Asymptotic Analysis of a Storage Allocation Model with Finite

Hindawi Publishing Corporation
Advances in Operations Research
Volume 2016, Article ID 1925827, 56 pages
http://dx.doi.org/10.1155/2016/1925827
Research Article
Asymptotic Analysis of a Storage Allocation
Model with Finite Capacity: Joint Distribution
Eunju Sohn1 and Charles Knessl2
1
Department of Science and Mathematics, Columbia College Chicago, 623 South Wabash Avenue, Chicago, IL 60605, USA
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA
2
Correspondence should be addressed to Eunju Sohn; [email protected]
Received 7 August 2015; Accepted 26 January 2016
Academic Editor: Hsien-Chung Wu
Copyright © 2016 E. Sohn and C. Knessl. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
We consider a storage allocation model with a finite number of storage spaces. There are ๐‘š primary spaces and ๐‘… secondary spaces.
All of them are numbered and ranked. Customers arrive according to a Poisson process and occupy a space for an exponentially
distributed time period, and a new arrival takes the lowest ranked available space. We let ๐‘1 and ๐‘2 denote the numbers of occupied
primary and secondary spaces and study the joint distribution Prob[๐‘1 = ๐‘˜, ๐‘2 = ๐‘Ÿ] in the steady state. The joint process (๐‘1 , ๐‘2 )
behaves as a random walk in a lattice rectangle. We study the problem asymptotically as the Poisson arrival rate ๐œ† becomes large,
and the storage capacities ๐‘š and ๐‘… are scaled to be commensurably large. We use a singular perturbation analysis to approximate
the forward Kolmogorov equation(s) satisfied by the joint distribution.
1. Introduction
We consider the following storage allocation model. There
are ๐‘š primary and ๐‘… secondary storage spaces. The primary
spaces are numbered {1, 2, . . . , ๐‘š} and the secondary ones
are numbered {๐‘š + 1, ๐‘š + 2, . . . , ๐‘š + ๐‘…}. Customers arrive
according to a Poisson process of rate ๐œ†, and each customer
occupies a storage space for an exponentially distributed
amount of time, with the mean occupation time 1/๐œ‡. A new
arrival takes the lowest ranked available space. If all ๐‘š + ๐‘…
spaces are filled, then a new arrival is turned away and lost.
The policy of taking the lowest ranked space is called โ€œfirst-fit
allocation.โ€
We can consider the storage spaces as parking spaces of
a restaurant. The primary spaces are in a lot right next to the
restaurant, and the secondary spaces are located somewhere
further away from the restaurant. Lower ranked spaces will
be closer to the restaurant so it is natural for a customer
to use the first-fit policy. Since spaces are occupied and
emptied at random times, this model is called a dynamic
storage allocation model. Design and analysis of algorithms
for dynamic storage allocation are a fundamental part of
computer science [1]. In such applications we can consider
the customers as records, files, or lists and the storage device
as a memory device. As time evolves, items are inserted and
deleted, and the storage device, which is a linear array of
โ€œcells,โ€ will have regions of occupied cells alternating with
interior holes. This is referred to as memory fragmentation in
computers, and collapsing the holes corresponds to running
a defragmentation program.
In the language of queueing theory, the model with
finite secondary storage spaces can be called the ๐‘€/๐‘€/(๐‘š +
๐‘…)/(๐‘š+๐‘…) queue (the Erlang loss model) with ranked servers.
The main contribution here is to study the effects of the finite
storage capacity, for systems with a large number of both
primary and secondary storage spaces and a commensurably
large traffic intensity, which we denote by ๐œŒ = ๐œ†/๐œ‡. Thus we
study the model asymptotically for ๐œŒ โ†’ โˆž with ๐‘š, ๐‘… = ฮ˜(๐œŒ).
We let ๐‘1 and ๐‘2 be the numbers of occupied primary
and secondary spaces, and we will focus on the joint distribution of ๐‘1 and ๐‘2 , in the steady state. The distributions
of both ๐‘1 and ๐‘1 + ๐‘2 are readily computed, as these
processes behave as Erlang loss models, with ๐‘š and ๐‘š + ๐‘…
servers, respectively. Thus their steady state distributions are
2
truncated Poisson distributions. However, the distribution of
the number ๐‘2 of occupied secondary spaces is much more
complicated, as is the joint distribution Prob[๐‘1 = ๐‘˜, ๐‘2 = ๐‘Ÿ].
We focus here on only the steady state distribution but
comment that the transient behavior of the standard Erlang
loss model can be analyzed by singular perturbation methods
of the type employed here (see [2]). Thus we believe that, with
significant additional effort, the transient behavior of the joint
process (๐‘1 , ๐‘2 ) could also be ultimately analyzed.
There has been much past work on the model with an
infinite (secondary) storage capacity (๐‘… = โˆž) since Kosten
[3]. Various aspects of the solution were also studied in [4โ€“7],
but the solutions are in a complicated form, which is difficult
to evaluate asymptotically for ๐œŒ โ†’ โˆž, due to the presence
of an alternating sum. We derived the joint steady state
distribution of the (๐‘1 , ๐‘2 ) process in [8] using a discrete
version of the classic method of separation of variables. We
obtained the solution as a contour integral that involves
certain polynomials related to hypergeometric functions.
Such representations enabled us to obtain a complete set of
asymptotic results including the joint distribution Prob[๐‘1 =
๐‘˜, ๐‘2 = ๐‘Ÿ], for ๐‘… = โˆž [9โ€“12].
The solution of the finite capacity model with ๐‘… < โˆž
seems more complicated than the solution of the model with
๐‘… = โˆž. But we will show here that a singular perturbation
analysis is again fruitful, and we will obtain a complete
set of asymptotic results for ๐œ‹(๐‘˜, ๐‘Ÿ), which depends also
parametrically on ๐œŒ, and the numbers ๐‘š and ๐‘… of primary and
secondary storage spaces. Most of the time we will scale all of
๐‘˜, ๐‘Ÿ, ๐‘š, and ๐‘… to be of the same order as the traffic intensity
๐œŒ. We will focus on understanding the effects of the finiteness
of the secondary storage capacity ๐‘….
The remainder of the paper is organized as follows. In
Section 2 we state the basic equations and briefly describe
their forthcoming analysis. In Section 3 we summarize all
of the main results, and the joint distribution will have
different asymptotic expansions in three main regions of the
state space, which is the lattice rectangle {(๐‘˜, ๐‘Ÿ): 0 โฉฝ ๐‘˜ โฉฝ
๐‘š, 0 โฉฝ ๐‘Ÿ โฉฝ ๐‘…}. Moreover, there are also various boundary,
corner, and transition curves where different expansions will
be needed. In Section 4 we derive the asymptotics of the joint
distribution in the three main regions, while in Sections 5โ€“
7 we treat the boundary, corner, and transition ranges. In
Section 8 we will do some numerical comparisons to test
the accuracy and robustness of our asymptotic results. Some
discussion of our results also appears in Section 8. Since the
analysis is quite technical, we have written this paper so that
the derivations in Sections 4โ€“7 can be omitted upon a first
(and perhaps even later) reading(s).
2. Statement of the Problem
We consider a system with ๐‘š primary and ๐‘… secondary
storage spaces (or servers). The primary spaces are ranked
and numbered 1, 2, . . . , ๐‘š while the secondary spaces are
numbered ๐‘š+1, ๐‘š+2, . . . , ๐‘š+๐‘…. Customers arrive according
to a Poisson process with rate parameter ๐œ† and a new arrival
takes the lowest ranked available space, if possible a primary
one. If all ๐‘š+๐‘… spaces are occupied further arrivals are turned
Advances in Operations Research
away and lost. All of the storage spaces are identical and a
customer occupies a space for an exponentially distributed
amount of time, with the mean occupation (or service)
time being 1/๐œ‡. We then let ๐‘1 and ๐‘2 be the numbers of
occupied primary and secondary spaces, respectively. We also
introduce a dimensionless parameter
๐œŒ=
๐œ†
๐œ‡
(1)
to denote the traffic intensity.
The joint process (๐‘1 , ๐‘2 ) corresponds to a continuous
time random walk in a lattice rectangle. Figure 1 indicates
transition rates. The steady state distribution
๐œ‹ (๐‘˜, ๐‘Ÿ) = ๐œ‹ (๐‘˜, ๐‘Ÿ; ๐œŒ, ๐‘š, ๐‘…) = lim Prob [๐‘1 (๐‘ก)
๐‘กโ†’โˆž
(0)
(0)
(2)
= ๐‘˜, ๐‘2 (๐‘ก) = ๐‘Ÿ | ๐‘1 (0) = ๐‘˜ , ๐‘2 (0) = ๐‘Ÿ ]
is independent of the initial values ๐‘1 (0) and ๐‘2 (0) and
satisfies the following balance equations:
(๐œŒ + ๐‘˜ + ๐‘Ÿ) ๐œ‹ (๐‘˜, ๐‘Ÿ) = (๐‘Ÿ + 1) ๐œ‹ (๐‘˜, ๐‘Ÿ + 1)
+ (๐‘˜ + 1) ๐œ‹ (๐‘˜ + 1, ๐‘Ÿ)
+ ๐œŒ๐œ‹ (๐‘˜ โˆ’ 1, ๐‘Ÿ) ,
(3)
1 โฉฝ ๐‘˜ โฉฝ ๐‘š โˆ’ 1, 0 โฉฝ ๐‘Ÿ โฉฝ ๐‘… โˆ’ 1,
(๐œŒ + ๐‘š + ๐‘Ÿ) ๐œ‹ (๐‘š, ๐‘Ÿ) = (๐‘Ÿ + 1) ๐œ‹ (๐‘š, ๐‘Ÿ + 1)
+ ๐œŒ๐œ‹ (๐‘š โˆ’ 1, ๐‘Ÿ)
(4)
+ ๐œŒ๐œ‹ (๐‘š, ๐‘Ÿ โˆ’ 1) ,
1 โฉฝ ๐‘Ÿ โฉฝ ๐‘… โˆ’ 1,
(๐œŒ + ๐‘˜ + ๐‘…) ๐œ‹ (๐‘˜, ๐‘…) = (๐‘˜ + 1) ๐œ‹ (๐‘˜ + 1, ๐‘…)
+ ๐œŒ๐œ‹ (๐‘˜ โˆ’ 1, ๐‘…) ,
(5)
1 โฉฝ ๐‘˜ โฉฝ ๐‘š โˆ’ 1,
(๐œŒ + ๐‘Ÿ) ๐œ‹ (0, ๐‘Ÿ) = (๐‘Ÿ + 1) ๐œ‹ (0, ๐‘Ÿ + 1) + ๐œ‹ (1, ๐‘Ÿ) ,
0 โฉฝ ๐‘Ÿ โฉฝ ๐‘… โˆ’ 1,
(๐œŒ + ๐‘…) ๐œ‹ (0, ๐‘…) = ๐œ‹ (1, ๐‘…) ,
(6)
(7)
(๐œŒ + ๐‘š) ๐œ‹ (๐‘š, 0) = ๐œŒ๐œ‹ (๐‘š โˆ’ 1, 0) + ๐œ‹ (๐‘š, 1) ,
(8)
(๐‘š + ๐‘…) ๐œ‹ (๐‘š, ๐‘…) = ๐œŒ๐œ‹ (๐‘š, ๐‘… โˆ’ 1) + ๐œŒ๐œ‹ (๐‘š โˆ’ 1, ๐‘…) .
(9)
The main balance equation (3) applies in the interior of
the lattice rectangle and along the boundary ๐‘Ÿ = 0, (4)โ€“
(6) correspond to boundary conditions along three of the
four boundaries of the rectangle, and (7)โ€“(9) are corner
conditions. Also, (6) applies at ๐‘Ÿ = 0 so the corner condition
at (0, 0) is ๐œŒ๐œ‹(0, 0) = ๐œ‹(0, 1) + ๐œ‹(1, 0). We also have the
normalization condition
๐‘š
๐‘…
โˆ‘ โˆ‘๐œ‹ (๐‘˜, ๐‘Ÿ) = 1.
๐‘˜=0 ๐‘Ÿ=0
(10)
Advances in Operations Research
N2
R
and in the present limit we have 0 < ๐‘‹0 , ๐‘Œ0 < โˆž, where we
view ๐‘‹0 and ๐‘Œ0 as fixed as ๐œŒ โ†’ โˆž. We may then view the
process (๐‘1 , ๐‘2 ) on a โ€œcoarseโ€ spatial scale, with
๐œ†
๐œ‡k
๐œ†
๐œ‡R
3
๐œ‡m
๐œ‡R
๐œ‡R
๐‘‹=
๐œ†
r
๐œ‡k
๐œ‡r
๐œ‡r
0
๐œ†
๐œ‡k
๐œ‡m
๐œ†
k
(14)
๐œ†
๐‘Ÿ
๐‘Œ = , 0 โฉฝ ๐‘Œ โฉฝ ๐‘Œ0 .
๐œŒ
๐œ‡r
On the (๐‘‹, ๐‘Œ) scale the random walk takes small steps (=
1/๐œŒ) and the state space may be approximately viewed as the
continuous rectangle
๐œ†
{(๐‘‹, ๐‘Œ) : 0 โฉฝ ๐‘‹ โฉฝ ๐‘‹0 , 0 โฉฝ ๐‘Œ โฉฝ ๐‘Œ0 } .
๐œ‡m
๐œ†
๐‘˜
, 0 โฉฝ ๐‘‹ โฉฝ ๐‘‹0 ,
๐œŒ
m
N1
(15)
Setting
Figure 1: Steady state transition rates.
