ (5) sin(315) ______ (6) sin(45) ______ (7) sin(120) ______ (8) sin(300) ______ (9) sin(30) ______ (10) sin(330) ______ (11) sin(0) ______ (12) sin(270) ______ (13) sin(360) ______ (14) sin(135) ______ (15) sin(210) ______ (16) sin(240) ______ PRACTICE Determine the value(s) of theta that would satisfy each equation. (17) sin(θ) =— √3 2 θ=_____ _____ 1 (21) sin(θ) =— 2 θ=_____ _____ PRACTICE (18) sin(θ) = (19) sin(θ) =1 1 2 θ=_____ _____ (22) sin(θ) = θ=_____ (23) sin(θ) =0 √3 2 θ=_____ _____ θ=_____ _____ (20) sin(θ) =— √2 2 θ=_____ _____ (24) sin(θ) =—1 θ=_____ Consider the unit circle pictured at right. y (25) Locate the spot at 60°. What is the vertical distance from that spot down to the x-axis? ________ (26) Prove your answer to #25 using trigonometry. x PROOF: (27) How can you use similar trigonometric methods to determine the horizontal distance from the same spot to the y-axis? Describe/show your method below. DESCRIPTION / WORK: (28) Complete the following statement: If the sin function determines a spot’s vertical dimensions, then the ______ function determines a spot’s _______________ dimensions. WHEN TO USE SIN PRACTICE WHEN TO USE COS Find each exact value without using a calculator. Leave your answers in fractional form. (29) cos(150) ______ (30) cos(225) ______ (31) cos(60) ______ (32) cos(90) ______ (33) cos(315) ______ (34) cos(45) ______ (35) cos(120) ______ (36) cos(300) ______ (37) cos(30) ______ (38) cos(330) ______ (39) cos(0) ______ (40) cos(270) ______ (41) cos(360) ______ (42) cos(135) ______ (43) cos(210) ______ (44) cos(240) ______ PRACTICE Determine the value(s) of theta that would satisfy each equation. (45) cos(θ) =— √3 2 θ=_____ _____ 1 (49) cos(θ) =— 2 θ=_____ _____ PRACTICE (46) cos(θ) = (47) cos(θ) =1 1 2 θ=_____ _____ (50) cos(θ) = (48) cos(θ) =— θ=_____ θ=_____ _____ (51) cos(θ) =0 √3 2 (52) cos(θ) =—1 θ=_____ _____ θ=_____ _____ √2 2 θ=_____ Use the unit circle to answer each equation. (53) Which of the following is equivalent to sin(120°)? a) sin(240°) b) sin(60°) c) sin(300°) d) sin(−120°) (54) Which of the following is equivalent to cos(210°)? a) cos(60°) b) cos(330°) (55) Which statement is NOT true? c) cos(120°) d) cos(−150°) a) sin(315) ≥ cos(120) b) cos(300) < sin(60) c) sin(225) ≤ cos(225) d) sin(30) ≥ cos(60) (56) Select all of the following expressions that are equivalent to —1. a) cos(180) b) sin(270) c) cos(−180) d) cos(90) e) sin(−90) f) sin(630) (57) What is cos(30) + sin(240) ? a) 0 b) 1 c) √3 d) −√3 REVIEW (58) If 𝑔(𝑥) = √𝑥 and ℎ(𝑥) = 𝑥 − 1, what is 𝑔 ℎ(4) ? REVIEW b) 7 c) √11 d) √63 Graph each system of inequalities. Shade/darken only the solution region. (59) 𝑥 ≤ 2 𝑦 < −2𝑥 + 1 REVIEW a) 5 (60) 𝑥 + 𝑦 < 2 𝑥 > −2 (61) 𝑦 ≥ −2 𝑥<3 (62) 𝑥 + 𝑦 ≥ −2 −5𝑥 + 𝑦 < −3 (65) (66) Simplify each expression. (63) (64) _______ _______ _______ _______ REVIEW (67) There are 150 virus cells in a living sample. The virus is reproducing rapidly; the number of virus cells increases by 6% each hour. The sample will die when it contains 2000 virus cells. How long from now will the sample die? ________ REVIEW (68) Solve: 9 REVIEW (69) Solve: 4 = 27 = 32 (70) If (𝑥𝑦 − 5𝑧) is a factor of the expression 𝑥 𝑦 − 125𝑧 , then what else is a factor? REVIEW REVIEW a) 3/8 b) 2/5 c) 6/5 d) 2/3 a) —4 b) 3 c) —2 d) 4 a) (𝑥 𝑦 − 5𝑥𝑦𝑧 + 25𝑧 ) c) (𝑥𝑦 − 5𝑧)(𝑥𝑦 − 5𝑧) b) (𝑥 𝑦 + 5𝑥𝑦𝑧 + 25𝑧 ) d) (𝑥 𝑦 − 10𝑥𝑦𝑧 + 25𝑧 ) Use long/polynomial division to answer each question. (71) Using the graph at right, write the polynomial in factored form: 𝑦 = 5𝑥 − 14𝑥 − 53𝑥 − 10 y (72) Factor the polynomial: 𝑥 + 3𝑥 − 9𝑥 − 27 HINT: ONE OF ITS FACTORS IS (𝑥 + 3) (–2, 0) y=_____________________________ _____ _______ _______ _______ DEGREE ROOTS ___________________________
© Copyright 2025 Paperzz