๐œ‹ (๐‘˜, ๐‘Ÿ) = ๐œ‹ (๐‘˜, ๐‘Ÿ; ๐œŒ, ๐‘š, ๐‘…) = ๐‘ƒ (๐‘‹, ๐‘Œ)
The process ๐‘1 by itself behaves precisely as the Erlang
loss model (๐‘€/๐‘€/๐‘š/๐‘š queue with ๐‘š servers). This is well
known to have, in the steady state, a truncated Poisson
distribution; hence
the main balance equation (3) becomes
(11)
+ (๐‘‹ + ๐œŒโˆ’1 ) ๐‘ƒ (๐‘‹ + ๐œŒโˆ’1 , ๐‘Œ)
The total number, ๐‘1 + ๐‘2 , of occupied servers also
follows a truncated Poisson distribution. Therefore,
min{๐‘š,๐ฟ}
โˆ‘ ๐œ‹ (๐‘˜, ๐‘Ÿ) =
๐‘˜+๐‘Ÿ=๐ฟ
โˆ‘
๐œ‹ (๐‘˜, ๐ฟ โˆ’ ๐‘˜)
๐‘˜=max{0,๐ฟโˆ’๐‘…}
=
(12)
๐œŒ๐ฟ ๐‘’โˆ’๐œŒ /๐ฟ!
โ„“ โˆ’๐œŒ
โˆ‘๐‘š+๐‘…
โ„“=0 ๐œŒ ๐‘’ /โ„“!
, 0 โฉฝ ๐ฟ โฉฝ ๐‘š + ๐‘….
๐‘Œ0 =
๐‘š
,
๐œŒ
๐‘…
๐œŒ
(17)
+ ๐‘ƒ (๐‘‹ โˆ’ ๐œŒโˆ’1 , ๐‘Œ)
which is a difference equation with small differences, of order
๐‘‚(๐œŒโˆ’1 ). The boundary condition along ๐‘˜ = ๐‘š in (4) may be
replaced by the โ€œartificial boundary conditionโ€
(๐‘š + 1) ๐œ‹ (๐‘š + 1, ๐‘Ÿ) = ๐œŒ๐œ‹ (๐‘š, ๐‘Ÿ โˆ’ 1) , 1 โฉฝ ๐‘Ÿ โฉฝ ๐‘… โˆ’ 1. (18)
We recently obtained in [13] explicit expressions for the
joint distribution ๐œ‹(๐‘˜, ๐‘Ÿ), but they are not very insightful due
to their complexity. Thus we study the problem asymptotically, for ๐œŒ โ†’ โˆž with ๐‘š, ๐‘… = ๐‘‚(๐œŒ). This means that there
are many arrivals but the numbers of storage spaces, both
primary and secondary ones, are commensurately large. Note
that if ๐œŒ โ†’ โˆž with ๐‘š, ๐‘… = ๐‘‚(1) then the probability
distribution ๐œ‹(๐‘˜, ๐‘Ÿ) would concentrate on a single lattice
point, with ๐œ‹(๐‘˜, ๐‘Ÿ) โ†’ ๐›ฟ๐‘˜,๐‘š ๐›ฟ๐‘Ÿ,๐‘… as ๐œŒ โ†’ โˆž. Here ๐›ฟ๐‘˜,๐‘š = 0,
๐‘˜ =ฬธ ๐‘š, and ๐›ฟ๐‘˜,๐‘š = 1, ๐‘˜ = ๐‘š. Thus this limit would not
be particularly interesting. There are, however, certain cases
where either ๐‘š or ๐‘… is large but ๐‘œ(๐œŒ), that should lead to
interesting results, but we do not analyze them here.
We next introduce the parameters
๐‘‹0 =
(16)
(1 + ๐‘‹ + ๐‘Œ) ๐‘ƒ (๐‘‹, ๐‘Œ) = (๐‘Œ + ๐œŒโˆ’1 ) ๐‘ƒ (๐‘‹, ๐‘Œ + ๐œŒโˆ’1 )
๐‘…
๐œŒ๐‘˜ ๐‘’โˆ’๐œŒ /๐‘˜!
โˆ‘๐œ‹ (๐‘˜, ๐‘Ÿ) = ๐‘š ๐‘˜ โˆ’๐œŒ , 0 โฉฝ ๐‘˜ โฉฝ ๐‘š.
โˆ‘๐‘˜=0 ๐œŒ ๐‘’ /๐‘˜!
๐‘Ÿ=0
= ๐‘ƒ (๐‘‹, ๐‘Œ; ๐œŒ, ๐‘‹0 , ๐‘Œ0 )
The above is obtained by requiring that (3) holds also at ๐‘˜ = ๐‘š
and comparing this to (4). Introducing ๐œ‹(๐‘š + 1, ๐‘Ÿ) simplifies
some of the calculations, but this quantity has no physical
meaning.
The asymptotic structure of the joint distribution will be
very different for four main regions in the (๐‘‹0 , ๐‘Œ0 ) parameter
space. We call these regions R1 โ€“R4 and they are sketched in
Figure 2. They are defined by the inequalities
R1 = {(๐‘‹0 , ๐‘Œ0 ) : ๐‘‹0 > 1, ๐‘Œ0 > 0} ,
(19)
R2 = {(๐‘‹0 , ๐‘Œ0 ) : 0 < ๐‘‹0 < 1, ๐‘Œ0 + ๐‘‹0 > 1} ,
(20)
R3 = {(๐‘‹0 , ๐‘Œ0 ) : 0 < ๐‘‹0 < 1, โˆš๐‘‹0 โˆ’ ๐‘‹0 < ๐‘Œ0 < 1
(21)
โˆ’ ๐‘‹0 } ,
(13)
R4 = {(๐‘‹0 , ๐‘Œ0 ) : 0 < ๐‘‹0 < 1, 0 < ๐‘Œ0 < โˆš๐‘‹0 โˆ’ ๐‘‹0 } . (22)
4
Advances in Operations Research
3. Summary of Results
Y0
1
In the analysis it proves sometimes useful to use the variables
(๐‘›, ๐‘) where
โ„›2
๐‘› = ๐‘š โˆ’ ๐‘˜,
โ„›1
๐‘ = ๐‘… โˆ’ ๐‘Ÿ,
โ„›3
so that ๐‘› (resp., ๐‘) measures the number of unoccupied
primary (resp., secondary) spaces. Then we also let
โ„›4
0
(26)
1
๐œ‹ (๐‘˜, ๐‘Ÿ) = ๐œ‹ (๐‘š โˆ’ ๐‘›, ๐‘… โˆ’ ๐‘) = ๐‘„ (๐‘›, ๐‘)
X0
Figure 2: Four regions of the (๐‘‹0 , ๐‘Œ0 ) parameter space.
It will also prove useful to define as follows the curves that
separate these four regions:
R1 โˆฉ R2 = {(๐‘‹0 , ๐‘Œ0 ) : ๐‘‹0 = 1, ๐‘Œ0 > 0} ,
(23)
R2 โˆฉ R3 = {(๐‘‹0 , ๐‘Œ0 ) : ๐‘‹0 + ๐‘Œ0 = 1, 0 < ๐‘‹0 < 1} ,
(24)
so that ๐‘„(0, 0) corresponds to the probability that all of
the storage spaces are full. In (27) we did not indicate the
dependence of ๐œ‹ and ๐‘„ on the parameters ๐œŒ, ๐‘š, and ๐‘….
We begin by giving asymptotic results for ๐‘„(0, 0).
Proposition 1. For ๐œŒ โ†’ โˆž and fixed ๐‘‹0 , ๐‘Œ0 one has
๐œ‹ (๐‘š, ๐‘…) = ๐‘„ (0, 0) โˆผ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ,
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 โˆช R4 ,
(28)
2
R3 โˆฉ R4
= {(๐‘‹0 , ๐‘Œ0 ) : ๐‘‹0 + ๐‘Œ0 = โˆš๐‘‹0 , 0 < ๐‘‹0 < 1} .
(27)
(25)
Note that the union of all the sets in (19)โ€“(25) is the entire
open quarter plane in parameter space. We purposefully
exclude the coordinate axes ๐‘‹0 = 0 and ๐‘Œ0 = 0, as they would
require entirely different asymptotic analyses. The separating
curves in (23)โ€“(25) will also require separate analyses, and we
will obtain results that apply not only along the curves but also
in small neighborhoods of these curves, which will be defined
precisely later. This will produce results that asymptotically
match to those in the main regions.
The presence of the different regions can be explained
intuitively. If ๐‘‹0 > 1 (๐‘š > ๐œŒ) there are enough primary
spaces to service all storage requests and the secondary spaces
will generally not be needed. If ๐‘‹0 < 1 but ๐‘‹0 + ๐‘Œ0 >
1 (๐‘š + ๐‘… > ๐œŒ) the primary spaces are insufficient but the
total number of spaces is adequate. Then we might expect
that typically all ๐‘š primary spaces and about ๐œŒ โˆ’ ๐‘š (< ๐‘…)
secondary spaces will be occupied. If ๐‘‹0 + ๐‘Œ0 < 1 then
typically all primary and secondary spaces will be occupied.
Then we might expect ๐œ‹(๐‘˜, ๐‘Ÿ) to be concentrated near ๐‘˜ = ๐‘š,
๐‘Ÿ = ๐‘…. The further splitting of ๐‘‹0 +๐‘Œ0 < 1 into the regions R3
and R4 is difficult to explain intuitively in terms of the basic
model, but we will explain this dichotomy via our asymptotic
analysis. We also note that the asymptotic behavior of the
distribution in (11) undergoes a transition when ๐‘š/๐œŒ passes
through 1, while (12) undergoes an analogous transition when
(๐‘š + ๐‘…)/๐œŒ passes through 1. However, neither (11) nor (12)
undergoes a transition along R3 โˆฉ R4 . In the analysis that
follows we will also need to, for each region of parameter
space, separately analyze several different regions of the state
space, which corresponds to the rectangle 0 โฉฝ ๐‘‹ โฉฝ ๐‘‹0 ,
0 โฉฝ ๐‘Œ โฉฝ ๐‘Œ0 on the coarse spatial scale. It will sometimes prove
necessary to analyze boundary and corner regions where the
discrete nature of the model must be considered.
๐‘„ (0, 0) โˆผ
๐‘’โˆ’๐›พ /2
1
,
๐›พ
โˆš๐œŒ โˆซ ๐‘’โˆ’๐‘ข2 /2 ๐‘‘๐‘ข
โˆ’โˆž
๐‘‹0 + ๐‘Œ0 = 1 +
๐›พ
,
โˆš๐œŒ
(29)
๐›พ = ๐‘‚ (1) (R2 โˆฉ R3 ) ,
๐‘„ (0, 0)
โˆผ
1
1
๐‘’๐œŒ[๐‘‹0 +๐‘Œ0 โˆ’1โˆ’(๐‘‹0 +๐‘Œ0 )log(๐‘‹0 +๐‘Œ0 )] ,
โˆš๐œŒ โˆš2๐œ‹ (๐‘‹ + ๐‘Œ )
0
0
(30)
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆช R2 .
Here and throughout the paper, we use the convention
that R1 โˆช R2 corresponds to the union of the open sets R1
and R2 and also the separating curve R1 โˆฉ R2 (cf. (23)).
Similar comments apply for R3 โˆช R4 and R2 โˆช R3 . We refer
to the asymptotic limit in (29) as corresponding to R2 โˆฉ R3 ,
where we now give the precise scaling, ๐‘‹0 +๐‘Œ0 โˆ’1 = ๐‘‚(๐œŒโˆ’1/2 ),
that applies near the separating curve in (24). The results in
(28)โ€“(30) will follow from our asymptotic analysis of the joint
distribution, but we note that these also follow easily from
(12), by setting ๐‘ = ๐‘š + ๐‘… and expanding the result for
๐œŒ โ†’ โˆž and different ranges of ๐‘0 = ๐‘‹0 +๐‘Œ0 (thus ๐‘0 = ๐‘/๐œŒ).
It will prove convenient to express some of our results in
terms of the three constants ๐ถ, ๐ถ0 , and ๐ถ1 ; these depend only
on the parameters ๐œŒ, ๐‘‹0 , and ๐‘Œ0 . We summarize below the
leading order asymptotics of these constants.
Proposition 2. Define the constants ๐ถ, ๐ถ1 , and ๐ถ0 by the
relations
๐ถ โˆผ ๐œŒโˆ’1/2 ,
๐ถโˆผโˆš
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆช R2 ,
โˆ’1
2๐œ‹ ๐›พ โˆ’๐‘ข2 /2
๐‘‘๐‘ข] ,
[โˆซ ๐‘’
๐œŒ
โˆ’โˆž
(31)
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 โˆฉ R3 , (32)
Advances in Operations Research
5
๐ถ โˆผ โˆš2๐œ‹ (๐‘‹0 + ๐‘Œ0 ) (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
โ‹… ๐‘’๐œŒ[1โˆ’๐‘‹0 โˆ’๐‘Œ0 +(๐‘‹0 +๐‘Œ0 ) log(๐‘‹0 +๐‘Œ0 )] ,
๐ถ1 โˆผ ๐œŒโˆ’2/3 ,
๐ถ1 โˆผ ๐œŒโˆ’2/3
(33)
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 ,
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 ,
๐›พ
โˆš2๐œ‹
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 โˆฉ R3 ,
,
2
โˆซโˆ’โˆž ๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข
(34)
(35)
๐ถ1 โˆผ ๐œŒ1/6 โˆš2๐œ‹ (๐‘‹0 + ๐‘Œ0 ) (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
โ‹… ๐‘’๐œŒ[1โˆ’๐‘‹0 โˆ’๐‘Œ0 +(๐‘‹0 +๐‘Œ0 )log(๐‘‹0 +๐‘Œ0 )] ,
๐ถ1 โˆผ ๐œŒ
โˆ’1/6
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 ,
(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
(37)
โˆž
๐‘Ÿ0
๐‘‹0 + ๐‘Œ0 โˆ’ โˆš๐‘‹0 = ๐œŒโˆ’1/3 ๐›ฟโˆ— = ๐‘‚ (๐œŒโˆ’1/3 )
(38)
(R3 โˆฉ R4 ) ,
๐›ฟโˆ—
๐‘‹01/6
1/3
(1 โˆ’ โˆš๐‘‹0 )
,
ฮฆ (๐‘‹0 , ๐‘Œ0 ) = (๐‘Œ0 + ๐‘Š0 ) log (๐‘Œ0 + ๐‘Š0 ) โˆ’ ๐‘Œ0 log ๐‘Œ0
โˆ’
(39)
๐‘Š0
๐‘‹
log ๐‘Š0 โˆ’ 0 log ๐‘‹0 + โˆš๐‘‹0 โˆ’ 1,
2
2
2
๐‘Š0 = (1 โˆ’ โˆš๐‘‹0 ) ,
where ๐ด๐‘–(โ‹…) is the Airy function and ๐‘Ÿ0 its maximal root
๐‘Ÿ0 = max {๐‘ง : ๐ด๐‘– (๐‘ง) = 0} = โˆ’2.3381 โ‹… โ‹… โ‹… .
(40)
๐ถ1 โˆผ ๐œŒโˆ’5/6 โˆš2๐œ‹ (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐ด๐‘–๓ธ€  (๐‘Ÿ0 )
1/3
โ‹… ๐‘’โˆ’๐œŒฮฆ(๐‘‹0 ,๐‘Œ0 ) ๐‘’โˆ’๐œŒ
ฮฆโˆ— (๐‘Œ0 )
(41)
2/3
โˆš๐‘Œ0 ๐‘‹01/3 (1 โˆ’ โˆš๐‘‹0 )
๐‘Œ + ๐‘Š0
โ‹…
( 0
)
2
(โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) โˆš๐‘Š0 + ๐‘Œ0 1 โˆ’ โˆš๐‘‹0
ฮฆโˆ— (๐‘Œ0 ) = โˆ’๐‘Ÿ0 (1 โˆ’ โˆš๐‘‹0 )
2/3
๐‘‹0โˆ’1/6 log (
1/2โˆš๐‘‹0
,
๐‘Œ0 + ๐‘Š0
),
1 โˆ’ โˆš๐‘‹0
๐ถ0 โˆผ ๐œŒ
(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ,
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 โˆช R4 ,
๐›ฝ
= 1 + ๐‘‚ (๐œŒโˆ’1/2 ) .
โˆš๐œŒ
(46)
Note that (46) can be predicted from the marginal distribution in (11), as the sum in the denominator undergoes a
transition for ๐‘š = ๐œŒ + ๐‘‚(โˆš๐œŒ), which is the same scaling as in
(46).
3.1. Joint Distribution and Its Limits. Now we consider the
joint distribution; ๐œ‹(๐‘˜, ๐‘Ÿ) = ๐œ‹(๐‘˜, ๐‘Ÿ; ๐œŒ, ๐‘š, ๐‘…) = ๐‘ƒ(๐‘‹, ๐‘Œ) =
๐‘ƒ(๐‘‹, ๐‘Œ; ๐œŒ, ๐‘‹0 , ๐‘Œ0 ) for ๐œŒ โ†’ โˆž. We recall that ๐‘‹0 = ๐‘š/๐œŒ and
๐‘Œ0 = ๐‘…/๐œŒ are the scaled numbers of primary and secondary
spaces. The state space of the random walk is the lattice
rectangle in Figure 1, and on the coarse (๐‘‹, ๐‘Œ) spatial scale this
can be viewed as the continuous rectangle {(๐‘‹, ๐‘Œ): 0 โฉฝ ๐‘‹ โฉฝ
๐‘‹0 , 0 โฉฝ ๐‘Œ โฉฝ ๐‘Œ0 }. Our goal is to give a complete asymptotic
description of the joint distribution for ๐œŒ โ†’ โˆž, including
ranges of the state space where there is appreciable mass
and also ranges where ๐œ‹(๐‘˜, ๐‘Ÿ) is asymptotically small. This
corresponds to the tails of the distribution and in such ranges
๐œ‹(๐‘˜, ๐‘Ÿ) = ๐‘ƒ(๐‘‹, ๐‘Œ) is typically exponentially small for large ๐œŒ.
We first discuss the ranges where there is significant mass,
and this will lead to certain limiting distributions, which will
be very different for regions R1 โ€“R4 of parameter space in
(19)โ€“(25).
Proposition 3. For ๐œŒ โ†’ โˆž one has the following limiting
distributions:
(i) ๐‘‹0 = ๐‘š/๐œŒ > 1 (thus (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 )
๐œ‹ (๐‘˜, ๐‘Ÿ) โ‰ˆ ๐›ฟ0๐‘Ÿ
๐‘’โˆ’๐œŒ ๐œŒ๐‘˜
,
๐‘˜!
๐‘˜
= ๐‘‹ < ๐‘‹0 ,
๐œŒ
(47)
which can be recast as the limit
(42)
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R4 ,
โˆ’1/2
๐‘‹0 = 1 +
(36)
โ‹… ๐‘’โˆ’๐œŒฮฆ(๐‘‹0 ,๐‘Œ0 ) โˆš2๐œ‹๐‘‹01/4 โˆซ ๐‘’๐›ฟ1 ๐‘ข ๐ด๐‘– (๐‘ข) ๐‘‘๐‘ข,
๐›ฟ1 =
We note that the relation ๐ถ0 โˆผ ๐œŒโˆ’1/2 ๐‘„(0, 0) holds for
all cases of the parameters. In (38) we have thus defined the
precise scaling near the separating curve R3 โˆฉ R4 , as ๐‘Œ0 =
โˆš๐‘‹0 โˆ’ ๐‘‹0 + ๐‘‚(๐œŒโˆ’1/3 ). Note that ๐ถ is not defined for region
R4 while ๐ถ1 is not defined for R1 , as then the corresponding
constant will play no role in the analysis. We conclude by
giving the precise scaling for R1 โˆฉ R2 (near ๐‘‹0 = 1), which
will be
๓ธ€ 
โˆš๐œŒ๐œ‹ (๐œŒ + โˆš๐œŒ๐‘‹ , ๐‘Ÿ) ๓ณจ€โ†’ ๐›ฟ0๐‘Ÿ
1 โˆ’(๐‘‹๓ธ€  )2 /2
,
๐‘’
โˆš2๐œ‹
(48)
๐œŒ ๓ณจ€โ†’ โˆž.
(43)
2
๐ถ0 โˆผ ๐œŒโˆ’1
๐›พ
๐‘’โˆ’๐›พ /2
2
โˆซโˆ’โˆž ๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข
,
๐ถ0 โˆผ ๐œŒโˆ’1 [2๐œ‹ (๐‘‹0 + ๐‘Œ0 )]
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 โˆฉ R3 ,
(44)
(ii) 0 < ๐‘‹0 < 1, ๐‘‹0 + ๐‘Œ0 > 1 (thus (๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 )
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
โˆ’1/2
โ‹… ๐‘’๐œŒ[๐‘‹0 +๐‘Œ0 โˆ’1โˆ’(๐‘‹0 +๐‘Œ0 )log(๐‘‹0 +๐‘Œ0 )] ,
๐œŒ
1 โˆ’ ๐‘‹0 ๐‘›
2
๐‘‹ exp {โˆ’ [๐‘Œ โˆ’ (1 โˆ’ ๐‘‹0 )] }
2
โˆš2๐œ‹๐œŒ 0
(49)
(45)
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆช R2 .
and this applies for ๐‘› = ๐‘šโˆ’๐‘˜ = ๐‘‚(1) and ๐‘Œโˆ’(1โˆ’๐‘‹0 ) =
๐‘‚(๐œŒโˆ’1/2 ) (i.e., ๐‘Ÿ = ๐œŒ โˆ’ ๐‘š + ๐‘‚(โˆš๐œŒ)).
6
Advances in Operations Research
(iii) 0 < ๐‘‹0 + ๐‘Œ0 < 1 (thus (๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 โˆช R4 )
1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 1
1โˆ’๐‘ค
โˆ’๐‘›โˆ’1
[๐‘ง (๐‘ค)]
โˆฎ
๐‘‹0
2๐œ‹๐‘– ๐‘งโˆ’ (๐‘ค) โˆ’ ๐‘ค +
(50)
โˆ’๐‘โˆ’1
โ‹…๐‘ค
๐‘‘๐‘ค,
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
๐‘ง± (๐‘ค) =
1
[1 + ๐‘‹0 + ๐‘Œ0 โˆ’ ๐‘Œ0 ๐‘ค
2๐‘‹0
(51)
2
± โˆš(1 + ๐‘‹0 + ๐‘Œ0 โˆ’ ๐‘Œ0 ๐‘ค) โˆ’ 4๐‘‹0 ] ,
which holds for ๐‘› = ๐‘šโˆ’๐‘˜ = ๐‘‚(1) and ๐‘ = ๐‘…โˆ’๐‘Ÿ = ๐‘‚(1).
When ๐‘‹0 > 1 we have ๐‘š > ๐œŒ so the secondary storage
spaces will be rarely needed, and then ๐œ‹(๐‘˜, ๐‘Ÿ) approximately
follows the Poisson distribution in (47), which has also the
Gaussian limit in (48). The results in (47) and (48) provide
no information on ๐œ‹(๐‘˜, ๐‘Ÿ) for ๐‘Ÿ โฉพ 1, but later we will estimate
precisely these probabilities. We also note that when ๐‘Ÿ = 0,
(47) ceases to be valid for ๐‘˜ = ๐œŒ๐‘‹0 โˆ’ ๐‘‚(1) = ๐‘š = ๐‘‚(1), for
then if almost all primary spaces are full there may well be
some secondary spaces also occupied, and thus ๐œ‹(๐‘˜, 0) may
become comparable to ๐œ‹(๐‘˜, ๐‘Ÿ) for ๐‘Ÿ โฉพ 1, for this range of
๐‘˜. If ๐‘‹0 < 1 and ๐‘‹0 + ๐‘Œ0 > 1 the primary storage spaces
are insufficient to meet the demand, but the total number of
spaces does suffice. Then (49) shows that ๐‘š โˆ’ ๐‘‚(1) primary
spaces and ๐œŒ(1 โˆ’ ๐‘‹0 ) + ๐‘‚(โˆš๐œŒ) = ๐œŒ โˆ’ ๐‘š + ๐‘‚(โˆš๐œŒ) secondary
spaces will tend to be occupied, with the joint distribution
being a product of a geometric and a Gaussian. This also
shows that, to leading order for large ๐œŒ, the processes ๐‘1
and ๐‘2 decouple. When ๐‘‹0 + ๐‘Œ0 < 1 we have ๐‘š + ๐‘… < ๐œŒ
and the totality of storage spaces is not enough to meet the
demand. Then typically all but a few spaces, both primary and
secondary, will tend to be occupied, with the numbers ๐‘› and
๐‘ of available spaces following the discrete joint distribution
in (50). From (50) we can easily show that
โˆ‘ ๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) (๐‘‹0 + ๐‘Œ0 )
๐‘˜+๐‘Ÿ=๐ฟ
๐ฟ
(52)
so that the total number of empty spaces is geometrically
distributed; this result also follows easily from the exact
expression in (12). We will later see that the tail behavior of
(50), for ๐‘› and/or ๐‘ โ†’ โˆž, is quite different according as
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 or (๐‘‹0 , ๐‘Œ0 ) โˆˆ R4 , which again will indicate
that the triangle 0 < ๐‘‹0 + ๐‘Œ0 < 1 in parameter space needs to
be split into the two regions R3 and R4 .
We next study the transitions between the three limiting
results in Proposition 4.
Proposition 4. For ๐œŒ โ†’ โˆž one has the limiting distributions:
ฬƒ (๐‘‹) = ๐‘Œ
ฬƒ (๐‘‹; ๐‘‹0 , ๐‘Œ0 ) = ๐‘Œ0 +
๐‘Œ=๐‘Œ
2
(i) ๐‘‹0 โˆ’ 1 = ๐›ฝ/โˆš๐œŒ = ๐‘‚(๐œŒโˆ’1/2 ), ๐‘‹ โˆ’ 1 = ๐›ผ/โˆš๐œŒ, and
๐‘Œ = ฮฉ/โˆš๐œŒ (thus ๐‘˜ = ๐‘š + ๐›ผโˆš๐œŒ and ๐‘Ÿ = โˆš๐œŒฮฉ)
2
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’1 ๐‘’โˆ’๐›ผ /4
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’1 โˆš
2
2
(ฮฉ โˆ’ ๐›ผ) ๐‘’โˆ’(ฮฉโˆ’๐›ผ) /2 , ๐›ผ < 0, ฮฉ > 0. (54)
๐œ‹
(ii) ๐‘‹0 + ๐‘Œ0 โˆ’ 1 = ๐›พ/โˆš๐œŒ = ๐‘‚(๐œŒโˆ’1/2 ), ๐‘› = ๐‘š โˆ’ ๐‘˜ = ๐‘‚(1),
ฬƒ = ๐‘‚(๐œŒโˆ’1/2 )
and ๐‘Œ0 โˆ’ ๐‘Œ = ๐œŒโˆ’1/2 ๐‘ฆ
๐œ‹ (๐‘˜, ๐‘Ÿ)
โˆผ ๐œŒโˆ’1/2 (1 โˆ’ ๐‘‹0 ) ๐‘‹0๐‘› (โˆซ
๐›พ
โˆ’โˆž
2
โˆ’1
2
๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข) ๐‘’โˆ’(ฬƒ๐‘ฆโˆ’๐›พ) /2 ,
(55)
ฬƒ > 0.
๐‘ฆ
As ๐›พ โ†’ +โˆž the truncated Gaussian distribution in (55)
approaches the free space Gaussian in (49), which applies for
1 โˆ’ ๐‘Œ0 < ๐‘‹0 < 1. For ๐›พ โ†’ โˆ’โˆž, (55) asymptotically matches
to (50), when the latter is expanded for ๐‘‹0 + ๐‘Œ0 โ†‘ 1 and
simultaneously ๐‘ โ†’ โˆž, with the product (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )๐‘ =
โˆ’๐›พฬƒ
๐‘ฆ held fixed.
The complicated distribution in (53) is a necessary intermediate result since (47) and (49) do not asymptotically
match. The right-hand side of (53) is of the form ๐œŒโˆ’1 × (density
in (๐›ผ, ฮฉ)), with the density having support in the quarter
plane ๐›ผ < ๐›ฝ, ฮฉ > 0. Thus if ๐‘š = ๐œŒ + ๐‘‚(โˆš๐œŒ) there will tend
to be ๐‘‚(โˆš๐œŒ) empty primary spaces and ๐‘‚(โˆš๐œŒ) full secondary
spaces, with now an intricate coupling between the processes
๐‘1 and ๐‘2 . Finally, we note that the results in items (i) and
(ii) in Proposition 3 and in item (i) of Proposition 4 are
independent of the secondary storage capacity ๐‘Œ0 = ๐‘…/๐œŒ,
while item (iii) in Proposition 3 and item (ii) in Proposition 4
do depend upon ๐‘Œ0 .
3.2. Joint Distribution: Main Regions of State Space. The
asymptotic expansion of ๐œ‹(๐‘˜, ๐‘Ÿ) = ๐‘ƒ(๐‘‹, ๐‘Œ) will be different
for the four parameter ranges indicated in Figure 2 and also
for three main regions of the state space, which we call D0 ,
D+ , and Dโˆ’ , and we define/discuss these below.
First consider region R1 of parameter space, so that ๐‘‹0 >
1, and define the curve
2 (๐‘‹0 + ๐‘Œ0 ) (๐‘‹0 + ๐‘Œ0 โˆ’ 1)
2
(53)
โˆ’โˆž < ๐›ผ < ๐›ฝ, ฮฉ > 0,
where ๐ท๐‘ง (โˆ’๐›ฝ) is the parabolic cylinder function of
order ๐‘ and argument โˆ’๐›ฝ. When ๐›ฝ = 0 (๐‘‹0 = 1) the
above simplifies to
๐‘Œ0
2
ฮฉ๐‘งโˆ’1 ๐ท๐‘ง (โˆ’๐›ผ)
1 ๐‘–โˆž
๐‘‘๐‘ง,
โˆซ
2๐œ‹๐‘– โˆ’๐‘–โˆž ๐ท๐‘ง (โˆ’๐›ฝ) ๐ท๐‘งโˆ’1 (โˆ’๐›ฝ)
2
{๐‘‹0 โˆ’ (๐‘‹0 + ๐‘Œ0 ) + (๐‘‹0 + ๐‘Œ0 ) (๐‘‹ โˆ’ ๐‘‹0 )
(56)
2
+ โˆš [(๐‘‹0 + ๐‘Œ0 ) + (๐‘‹0 + ๐‘Œ0 ) (๐‘‹0 โˆ’ ๐‘‹) โˆ’ ๐‘‹0 ] โˆ’ 4 (๐‘‹0 + ๐‘Œ0 ) (๐‘‹0 + ๐‘Œ0 โˆ’ 1) (๐‘‹0 โˆ’ ๐‘‹)} .
Advances in Operations Research
7
0.95
ฬƒ
(i) (๐‘‹, ๐‘Œ) โˆˆ D+ (0 < ๐‘Œ < ๐‘Œ(๐‘‹))
X0 = 1.5, Y0 = 1
โ„›1
1.00
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐ถ (๐œŒ) ๐พ+ (๐‘‹, ๐‘Œ) ๐‘’๐œŒฮจ+ (๐‘‹,๐‘Œ) ,
๐’Ÿ0
๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐ถ (๐œŒ) โˆผ ๐œŒโˆ’1/2 ,
(60)
ฮจ+ (๐‘‹, ๐‘Œ) = ๐‘‹0 log ๐‘‹0 + ๐‘‹0 โˆ’ 1 + ๐‘  โˆ’ 2๐‘‹0
Y 0.90
ฬƒ
Y
โ‹… log (๐‘  + ๐‘‹0 ) +
0.85
โˆ’
๐’Ÿ+
0.80
0
0.5
1
๐‘ 
(1 โˆ’ ๐‘’๐‘ก )
๐‘  + ๐‘‹0
๐‘ 
[๐‘  + ๐‘‹0 โˆ’ 1 + ๐‘’โˆ’๐‘ก ]
๐‘  + ๐‘‹0
(61)
๐‘ 
)
๐‘  + ๐‘‹0
โ‹… log [1 + (๐‘  + ๐‘‹0 โˆ’ 1) ๐‘’๐‘ก ] + (๐‘’โˆ’๐‘ก โˆ’
1.5
โ‹… (1 โˆ’ ๐‘‹0 โˆ’ ๐‘  โˆ’ ๐‘’๐‘ก ) log [1 โˆ’
๐‘ 
๐‘’๐‘ก ] ,
๐‘  + ๐‘‹0
X
Figure 3: Region R1 .
where (๐‘ , ๐‘ก) are related to (๐‘‹, ๐‘Œ) via the mapping, for
0 < ๐‘  < ๐‘Œ0 ,
This curve depends on both ๐‘‹0 and ๐‘Œ0 and thus on both of
the total numbers, ๐‘š and ๐‘…, of primary and secondary storage
spaces. The curve is defined for 0 โฉฝ ๐‘‹ โฉฝ ๐‘‹0 and we have
ฬƒ (0) = ๐‘Œ0 [1 โˆ’
๐‘Œ
๐‘‹0
2
(๐‘‹0 + ๐‘Œ0 )
ฬƒ (๐‘‹0 ) = ๐‘Œ0 .
], ๐‘Œ
(57)
For region R1 (and indeed also for R2 and R3 ) we have
ฬƒ
๐‘Œ(0)
> 0 so that (56) connects the point (0, Y0 [1 โˆ’ ๐‘‹0 /(๐‘‹0 +
๐‘Œ0 )2 ]) to the corner point (๐‘‹0 , ๐‘Œ0 ) in the scaled state space.
ฬƒ
The curve ๐‘Œ(๐‘‹)
divides the state space into the two regions
D0 and D+ , with
ฬƒ (๐‘‹)} ,
D+ = {(๐‘‹, ๐‘Œ) : 0 < ๐‘‹ โฉฝ ๐‘‹0 , 0 < ๐‘Œ < ๐‘Œ
(58)
ฬƒ (๐‘‹) < ๐‘Œ < ๐‘Œ0 } .
D0 = {(๐‘‹, ๐‘Œ) : 0 < ๐‘‹ < ๐‘‹0 , ๐‘Œ
(59)
Here we defined D0 as an open set, while D+ is bounded by
ฬƒ
the four curves ๐‘‹ = 0, ๐‘Œ = 0, ๐‘‹ = ๐‘‹0 , and ๐‘Œ = ๐‘Œ(๐‘‹)
and
we include only the third of these (๐‘‹ = ๐‘‹0 ) as a part of D+ .
This is because the asymptotic expansion that will apply in the
interior of D+ will remain valid near ๐‘‹ = ๐‘‹0 , but not near the
other three bounding curves. The expansion valid in D0 will
ฬƒ
break down if either ๐‘‹ โ‰ˆ 0, ๐‘Œ โ‰ˆ ๐‘Œ0 , or ๐‘Œ โ‰ˆ ๐‘Œ(๐‘‹).
We sketch
ฬƒ
in Figure 3 the curve ๐‘Œ(๐‘‹) and we recall that if ๐‘‹0 > 1 most
of the mass in ๐œ‹(๐‘˜, ๐‘Ÿ) is concentrated in the range ๐‘Ÿ = 0 and
๐‘˜ = ๐œŒ + ๐‘‚(โˆš๐œŒ) (๐‘‹ = 1 + ๐‘‚(๐œŒโˆ’1/2 )) (see Proposition 3), and
this corresponds to the lower bounding curve for D+ .
Proposition 5. For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 (๐‘‹0 > 1) the asymptotic
expansions of ๐œ‹(๐‘˜, ๐‘Ÿ) = ๐œ‹(๐œŒ๐‘‹, ๐œŒ๐‘Œ) are as follows:
๐‘‹ = [1 โˆ’
๐‘ 
๐‘’๐‘ก ] [1 + (๐‘  + ๐‘‹0 โˆ’ 1) ๐‘’โˆ’๐‘ก ] ,
๐‘  + ๐‘‹0
๐‘ 
[๐‘’โˆ’๐‘ก โˆ’ 1 + ๐‘‹0 + ๐‘ ] ,
๐‘Œ=
๐‘  + ๐‘‹0
๐พ+ (๐‘‹, ๐‘Œ) = [๐‘’โˆ’๐‘ก + ๐‘  + ๐‘‹0 โˆ’ 1]
โ‹… [๐‘’โˆ’๐‘ก โˆ’
2
โ‹…
โˆ’1/2
โˆ’1/2
๐‘ 
๓ต„จโˆ’1/2 โˆš ๐‘‹0
๓ต„จ๓ต„จ
]
๓ต„จ๓ต„จฮ” + (๐‘ , ๐‘ก)๓ต„จ๓ต„จ๓ต„จ
๐‘  + ๐‘‹0
2๐œ‹
[(๐‘  + ๐‘‹0 ) โˆ’ ๐‘‹0 ]
(62)
(63)
3/2
3
(๐‘  + ๐‘‹0 )
,
where ฮ” + is the Jacobian associated with (62); that is,
ฮ” + (๐‘ , ๐‘ก) = ๐‘‹๐‘ก ๐‘Œ๐‘  โˆ’ ๐‘‹๐‘  ๐‘Œ๐‘ก =
1
[๐ท (๐ธ โˆ’ ๐ท) ๐‘’๐‘ก
1โˆ’๐ธ
โˆ’ 2๐ท (1 โˆ’ ๐ท) โˆ’ (๐ท โˆ’ ๐ธ)2 ๐‘’โˆ’๐‘ก
+ (๐ธ + ๐ท โˆ’ 2๐ธ๐ท) ๐‘’โˆ’2๐‘ก ] ,
๐ท=
(64)
๐‘‹0
๐‘ 
=1โˆ’
, ๐ธ = 1 โˆ’ ๐‘‹0 โˆ’ ๐‘ .
๐‘  + ๐‘‹0
๐‘  + ๐‘‹0
ฬƒ
< ๐‘Œ < ๐‘Œ0 )
(ii) (๐‘‹, ๐‘Œ) โˆˆ D0 (๐‘Œ(๐‘‹)
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐ถ0 (๐œŒ) ๐พ (๐‘‹, ๐‘Œ) ๐‘’๐œŒฮจ(๐‘‹,๐‘Œ) ,
(65)
8
Advances in Operations Research
where ๐ถ0 (๐œŒ) is given by (45) for region R1
ฮจ (๐‘‹, ๐‘Œ) = ๐ด (1 โˆ’ ๐‘’๐œ ) + ๐‘‹0 log (1 โˆ’ ๐ด) + ๐‘Œ0
โ‹… log (1 โˆ’ ๐ต) โˆ’ ๐‘‹ log (1 โˆ’ ๐ด๐‘’๐œ ) โˆ’ ๐‘Œ log (1 โˆ’ ๐ต๐‘’๐œ )
= โˆ’๐ด๐‘’๐œ + [๐ด๐‘’๐œ โˆ’ 1 + (๐‘’โˆ’๐œ โˆ’ ๐ด) (1 โˆ’
โ‹… log (1 โˆ’ ๐ด๐‘’๐œ ) +
๐‘‹0
)]
1โˆ’๐ด
(66)
๐‘Œ0 (๐‘’โˆ’๐œ โˆ’ ๐ต)
log (1 โˆ’ ๐ต๐‘’๐œ ) + ๐ด
๐ตโˆ’1
We can view (68) as representing a family of curves in
the (๐‘‹, ๐‘Œ) plane, with ๐ด indexing the family and ๐œ increasing
along a curve. When ๐œ = 0 the curves in (68) meet at the
corner point (๐‘‹, ๐‘Œ) = (๐‘‹0 , ๐‘Œ0 ) and we also note that the
Jacobian in (71) vanishes when ๐œ = 0, indicating a singularity
in the transformation in (68). When ๐ด = ๐ด max the curve
becomes the horizontal segment ๐‘Œ = ๐‘Œ0 . But then (69) shows
that (1 โˆ’ ๐ด max )(๐ด max + ๐‘‹0 + ๐‘Œ0 ) = ๐‘‹0 so that ๐ต = โˆž in
(67). Thus near ๐‘Œ = ๐‘Œ0 the expansion in (68) becomes invalid.
When ๐ด = ๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ) the curve in (68) becomes
+ ๐‘‹0 log (1 โˆ’ ๐ด) + ๐‘Œ0 log (1 โˆ’ ๐ต) ,
๐ต=
๐ด (1 โˆ’ ๐ด โˆ’ ๐‘‹0 )
,
(1 โˆ’ ๐ด) (๐ด + ๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0
(67)
๐‘‹0
โˆ’ 1 + ๐‘’๐œ ) ,
1โˆ’๐ด
๐‘‹0
๐‘Œ = ๐‘Œ0 โˆ’ (1 โˆ’ ๐‘’ ) (๐ด + ๐‘‹0 + ๐‘Œ0 โˆ’
)
1โˆ’๐ด
(68)
๐ต โˆ’ ๐‘’โˆ’๐œ
),
๐ตโˆ’1
where ๐ด โˆˆ (๐ด min , ๐ด max ) with
๐ด min = 1 โˆ’ โˆš๐‘‹0 ,
๐ด max =
(69)
1
2
[1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 + โˆš(๐‘‹0 + ๐‘Œ0 + 1) โˆ’ 4๐‘‹0 ] ,
2
with ๐ด โˆˆ (๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ), ๐ด max ) corresponding to D0 ,
and
๐พ (๐‘‹, ๐‘Œ) = [(๐‘’โˆ’๐œ โˆ’ ๐ด) (๐‘’โˆ’๐œ โˆ’ ๐ต)]
โ‹…
โˆ’1/2
|ฮ”|โˆ’1/2
๐ด (1 โˆ’ ๐ด) โˆš๐‘Œ0 [(1 โˆ’ ๐ด)2 โˆ’ ๐‘‹0 ]
โˆš2๐œ‹ [๐‘Œ0 โˆ’ ๐ด (๐‘‹0 + ๐‘Œ0 )] [๐‘Œ0 + (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐ด โˆ’ ๐ด2 ]
(70)
,
where ฮ” is the Jacobian associated with (68), so that
ฮ” = ๐‘‹๐œ ๐‘Œ๐ด โˆ’ ๐‘‹๐ด ๐‘Œ๐œ = (๐‘’โˆ’๐œ โˆ’ 1)
โ‹… {[1 โˆ’
+
๐‘‹0
๐‘‹0
] [โˆ’๐ด๐‘’๐œ + (1 โˆ’
) ๐‘’โˆ’๐œ ]
2
1
โˆ’๐ด
(1 โˆ’ ๐ด)
๐‘Œ0
๐‘‹0
๐‘’โˆ’๐œ ]} = (๐‘’โˆ’๐œ โˆ’ 1) {๐ด + ๐‘‹0
[1 +
(71)
1โˆ’๐ต
(1 โˆ’ ๐ด)2
+ ๐‘Œ0 โˆ’
๐‘‹0
๐‘‹0
โˆ’ 1]
+ ๐ด๐‘’๐œ [
1โˆ’๐ด
(1 โˆ’ ๐ด)2
+ ๐‘’โˆ’๐œ [1 โˆ’
๐‘‹ (๐‘‹ + ๐‘Œ )
2๐‘‹0
+ 0 0 2 0 ]} .
1โˆ’๐ด
(1 โˆ’ ๐ด)
โˆ’๐œ
๐‘‹ = (๐‘‹0 + ๐‘Œ0 โˆ’ 1 + ๐‘’ ) (๐‘’
โˆ’๐œ
= ๐‘Œ0 (
1 โˆ’ ๐‘’โˆ’๐œ
),
๐‘‹0 + ๐‘Œ0
๐œ
where (๐ด, ๐œ) are related to (๐‘‹, ๐‘Œ) by
๐‘‹ = (๐‘’โˆ’๐œ โˆ’ ๐ด) (
๐‘Œ = ๐‘Œ0 (1 โˆ’
๐‘Œ0
โˆ’
)
๐‘‹0 + ๐‘Œ0
(72)
and eliminating ๐œ we see that (72) is precisely the curve
ฬƒ
๐‘Œ = ๐‘Œ(๐‘‹)
in (56) that separates D0 from D+ . For ๐ด โˆˆ
(๐ด min , ๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 )) the curves in (68) fill a portion of D+ ,
but then the leading term for ๐œ‹(๐‘˜, ๐‘Ÿ) is given by (60), and (65)
corresponds to only an exponentially small correction to (60).
When ๐ด = ๐ด min = 1 โˆ’ โˆš๐‘‹0 the curve in (68) is tangent to the
line ๐‘‹ = ๐‘‹0 at the point ๐‘Œ = ๐‘Œ0 , which will have significance
for the parameter region R4 . We also note that for ๐ด โˆˆ
(๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ), ๐ด max ) when ๐œ = โˆ’ log ๐ด the curves in (68)
hit the ๐‘ฆ-axis (then ๐‘‹ = 0 by (68)) and then the first factor in
(70) becomes singular, which indicates that the asymptotics
become invalid. Along ๐ด = ๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ) corresponding to
ฬƒ
๐‘Œ = ๐‘Œ(๐‘‹),
๐พ(๐‘‹, ๐‘Œ) in (70) is again singular. Thus (70) is
singular when ๐ด = ๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ), ๐ด = ๐ด max (๐ต = โˆž), and
ฬƒ
๐‘’โˆ’๐œ = ๐ด, corresponding to the three curves (๐‘Œ = ๐‘Œ(๐‘‹),
๐‘Œ = ๐‘Œ0 , and ๐‘‹ = 0) that bound the region D0 . We will
give the appropriate expansions near these bounding curves
in Section 3.3.
For 0 < ๐‘  < ๐‘Œ0 the curves in (62) fill the entire region D+ ,
with ๐‘  = 0 corresponding to the line segment ๐‘Œ = 0, 0 < ๐‘‹ <
ฬƒ
๐‘‹0 , and ๐‘  = ๐‘Œ0 corresponding to the curve ๐‘Œ = ๐‘Œ(๐‘‹)
(then
(62) coincides with (72)). When ๐‘‹ = ๐‘‹0 we have ๐‘ก = 0 and
the curves in (62) hit the line ๐‘‹ = ๐‘‹0 at finite and nonzero
slopes, for all 0 โฉฝ ๐‘  โฉฝ ๐‘Œ0 . As ๐‘ก increases each curve will hit
first either the ๐‘ฅ-axis or the ๐‘ฆ-axis. When ๐‘  = 0 the ๐‘ฅ-axis is
hit first. For 1 < ๐‘‹ < ๐‘‹0 this occurs at a finite value of ๐‘ก, when
๐‘ก = log[(๐‘‹0 โˆ’1)/(๐‘‹โˆ’1)], but if 0 < ๐‘‹ < 1 in order to approach
the ๐‘ฅ-axis we must let ๐‘  โ†’ 0 and ๐‘ก โ†’ โˆž in such a way that
๐‘ ๐‘’๐‘ก is held fixed. In this limit (62) may be approximated by
๐‘‹ โˆผ 1 โˆ’ ๐‘ ๐‘’๐‘ก /๐‘‹0 and ๐‘Œ โˆผ (๐‘‹0 โˆ’ 1)๐‘ /๐‘‹0 . We discuss in more
detail the behavior of (60) as ๐‘Œ โ†’ 0 later, when we give the
asymptotic expansion(s) for ๐œ‹(๐‘˜, ๐‘Ÿ) that apply for ๐‘‹0 > 1 and
๐‘Ÿ = ๐‘‚(1). When ๐‘  > 0 the curves in (62) hit the ๐‘ฆ-axis when
๐‘ก = log(1 + ๐‘‹0 /๐‘ ), for then ๐‘‹ = 0. In particular if ๐‘  = ๐‘Œ0
ฬƒ
the corresponding curve hits the ๐‘ฆ-axis at ๐‘Œ(0)
in (57). Near
both the ๐‘‹- and ๐‘Œ-axes, (60) will have singular behaviors and
other expansions must be constructed. Note, however, that
ฬƒ
(60) is not singular along the curve ๐‘Œ = ๐‘Œ(๐‘‹),
whereas (65)
Advances in Operations Research
โ„›2
0.7
9
X0 = 0.7, Y0 = 0.7
โ„›3
0.3
X0 = 0.4, Y0 = 0.3
๐’Ÿ0
0.6
ฬƒ
Y
0.5
๐’Ÿ0
0.2
Y 0.4
Y
ฬƒ
Y
0.3
0.1
Y1
0.2
๐’Ÿ+
๐’Ÿ+
0.1
0
0.1
Yโˆ—
Yโˆ—
0.2
0.3
0.4
0.5
๐’Ÿโˆ’
0.6
0.7
0
X
0
Figure 4: Region R2 .
๐œ‹ (๐‘˜, ๐‘Ÿ)
โˆผ ๐œŒโˆ’1/2 (
๐‘‹0
)
๐‘‹0 + ๐‘Œ
(๐‘‹0 + ๐‘Œ) โˆ’ ๐‘‹0
5/2
โˆš2๐œ‹
๐‘’๐œŒฮจ+ (๐‘‹0 ,๐‘Œ) ,
ฮจ+ (๐‘‹0 , ๐‘Œ) = ๐‘Œ + ๐‘‹0 โˆ’ 1 โˆ’ (๐‘‹0 + ๐‘Œ) log (๐‘‹0 + ๐‘Œ) ,
0.3
0.4
We thus define Dโˆ’ as
1[
2โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘‹
2
[
and, for regions R2 and R3 , D+ now becomes
(74)
ฬƒ (๐‘‹)} ,
D+ = {(๐‘‹, ๐‘Œ) : 0 < ๐‘‹ < ๐‘‹0 , ๐‘Œโˆ— (๐‘‹) < ๐‘Œ < ๐‘Œ
(75)
2
with D0 still defined by (59).
Proposition 6. For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 โˆช R3 the asymptotic
expansions of ๐œ‹(๐‘˜, ๐‘Ÿ) are as follows:
(i) (๐‘‹, ๐‘Œ) โˆˆ Dโˆ’ (0 < ๐‘Œ < ๐‘Œโˆ— (๐‘‹))
1/3
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐ถ1 (๐œŒ) ๐ฟ (๐‘‹, ๐‘Œ) ๐‘’๐œŒฮฆ(๐‘‹,๐‘Œ) ๐‘’๐œŒ
ฮฆ1 (๐‘‹,๐‘Œ)
,
(79)
ฮฆ (๐‘‹, ๐‘Œ) = ๐‘Š0 log (๐‘Š0 + ๐‘ 1 ) + ๐‘Œ log (๐‘Œ + ๐‘Š0 ) โˆ’ ๐‘Œ
โ‹… log ๐‘Œ โˆ’ ๐‘‹ log [1 โˆ’ โˆš๐‘Š0
and thus, since now ๐‘‹0 < 1,
โˆ’
๐‘Œโˆ— (0) = 0,
(76)
(โˆˆ (0, ๐‘Œ0 )) .
(78)
where
โˆ’ โˆš๐‘‹0 โˆ’ ๐‘‹โˆš (2 โˆ’ โˆš๐‘‹0 ) โˆ’ ๐‘‹]
]
๐‘Œโˆ— (๐‘‹0 ) = โˆš๐‘‹0 โˆ’ ๐‘‹0
(77)
(73)
which holds for ๐‘š โˆ’ ๐‘˜ = ๐œŒ(๐‘‹0 โˆ’ ๐‘‹) = ๐‘‚(1) and 0 < ๐‘Œ < ๐‘Œ0 .
However, we note that since ๐‘‹0 > 1 we have ฮจ+ (๐‘‹0 , ๐‘Œ) <
0 and thus ๐œ‹(๐‘˜, ๐‘Ÿ) in (73) is exponentially small in ๐œŒ. This is
true for the entire domains D0 and D+ , as there is very little
probability mass in these ranges if ๐‘‹0 > 1.
We next consider regions R2 and R3 in parameter space,
where it will become necessary to break up the state space into
the three regions D+ , Dโˆ’ , and D0 . These regions are sketched
in Figures 4 and 5. The curve that separates D+ from D0 is
again given by (56), while the curve separating D+ from Dโˆ’
will be
๐‘Œ = ๐‘Œโˆ— (๐‘‹) = ๐‘Œโˆ— (๐‘‹; ๐‘‹0 ) =
0.2
X
Dโˆ’ = {(๐‘‹, ๐‘Œ) : 0 < ๐‘‹ < ๐‘‹0 , 0 < ๐‘Œ < ๐‘Œโˆ— (๐‘‹)}
2
(๐‘‹0 + ๐‘Œ)
0.1
Figure 5: Region R3 .
is singular. We can simplify (60) near ๐‘‹ = ๐‘‹0 , and then we
obtain the more explicit form
๐‘šโˆ’๐‘˜
๐’Ÿโˆ’
๐‘Š0 + ๐‘ 1
]
๐‘Š0 + ๐‘Œ
(80)
โˆš๐‘Š0 (๐‘Š0 + ๐‘ 1 ) 1
โˆ’ ๐‘Š0 log ๐‘Š0 ,
๐‘Š0 + ๐‘Œ
2
๐‘ 1 = ๐‘ 1 (๐‘‹, ๐‘Œ) = ๐‘Š0 +
๐‘Œ + ๐‘Š0
[๐‘Š0 + 1 โˆ’ ๐‘‹
2โˆš๐‘Š0
2
+ โˆš(๐‘Š0 + 1 โˆ’ ๐‘‹) โˆ’ 4๐‘Š0 ] ,
(81)
10
Advances in Operations Research
ฮฆ1 (๐‘‹, ๐‘Œ) = ฮฆโˆ— (๐‘ 1 ) = โˆ’๐‘Ÿ0
(1 โˆ’ โˆš๐‘‹0 )
2/3
๐‘‹01/6
0.20
X0 = 0.4, Y0 = 0.2
โ„›4
(82)
๐‘  + ๐‘Š0
โ‹… log ( 1
),
1 โˆ’ โˆš๐‘‹0
0.15
3/2
๐ฟ (๐‘‹, ๐‘Œ) =
โ‹…
(๐‘Š0 + ๐‘ 1 )
1
โˆš๐‘Œโˆš๐‘Š0 + ๐‘Œ โˆš๐‘ 1 โˆ’ ๐‘Œ
(๐‘ 1 + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘ 1
โˆš2๐‘Š0 + ๐‘ 1 + ๐‘Œ
โ‹… ๐‘‹0โˆ’1/6 (1 โˆ’ โˆš๐‘‹0 )
โ‹… exp [โˆ’
1 + โˆš๐‘‹0
2โˆš๐‘‹0
[1 โˆ’ โˆš๐‘Š0
โˆ’5/6
๐‘Š0 + ๐‘ 1 โˆ’1/2 1
]
๐‘Š0 + ๐‘Œ
2๐œ‹
[๐ด๐‘–๓ธ€  (๐‘Ÿ0 )]
log (
๐’Ÿ0
Y 0.10
Yc
(83)
โˆ’2
๐‘Š0 + ๐‘ 1
)] ,
1 โˆ’ โˆš๐‘‹0
with ๐‘Š0 = (1โˆ’โˆš๐‘‹0 )2 and ๐‘Ÿ0 is the maximal root of the
Airy function ๐ด๐‘–(โ‹…). In (79), ๐ถ1 โˆผ ๐œŒโˆ’2/3 for (๐‘‹0 , ๐‘Œ0 ) โˆˆ
R2 , ๐ถ1 is given by (35) for (๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 โˆฉ R3 (then
๐‘‹0 + ๐‘Œ0 = 1 + ๐›พ/โˆš๐œŒ), and ๐ถ1 is given by (36) for
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 .
ฬƒ
(ii) (๐‘‹, ๐‘Œ) โˆˆ D+ (๐‘Œโˆ— (๐‘‹) < Y < ๐‘Œ(๐‘‹)).
The expression in (60) applies with ๐ถ โˆผ ๐œŒโˆ’1/2 for
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 , ๐ถ is given by (32) for (๐‘‹0 , ๐‘Œ0 ) โˆˆ
R2 โˆฉ R3 , and ๐ถ is given by (33) for (๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 .
ฬƒ
< ๐‘Œ < ๐‘Œ0 ).
(iii) (๐‘‹, ๐‘Œ) โˆˆ D0 (๐‘Œ(๐‘‹)
The expression in (65) applies with ๐ถ0 given by (45) for
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 , ๐ถ0 is given by (44) for (๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 โˆฉ
R3 , and ๐ถ0 โˆผ ๐œŒโˆ’1/2 (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) for (๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 .
In contrast to regions D+ and D0 , the expansion (79) in
Dโˆ’ is a completely explicit function of ๐‘‹, ๐‘Œ, and ๐‘‹0 . We also
note that ๐‘ 1 (๐‘‹, ๐‘Œ) has a simple linear dependence upon ๐‘Œ,
and ๐‘ 1 (๐‘‹0 , ๐‘Œ) = ๐‘Œ. In Section 4 we give a more geometric
interpretation of this expansion, and we also observe that
the form of (79) is slightly different from the expansions
in D+ and D0 , as the former contains an additional factor
that is of order exp[๐‘‚(๐œŒ1/3 )], and thus gives an additional
subexponential dependence on ๐œŒ. While the forms of ๐ถ,
๐ถ0 , and ๐ถ1 change according to whether (๐‘‹0 , ๐‘Œ0 ) lies in the
regions R2 , R3 or R2 โˆฉ R3 of parameter space, the ratios
๐ถ1 : ๐ถ : ๐ถ0 remain the same for these three cases.
The expansion in (79) is valid only in the interior of Dโˆ’ .
As ๐‘Œ โ†’ 0 there is a singularity due to the factor 1/โˆš๐‘Œ in
๐ฟ(๐‘‹, ๐‘Œ) in (83). For ๐‘‹ โ†’ ๐‘‹0 there is also a singularity due
to the factor 1/โˆš๐‘ 1 โˆ’ ๐‘Œ in (83), and as ๐‘‹ โ†’ ๐‘‹0 , we find that
(๐‘ 1 โˆ’ ๐‘Œ)โˆ’1/2 = ๐‘‚[(๐‘‹0 โˆ’ ๐‘‹)โˆ’1/4 ]. The curve ๐‘Œ = ๐‘Œโˆ— (๐‘‹) that
separates D+ from Dโˆ’ corresponds to ๐‘ 1 (๐‘‹, ๐‘Œ) = โˆš๐‘‹0 โˆ’ ๐‘‹0 ,
and along ๐‘Œ = ๐‘Œโˆ— (๐‘‹) the factor (๐‘ 1 + ๐‘Š0 )โˆš๐‘‹0 โˆ’ ๐‘ 1 =
โˆ’(1 โˆ’ โˆš๐‘‹0 )[๐‘ 1 + ๐‘‹0 โˆ’ โˆš๐‘‹0 ] vanishes. Thus (83) shows that
๐ฟ(๐‘‹, ๐‘Œโˆ— (๐‘‹)) = 0 which also indicates a nonuniformity in the
asymptotics. Later we will give appropriate expansions near
the three bounding curves (๐‘Œ = 0, ๐‘‹ = ๐‘‹0 , and ๐‘Œ = ๐‘Œโˆ— (๐‘‹))
of region Dโˆ’ .
0.05
0
๐’Ÿโˆ’
0.1
0.2
0.3
0.4
X
Figure 6: Region R4 .
In Figure 4 we also indicate the curve
2
๐‘Œ = ๐‘Œ1 (๐‘‹) = ๐‘Œ1 (๐‘‹; ๐‘‹0 ) =
(1 โˆ’ ๐‘‹0 )
,
1โˆ’๐‘‹
(84)
which lies entirely within D+ (when (๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 ) and
corresponds to ๐œ•ฮจ+ /๐œ•๐‘Œ = 0, where ฮจ+ is in (61). We can also
show that ฮจ+,๐‘Œ๐‘Œ(๐‘‹, ๐‘Œ1 (๐‘‹)) < 0 so that, for a fixed ๐‘‹ โˆˆ (0, ๐‘‹0 ),
ฮจ+ achieves a local maximum along ๐‘Œ = ๐‘Œ1 (๐‘‹). Note that
๐‘Œ = ๐‘Œ1 (๐‘‹) corresponds to ๐‘ (๐‘‹, ๐‘Œ) = 1 โˆ’ ๐‘‹0 (> โˆš๐‘‹0 โˆ’ ๐‘‹0 ) in
(62), for then ๐‘‹ = 1 + (๐‘‹0 โˆ’ 1)๐‘’๐‘ก and ๐‘Œ = (1 โˆ’ ๐‘‹0 )๐‘’โˆ’๐‘ก .
For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 the curve in (84) plays no role, as it lies
outside of D+ , but now the curve
๐‘Œ = ๐‘Œ2 (๐‘‹) = ๐‘Œ2 (๐‘‹; ๐‘‹0 , ๐‘Œ0 ) = ๐‘Œ0
1 โˆ’ ๐‘‹0
1โˆ’๐‘‹
(85)
lies within D0 , connecting the points (0, ๐‘Œ0 (1 โˆ’ ๐‘‹0 )) and
(๐‘‹0 , ๐‘Œ0 ). Along ๐‘Œ = ๐‘Œ2 (๐‘‹) we have ฮจ๐‘Œ = 0 and then ๐ด =
1 โˆ’ ๐‘‹0 and ๐ต = 0, so that (68) becomes ๐‘‹ = 1 โˆ’ (1 โˆ’ ๐‘‹0 )๐‘’๐œ and
๐‘Œ = ๐‘Œ0 ๐‘’โˆ’๐œ . Then for region R3 , ฮจ will have a local maximum
along ๐‘Œ = ๐‘Œ2 in D0 .
For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 most of the mass will lie near the
corner point (๐‘‹, ๐‘Œ) = (๐‘‹0 , ๐‘Œ0 ), where D0 and D+ meet,
but neither (60) nor (65) (with the appropriate ๐ถ0 and ๐ถ)
are valid there. For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 , ๐œ‹(๐‘˜, ๐‘Ÿ) will be maximal
near the point (๐‘‹, ๐‘Œ) = (๐‘‹0 , 1 โˆ’ ๐‘‹0 ), and (73) applies for
๐‘˜ = ๐‘š โˆ’ ๐‘‚(1) (or ๐‘‹ = ๐‘‹0 โˆ’ ๐‘‚(๐œŒโˆ’1 )) for both regions R1
and R2 . By expanding (73) about ๐‘Œ = 1 โˆ’ ๐‘‹0 , which is where
ฮจ+ (๐‘‹0 , ๐‘Œ) is maximal, we obtain precisely the expression in
(49).
Next we consider region R4 of parameter space. Now
the state space will be split into D0 and Dโˆ’ , and D+ will be
absent. This is sketched in Figure 6, and we also observe that
ฬƒ
as ๐‘‹0 + ๐‘Œ0 โ†“ โˆš๐‘‹0 in region R3 , the curves ๐‘Œโˆ— (๐‘‹) and ๐‘Œ(๐‘‹)
in (75) and (56) become identical, and thus D+ shrinks to
Advances in Operations Research
11
this curve. For R4 there is a new curve that comes into play;
namely,
๐‘Œ = ๐‘Œ๐‘ (๐‘‹) = ๐‘Œ๐‘ (๐‘‹; ๐‘‹0 , ๐‘Œ0 ) = โˆ’๐‘Š0 +
๐‘Œ0 + ๐‘Š0
[๐‘Š0
2โˆš๐‘Š0
(86)
2
+ 1 โˆ’ ๐‘‹ โˆ’ โˆš(๐‘Š0 + 1 โˆ’ ๐‘‹) โˆ’ 4๐‘Š0 ] .
We have ๐‘Œ๐‘ (๐‘‹0 ) = ๐‘Œ0 and the curve hits the ๐‘ฅ-axis (๐‘Œ = 0)
when
๐‘Œ๐‘ (๐‘‹) = 0 โ‡โ‡’
๐‘‹ = ๐‘‹0 โˆ’
๐‘Œ02
1
.
๐‘Œ0 + ๐‘Š0 โˆš๐‘Š0
(87)
The curve ๐‘Œ = ๐‘Œ๐‘ (๐‘‹) now separates D0 from Dโˆ’ and
corresponds to ๐ด = ๐ด min = 1 โˆ’ โˆš๐‘‹0 in (68), and also
๐‘ 1 (๐‘‹, ๐‘Œ) = ๐‘Œ0 in (81).
Proposition 7. For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R4 (thus 0 < ๐‘Œ0 < โˆš๐‘‹0 โˆ’ ๐‘‹0 )
the asymptotic expansions of ๐œ‹(๐‘˜, ๐‘Ÿ) are as follows:
(i) (๐‘‹, ๐‘Œ) โˆˆ Dโˆ’ , 0 < ๐‘Œ < ๐‘Œ๐‘ (๐‘‹), ๐‘‹0 โˆ’ ๐‘Œ02 /[โˆš๐‘Š0 (๐‘Œ0 +
๐‘Š0 )] < ๐‘‹ < ๐‘‹0 .
The expansion in (79) applies with now ๐ถ1 (๐œŒ) given by
(41).
(ii) (๐‘‹, ๐‘Œ) โˆˆ D0 (max{0, ๐‘Œ๐‘ (๐‘‹)} < ๐‘Œ < ๐‘Œ0 ).
The expansion in (65) applies for ๐ด โˆˆ (๐ด min , ๐ด max )
with ๐ถ0 (๐œŒ) โˆผ ๐œŒโˆ’1/2 (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ).
Again, different expansions must be given near ๐‘Œ = ๐‘Œ๐‘ (๐‘‹)
and near all boundaries of the state space. The curve ๐‘Œ =
๐‘Œ2 (๐‘‹) in (85) still lies within D0 and is sketched in Figure 6,
with again ฮจ๐‘Œ = 0 along this curve.
We conclude by noting that, for all regions of parameter
space R๐‘— , the expansion in D0 depends upon the secondary
storage capacity ๐‘Œ0 (or ๐‘…). For regions R1 and R2 the
expansions in D+ and Dโˆ’ (R2 only) are independent of
ฬƒ
๐‘Œ0 , except through the curve ๐‘Œ(๐‘‹)
that bounds D+ . Thus if
๐‘‹0 + ๐‘Œ0 > 1 the effects of the finite storage capacity appear in
D0 only, and then letting ๐‘Œ0 โ†’ โˆž will recover the results for
the storage model in [10, 11], which assumes that ๐‘… = โˆž. For
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 , hence โˆš๐‘‹0 < ๐‘‹0 + ๐‘Œ0 < 1, the expansions in
Dโˆ’ and D+ depend upon ๐‘Œ0 only through the multiplicative
constants ๐ถ1 and ๐ถ, which now depend on ๐‘Œ0 in view of (33)
and (36). For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R4 , hence 0 < ๐‘Œ0 < โˆš๐‘‹0 โˆ’ ๐‘‹0 , again
the Dโˆ’ result depends on ๐‘Œ0 only through the constant ๐ถ1 (cf.
(41)). For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 โˆฉR4 , that is, along and near the curve
ฬƒ
๐‘‹0 + ๐‘Œ0 = โˆš๐‘‹0 , we have ๐‘Œ3 (๐‘‹) = ๐‘Œ๐‘ (๐‘‹) = ๐‘Œ(๐‘‹)
= ๐‘Œโˆ— (๐‘‹) so
all four of these curves coalesce. A special analysis is required
for ๐‘‹0 + ๐‘Œ0 โˆ’ โˆš๐‘‹0 = ๐‘‚(๐œŒโˆ’1/3 ) for values of (๐‘‹, ๐‘Œ) near this
curve(s).
This completes our summary of the asymptotic expansions in the three main regions, D0 , D+ , and Dโˆ’ , of the state
space.
3.3. Joint Distribution: Boundary, Corner, and Transition
Regions. We next analyze the four boundary segments of the
state space rectangle, namely, the line segments {๐‘Œ = 0, 0 <
๐‘‹ < ๐‘‹0 }, {๐‘‹ = ๐‘‹0 , 0 < ๐‘Œ < ๐‘Œ0 }, {๐‘‹ = 0, 0 < ๐‘Œ < ๐‘Œ0 },
and {๐‘Œ = ๐‘Œ0 , 0 < ๐‘‹ < ๐‘‹0 }. As we previously discussed,
the expansions in the three main regions become invalid near
the boundary of the state space, with the exception of the
D+ expansion in (60), which remains valid near ๐‘‹ = ๐‘‹0 ,
reducing to (73) when ๐‘˜ = ๐‘š โˆ’ ๐‘‚(1) (๐‘‹ = ๐‘‹0 โˆ’ ๐‘‚(๐œŒโˆ’1 )), at
least for (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆชR2 . For the four boundary segments
we will typically consider the respective scales ๐‘Ÿ = ๐‘‚(1),
๐‘˜ = ๐‘š โˆ’ ๐‘‚(1), ๐‘˜ = ๐‘‚(1), and ๐‘Ÿ = ๐‘… โˆ’ ๐‘‚(1), though at
times a different scaling must be considered in addition to
these discrete scales. Note also that a particular point on a
boundary segment may also require a separate expansion,
and this occurs in R2 โˆช R3 , when ๐‘Œโˆ— (๐‘‹) hits ๐‘‹ = ๐‘‹0
at the point (๐‘‹0 , โˆš๐‘‹0 โˆ’ ๐‘‹0 ). Also, in R1 โˆช R2 โˆช R3 , the
ฬƒ
curve ๐‘Œ(๐‘‹)
that separates D0 from D+ hits the ๐‘ฆ-axis when
๐‘Œ = ๐‘Œ0 [1 โˆ’ ๐‘‹0 /(๐‘‹0 + ๐‘Œ0 )2 ] (> 0) and this point requires a
separate analysis. Finally, in R4 the curve ๐‘Œ๐‘ (๐‘‹) hits the ๐‘ฅaxis when ๐‘‹ = ๐‘‹0 โˆ’ ๐‘Œ02 /[(๐‘Œ0 + ๐‘Š0 )โˆš๐‘Š0 ].
After treating the four boundary segments we will give
asymptotic results that are valid near the four corner points,
(0, 0), (๐‘‹0 , 0), (๐‘‹0 , ๐‘Œ0 ), and (0, ๐‘Œ0 ), of the state space. Finally
we give results for points (๐‘‹, ๐‘Œ) that lie on or near the
ฬƒ
transition curves ๐‘Œ(๐‘‹)
(for R1 โˆช R2 โˆช R3 ), ๐‘Œโˆ— (๐‘‹) (for R2 โˆช
R3 ), and ๐‘Œ๐‘ (๐‘‹) (for R4 ). Unlike the previous subsections
where we listed the results by region R๐‘— of parameter space,
here we go by region of state space, and each proposition will
correspond to one such region and the different results for the
different R๐‘— will be collected in that proposition.
Proposition 8. For ๐‘Ÿ = ๐‘‚(1) and ๐‘˜ = ๐œŒ๐‘‹, 0 < ๐‘‹ < ๐‘‹0 , one
has the following expansions:
(i) R1 : ๐‘‹0 > 1, 0 < ๐‘‹ < 1
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’๐‘Ÿ
๐‘‹0 โˆ’ 1
โˆ’2๐‘Ÿ
(1 โˆ’ ๐‘‹)โˆ’๐‘Ÿ (๐‘‹0 โˆ’ 1)
2๐œ‹โˆš๐‘‹๐‘‹0
๐œŒ(โˆ’2+๐‘‹+๐‘‹0 โˆ’๐‘‹log๐‘‹โˆ’๐‘‹0 log๐‘‹0 )
โ‹… (๐‘Ÿ โˆ’ 1)!๐‘’
๐œ‹ (๐‘˜, 0) โˆ’ ๐œŒ๐‘˜
,
(88)
๐‘Ÿ โฉพ 1,
๐‘’โˆ’๐œŒ
โˆ’๐‘‹๐‘’๐œŒ(โˆ’2+๐‘‹+๐‘‹0 โˆ’๐‘‹log๐‘‹โˆ’๐‘‹0 log๐‘‹0 )
.
โˆผ ๐œŒโˆ’1
๐‘˜!
2๐œ‹โˆš๐‘‹๐‘‹0 (๐‘‹0 โˆ’ 1) (1 โˆ’ ๐‘‹)
(89)
(ii) R1 : ๐‘‹0 > 1, ๐‘‹ = 1 + ๐›ผ/โˆš๐œŒ, ๐›ผ = ๐‘‚(1)
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’๐‘Ÿ/2
โˆž
๐‘‹0 โˆ’ 1
โˆ’2๐‘Ÿ
(๐‘‹0 โˆ’ 1)
2๐œ‹โˆš๐‘‹0
(90)
2
โ‹… [โˆซ (๐›ผ + ๐‘ข)๐‘Ÿโˆ’1 ๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข] ๐‘’๐œŒ(โˆ’1+๐‘‹0 โˆ’๐‘‹0 log๐‘‹0 ) ,
โˆ’๐›ผ
๐‘Ÿ โฉพ 1,
๐œ‹ (๐‘˜, 0) โˆ’ ๐œŒ๐‘˜
๐‘’โˆ’๐œŒ
โˆผ ๐œŒโˆ’1/2
๐‘˜!
โˆž
2
โˆ’๐‘’๐œŒ(โˆ’1+๐‘‹0 โˆ’๐‘‹0 log๐‘‹0 )
โ‹…
[โˆซ ๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข] .
2๐œ‹โˆš๐‘‹0 (๐‘‹0 โˆ’ 1) โˆ’๐›ผ
(91)
12
Advances in Operations Research
(92)
so that ๐‘ 10 corresponds to ๐‘ 1 (๐‘‹, 0) in (81), ฮฆโˆ— (โ‹…) is
defined in (82), and ฮฆ(X, 0) can be computed from
(80) by setting ๐‘Œ = 0 and replacing ๐‘ 1 by ๐‘ 10 . The
value of ๐ถ1 in (96) is given by (34) for R2 , by (35) for
R2 โˆฉ R3 (๐‘‹0 + ๐‘Œ0 = 1 + ๐‘‚(๐œŒโˆ’1/2 )), and by (36) for R3 .
(93)
(vi) R4 : 0 < ๐‘Œ0 < โˆš๐‘‹0 โˆ’๐‘‹0 , ๐‘‹0 โˆ’(๐‘Œ02 /[โˆš๐‘Š0 (๐‘Œ0 +๐‘Š0 )]) <
๐‘‹ < ๐‘‹0 .
The expression in (96) applies with ๐ถ1 now given by
(41). For region R3 โˆฉ R4 (hence ๐‘‹0 + ๐‘Œ0 = โˆš๐‘‹0 +
๐‘‚(๐œŒโˆ’1/3 )), (96) holds for 0 < ๐‘‹ < ๐‘‹0 , where ๐ถ1 can be
computed from (37).
(iii) R1 : ๐‘‹0 > 1, 1 < ๐‘‹ < ๐‘‹0
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’1/2
3
(๐‘‹0 โˆ’ 1)
โˆš2๐œ‹๐‘‹0
(๐‘‹ โˆ’ 1)๐‘Ÿโˆ’1
2 โˆ’๐‘Ÿโˆ’1 ๐œŒ(โˆ’1+๐‘‹0 โˆ’๐‘‹0 log๐‘‹0 )
โ‹… [๐‘‹ โˆ’ 1 + (๐‘‹0 โˆ’ 1) ]
๐‘’
,
๐‘Ÿ โฉพ 1,
๐œ‹ (๐‘˜, 0) โˆ’ ๐œŒ๐‘˜
โ‹…
๐‘’โˆ’๐œŒ
โˆผ ๐œŒโˆ’1/2
๐‘˜!
โˆ’ (๐‘‹0 โˆ’ 1) ๐‘’๐œŒ(โˆ’1+๐‘‹0 โˆ’๐‘‹0 log๐‘‹0 )
2
โˆš2๐œ‹๐‘‹0 [๐‘‹ โˆ’ 1 + (๐‘‹0 โˆ’ 1) ]
.
(vii) R4 : 0 < ๐‘Œ0 < โˆš๐‘‹0 โˆ’๐‘‹0 , 0 < ๐‘‹ < ๐‘‹0 โˆ’๐‘Œ02 /[โˆš๐‘Š0 (๐‘Œ0 +
๐‘Š0 )] โ‰ก ๐‘‹๐ฟ
(iv) R1 โˆฉ R2 : ๐‘‹0 = 1 + ๐›ฝ/โˆš๐œŒ, ๐›ฝ = ๐‘‚(1), 0 < ๐‘‹ < 1
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒ
โˆ’1/2
1 ๐œŒ(โˆ’1+๐‘‹โˆ’๐‘‹log๐‘‹) 1
๐‘’
โˆš๐‘‹
2๐œ‹๐‘–
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
(94)
ฮ“ (๐‘ง + ๐‘Ÿ) (1 โˆ’ ๐‘‹)๐‘ง
๐‘‘๐‘ง,
๐‘Ÿ!๐ท๐‘ง (โˆ’๐›ฝ) ๐ท๐‘งโˆ’1 (โˆ’๐›ฝ)
โ‹…โˆซ
๐ต๐‘Ÿ+
ฮจ (๐‘‹, 0)
= ๐ด 0 (1 โˆ’
where ๐ต๐‘Ÿ+ is the imaginary axis in the ๐‘ง-plane if ๐‘Ÿ โฉพ 1,
and if ๐‘Ÿ = 0 the contour is to be indented to the right
of the pole at ๐‘ง = 0. Here ฮ“(โ‹…) is the gamma function.
When ๐›ฝ = 0 the expression in (94) simplifies to
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ โˆš๐œŒ๐ถ1 (๐œŒ) ๐‘’๐œŒฮฆ(๐‘‹,0) ๐‘’๐œŒ
โ‹…
(1 โˆ’ โˆš๐‘‹0 )
1/6
ฮฆโˆ— (๐‘ 10 )
๐œŒ
๐‘Ÿ
2
โ‹… [๐‘Œ0 (1 โˆ’ ๐ด 0 ) + ๐‘‹0 ๐ด 0 (1 โˆ’ ๐‘‹0 โˆ’ ๐ด 0 )] = (โˆ’๐‘‹)
๐‘Š0๐‘Ÿ
(๐‘Š0 + ๐‘ 10 ) โˆšโˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘ 10
(96)
1/2โˆš๐‘‹0
(
โˆš๐‘Š0
)
๐‘ 10 + ๐‘Š0
,
that satisfies ๐ด 0 (0) = 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 and ๐ด 0 (๐‘‹๐ฟ ) = 1 โˆ’
โˆš๐‘‹0 = โˆš๐‘Š0 ,
where ๐‘Š0 = (1 โˆ’ โˆš๐‘‹0 )2 ,
๐ต0 =
๐‘ 10
= โˆ’๐‘Š0
+
(100)
โ‹… (1 โˆ’ ๐‘‹0 โˆ’ ๐ด 0 ) [(1 โˆ’ ๐ด 0 ) (๐ด 0 + ๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0 ]
๐‘Ÿ!
โˆš2๐œ‹ [Ai๓ธ€  (๐‘Ÿ0 )]2 ๐‘‹01/6 โˆš๐‘ 10 (๐‘ 10 + 2๐‘Š0 )
๐ด0
),
๐ต0
(๐ด 0 โˆ’ 1 + ๐‘‹0 + ๐‘Œ0 )
(v) R2 โˆช R3 : 0 < ๐‘‹0 < 1, ๐‘‹0 + ๐‘Œ0 > โˆš๐‘‹0 , 0 < ๐‘‹ < ๐‘‹0
1/3
(99)
where ๐ด 0 = ๐ด 0 (๐‘‹) = ๐ด 0 (๐‘‹; ๐‘‹0 , ๐‘Œ0 ) is the solution of
the algebraic equation
(95)
2 (1 โˆ’ ๐‘‹)
(2 โˆ’ ๐‘‹)โˆ’๐‘Ÿโˆ’1 ๐‘’๐œŒ(โˆ’1+๐‘‹โˆ’๐‘‹log๐‘‹) .
๐œ‹ โˆš๐‘‹
1
) + ๐‘‹0 log (1 โˆ’ ๐ด 0 )
๐ต0
+ ๐‘Œ0 log (1 โˆ’ ๐ต0 ) โˆ’ ๐‘‹ log (1 โˆ’
๐œ‹ (๐‘˜, ๐‘Ÿ)
โˆผ ๐œŒโˆ’1/2 โˆš
๐œŒ๐‘Ÿ ๐‘Œ0 ๐ต0 ๐‘Ÿ
) ๐‘” (๐‘‹) ๐‘’๐œŒฮจ(๐‘‹,0) , (98)
(
๐‘Ÿ! 1 โˆ’ ๐ต0
๐ด 0 (1 โˆ’ ๐‘‹0 โˆ’ ๐ด 0 )
,
(1 โˆ’ ๐ด 0 ) (๐ด 0 + ๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0
(101)
(97)
โˆš๐‘Š0
2
[๐‘Š0 + 1 โˆ’ ๐‘‹ + โˆš(๐‘Š0 + 1 โˆ’ ๐‘‹) โˆ’ 4๐‘Š0 ] ,
2
so that ๐ต0 (0) = 1โˆ’๐‘‹0 โˆ’๐‘Œ0 and ๐ต0 (๐‘‹๐ฟ ) = ๐‘Š0 /(๐‘Š0 +๐‘Œ0 ),
and
2
๐‘” (๐‘‹) =
๐ด 0 (1 โˆ’ ๐ด 0 ) [(1 โˆ’ ๐ด 0 ) โˆ’ ๐‘‹0 ] ๐‘Œ0
(1 โˆ’ ๐ต0 ) โˆš๐ต0 โˆ’ ๐ด 0 [๐‘Œ0 โˆ’ ๐ด 0 (๐‘‹0 + ๐‘Œ0 )] [๐‘Œ0 โˆ’ ๐ด20 + (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐ด 0 ]
โˆ’1/2
+
๐‘‹ (๐‘‹ + ๐‘Œ )
๐ด0
๐‘‹0
2๐‘‹0
[
โˆ’ 1] + ๐ต0 [1 โˆ’
+ 0 0 20 ]}
๐ต0 (1 โˆ’ ๐ด 0 )2
1 โˆ’ ๐ด0
(1 โˆ’ ๐ด 0 )
.
{๐ด 0 + ๐‘‹0 + ๐‘Œ0 โˆ’
๐‘‹0
1 โˆ’ ๐ด0
(102)
Advances in Operations Research
13
For ๐‘‹ โ†’ 0 and ๐‘‹ โ†’ ๐‘‹๐ฟ one can obtain ๐‘”(๐‘‹) more
explicitly, with
๐‘” (๐‘‹) โˆผ โˆš
๐‘‹0 + ๐‘Œ0
, ๐‘‹ ๓ณจ€โ†’ 0,
๐‘‹
(103)
5/2
3/2
๐‘” (๐‘‹) โˆผ
2 (๐‘Š0 + ๐‘Œ0 ) (1 โˆ’ โˆš๐‘‹0 ) (๐‘‹๐ฟ โˆ’ ๐‘‹)
,
๐‘Œ0 (2๐‘Š + ๐‘Œ )3/2 (โˆš๐‘‹ โˆ’ ๐‘‹ โˆ’ ๐‘Œ )3/2
0
0
0
0
0
(104)
๐‘‹ ๓ณจ€โ†’ ๐‘‹๐ฟ .
(viii) R4 : 0 < ๐‘Œ0 < โˆš๐‘‹0 โˆ’ ๐‘‹0 , ๐‘‹ โˆ’ ๐‘‹๐ฟ = ๐œŒโˆ’1/3 ฮ› = ๐‘‚(๐œŒโˆ’1/3 )
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
๐œŒ๐‘Ÿ ๐‘Š0๐‘Ÿ โˆ’1/3
๐œŒ
๐‘Ÿ!
5/6
โ‹…
โˆš๐‘Š0 + ๐‘Œ0 ๐‘‹01/6 (1 โˆ’ โˆš๐‘‹0 )
3/2
โˆš2๐‘Š0 + ๐‘Œ0 (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
+๐œŒ
2/3
exp [๐œŒฮจ (๐‘‹๐ฟ , 0)
ฮ›3
1
ฮจ๐‘‹ (๐‘‹๐ฟ , 0) ฮ› + ๐œŒ1/3 ฮจ๐‘‹๐‘‹ (๐‘‹๐ฟ , 0) ฮ›2 ] exp [
2
6
[
(105)
(41) or (37). However, for 0 < ๐‘‹ < ๐‘‹๐ฟ and ๐‘‹ โ‰ˆ ๐‘‹๐ฟ , the
expressions in (98) and (105) show that now ๐œ‹(๐‘˜, ๐‘Ÿ) depends
in an intricate way on ๐‘Œ0 . Thus the finiteness of the secondary
storage capacity affects the probabilities that there are even a
few secondary spaces occupied.
For region R1 , ๐œ‹(๐‘˜, ๐‘Ÿ) is exponentially small for ๐‘Ÿ โฉพ 1
and ๐œ‹(๐‘˜, 0) approximately follows a Poisson distribution, as
indicated previously in Proposition 3. The results in (88)โ€“
(93) better quantify (47) and estimate the exponentially small
error from the Poisson approximation. For regions R2 , R3 ,
and R4 , ๐œ‹(๐‘˜, ๐‘Ÿ) is always exponentially small for ๐‘Ÿ = ๐‘‚(1),
and the approximations do not distinguish ๐‘Ÿ = 0 from ๐‘Ÿ โฉพ 1.
By evaluating the contour integral in (105) for ฮ› โ†’ +โˆž we
can verify that (105) asymptotically matches to (96) (with ๐ถ1
given by (41)), as ๐‘‹ โ†“ ๐‘‹๐ฟ . Similarly, for ฮ› โ†’ โˆ’โˆž (105) will
match to (98) as ๐‘‹ โ†‘ ๐‘‹๐ฟ .
Next we consider points (๐‘˜, ๐‘Ÿ) near ๐‘‹ = ๐‘‹0 , with ๐‘‹0 โˆ’๐‘‹ =
๐‘œ(1). Note that only regions D+ and Dโˆ’ can be bounded by
๐‘‹ = ๐‘‹0 , for 0 < ๐‘Œ < ๐‘Œ0 .
Proposition 9. For ๐‘‹ โˆผ ๐‘‹0 , one uses the scales ๐‘˜ = ๐‘š โˆ’ ๐‘› and
๐‘‹ = ๐‘‹0 โˆ’ ๐œŒโˆ’2/3 ]1 , so that ๐‘› = ๐œŒ1/3 ]1 = ๐œŒ(๐‘‹0 โˆ’ ๐‘‹) denotes the
number of empty primary storage spaces. The expansions are
now the following:
3
โ‹…
๐‘Š0 (๐‘Œ0 + ๐‘Š0 ) (๐‘Œ03 + 3๐‘Š0 ๐‘Œ02 + 4๐‘Š02 ๐‘Œ0 โˆ’ 2โˆš๐‘‹0 ๐‘Š05/2 )
2
3
๐‘Œ03 (๐‘Œ0 + 2๐‘Š0 ) (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
(i) R2 โˆช R3 : 0 < ๐‘‹0 < 1, ๐‘‹0 + ๐‘Œ0 > โˆš๐‘‹0 ; ๐‘› = ๐‘‚(1),
0 < ๐‘Œ < โˆš๐‘‹0 โˆ’ ๐‘‹0
]
5/3
โ‹…
]
(๐‘Œ + ๐‘Š0 ) (1 โˆ’ โˆš๐‘‹0 )
1 ๐‘–โˆž
1
exp [ 0
โˆซ
2๐œ‹๐‘– โˆ’๐‘–โˆž ๐ด๐‘– (๐œƒ)
๐‘Œ0 (๐‘Œ0 + 2๐‘Š0 ) ๐‘‹01/6
[
ฮ›๐œƒ] ๐‘‘๐œƒ,
]
๐œŒ1/3
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’1/6 ๐ถ1 (๐œŒ) ๐‘’๐œŒฮฆ(๐‘‹0 ,๐‘Œ)๐‘’
where
ฮจ (๐‘‹๐ฟ , 0) = ๐‘Œ0 log (
โ‹…
๐‘Œ0
๐‘Œ
1
) โˆ’ 0 + ๐‘‹0
๐‘Š0 + ๐‘Œ0
โˆš๐‘Š0 2
โ‹… log (
โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0
โˆš๐‘Š0
ฮจ๐‘‹ (๐‘‹๐ฟ , 0) = โˆ’ log (
(106)
โ‹…
),
โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0
1 โˆ’ โˆš๐‘‹0
(107)
2
ฮจ๐‘‹๐‘‹ (๐‘‹๐ฟ , 0) = โˆ’
(๐‘Œ0 + ๐‘Š0 ) โˆš๐‘Š0
๐‘Œ0 (๐‘Œ0 + 2๐‘Š0 ) (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
.
(108)
We note that the regions of validity of the expansions in
Proposition 8 are such that the four corner points of the state
space are excluded. For regions R1 and R2 the expansions for
๐‘Ÿ = ๐‘‚(1) are independent of the secondary storage capacity
๐‘Œ0 . For region R3 the result in (96) does depend upon ๐‘Œ0 ,
but only through the multiplicative constant ๐ถ1 , which now
depends on ๐‘Œ0 in view of (36). This is also true for region
R4 (and R3 โˆฉ R4 ) when ๐‘‹ > ๐‘‹๐ฟ , as then ๐ถ1 is given by
โˆš๐‘‹0 (๐‘Œ + ๐‘Š0 )
(๐‘Œ + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘Œ
]
(109)
(๐‘Œ + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘Œ
โˆš๐‘Œ
โ‹… exp [โˆ’
),
๐‘›
(โˆš๐‘‹0 )
โˆ’1/6
1
1
โˆš
(1
โˆ’
๐‘‹
)
0
โˆš2๐œ‹ ๐ด๐‘–๓ธ€  (๐‘Ÿ0 )
โ‹… ๐‘‹0โˆ’5/6 [๐‘› +
๐‘Œ02
1
โ‹… log ๐‘‹0 + (
โˆ’ ๐‘‹0 )
๐‘Œ0 + ๐‘Š0 โˆš๐‘Š0
ฮฆโˆ— (๐‘Œ)
1 + โˆš๐‘‹0
2โˆš๐‘‹0
log (
๐‘Š0 + ๐‘Œ
)] ,
1 โˆ’ โˆš๐‘‹0
where ๐ถ1 is given by (34), (35), and (36) for parameter
regions R2 , R2 โˆฉ R3 , and R3 , respectively, ฮฆโˆ— (๐‘Œ) is
obtained by replacing ๐‘ 1 by ๐‘ 1 (๐‘‹0 , ๐‘Œ) = ๐‘Œ in (82), and
ฮฆ (๐‘‹0 , ๐‘Œ) = (๐‘Œ + ๐‘Š0 ) log (๐‘Œ + ๐‘Š0 ) โˆ’ ๐‘Œ log ๐‘Œ
1
+ โˆš๐‘‹0 โˆ’ 1 โˆ’ ๐‘‹0 log ๐‘‹0
2
1
โˆ’ ๐‘Š0 log ๐‘Š0 .
2
(110)
14
Advances in Operations Research
(ii) R2 โˆช R3 : ]1 = ๐‘‚(1) with ]1 > 0, 0 < ๐‘Œ < โˆš๐‘‹0 โˆ’ ๐‘‹0
1/3
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’1/6 ๐ถ1 (๐œŒ) ๐‘’๐œŒฮฆ(๐‘‹0 ,๐‘Œ) ๐‘’๐œŒ
โ‹…
[]1 log(โˆš๐‘‹0 )+ฮฆโˆ— (๐‘Œ)]
(๐‘Œ + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘Œ
1
1
2
๓ธ€ 
โˆš2๐œ‹ [๐ด๐‘– (๐‘Ÿ0 )] [๐‘Œ๐‘‹ (1 โˆ’ โˆš๐‘‹ )]1/2
0
0
โ‹… exp [โˆ’
1 + โˆš๐‘‹0
2โˆš๐‘‹0
Proposition 10. For ๐‘˜ = ๐‘‚(1) and ๐‘Ÿ = ๐œŒ๐‘Œ, 0 < ๐‘Œ < ๐‘Œ0 , one
has the following expansions:
(i) R1 โˆช R2 โˆช R3 : 0 < ๐‘Œ < ๐‘Œ0 [1 โˆ’ ๐‘‹0 /(๐‘‹0 + ๐‘Œ0 )2 ] โ‰ก ๐‘Œ๐‘ˆ
๐œ‹ (๐‘˜, ๐‘Ÿ)
(111)
๐œŒฮจ+ (0,๐‘Œ) ๐œŒ
โˆผ โˆš๐œŒ๐ถ (๐œŒ) ๐‘’
๐‘Š +๐‘Œ
log ( 0
)]
1 โˆ’ โˆš๐‘‹0
โ‹… ๐ด๐‘– (] + ๐‘Ÿ0 ) ,
Now the expressions in (109) and (111) apply over all
๐‘Œ (0 < ๐‘Œ < ๐‘Œ0 ), with ๐ถ1 given by (37) for R3 โˆฉ R4
and (41) for R4 .
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’1/6 ๐ถ1 (๐œŒ) ๐‘’๐œŒ[โˆ’1+โˆš๐‘‹0 โˆ’โˆš๐‘‹0 log(โˆš๐‘‹0 )]
ฮจ+ (0, ๐‘Œ) = ๐ท0 +
The expansion of ๐ถ is given by (31)โ€“(33) according to
subregions of R1 โˆช R2 โˆช R3 .
(112)
๐‘˜
๐ด (๐ด + ๐‘‹0 โˆ’ 2) + 1
]
[ 1 1
๐‘˜!
1 โˆ’ ๐ด1
๐‘˜
(117)
2
โ‹…
โˆš๐‘Œ0 ๐ด 1 โˆš๐ด 1 (๐ด 1 + ๐‘‹0 โˆ’ 2) + 1 [(1 โˆ’ ๐ด 1 ) โˆ’ ๐‘‹0 ]
โˆš๐‘Œ (๐‘Œ0 โˆ’ ๐‘Œ)โˆš๓ต„จ๓ต„จ๓ต„จ๓ต„จฮ” ๐ฟ (๐‘Œ)๓ต„จ๓ต„จ๓ต„จ๓ต„จ [๐‘Œ0 โˆ’ ๐ด 1 (๐‘‹0 + ๐‘Œ0 )]
,
where
๐ด๐‘– (] + ๐œƒ) โˆ’๐œ”๐œƒ
๐‘’ ๐‘‘๐œƒ,
๐ด๐‘–2 (๐œƒ)
๐ด 1 = ๐ด 1 (๐‘Œ) = ๐ด 1 (๐‘Œ; ๐‘‹0 , ๐‘Œ0 ) =
where ๐œ” = (1 โˆ’ โˆš๐‘‹0 )โˆ’1/3 ๐‘‹0โˆ’1/6 ๐œ”1 , so that ]1 ๐œ”1 =
โˆš๐‘‹0 ]๐œ”, and ๐ถ1 is given again in Proposition 2 for the
three cases R2 , R2 โˆฉ R3 , and R3 .
(v) R1 โˆช R2 โˆช R3 : 0 < ๐‘Œ < ๐‘Œ0 (R1 ) or โˆš๐‘‹0 โˆ’ ๐‘‹0 < ๐‘Œ <
๐‘Œ0 (R2 โˆช R3 ), ๐‘› = ๐‘‚(1)
1
[1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0
2
(118)
2
+ โˆš(๐‘‹0 + ๐‘Œ0 โˆ’ 1) + 4๐‘Œ] ,
ฮจ (0, ๐‘Œ) = ๐ด 1 โˆ’ 1 + ๐‘‹0 log (1 โˆ’ ๐ด 1 ) + (๐‘Œ0 โˆ’ ๐‘Œ)
โ‹… log (1 โˆ’ ๐ด 1 ) + ๐‘Œ log ๐ด 1 โˆ’ ๐‘Œ log ๐‘Œ โˆ’ (๐‘Œ0 โˆ’ ๐‘Œ)
(119)
โ‹… log (๐‘Œ0 โˆ’ ๐‘Œ) + ๐‘Œ0 log ๐‘Œ0 ,
๐œ‹ (๐‘˜, ๐‘Ÿ)
2
โˆผ ๐ถ (๐œŒ)
(116)
+ 2๐‘‹0 log (1 โˆ’ ๐ท0 ) + 2๐‘Œ log ๐ท0 .
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐‘„ (0, 0) ๐‘’
1/3
(1 โˆ’ โˆš๐‘‹0 )
[]1 log (โˆš๐‘‹0 ) โˆ’
]}
โˆš2๐œ‹๐‘‹07/12
2โˆš๐‘‹0
1 + โˆš๐‘‹0
1
โ‹… exp [
๐œ”13 ]
2๐œ‹๐‘–
6๐‘‹0 (1 โˆ’ โˆš๐‘‹0 )
โˆ’๐‘–โˆž
๐‘‹0
โˆ’ 2 โˆ’ ๐‘‹0 log ๐‘‹0 โˆ’ ๐‘Œ log ๐‘Œ
1 โˆ’ ๐ท0
๐œŒฮจ(0,๐‘Œ) ๐œŒ
๐œ”12
(115)
(ii) R1 โˆช R2 โˆช R3 โˆช R4 : ๐‘Œ๐‘ˆ < ๐‘Œ < ๐‘Œ0 (R1 โˆช R2 โˆช R3 )
or 0 < ๐‘Œ < ๐‘Œ0 (R4 )
โ‹… exp {โˆ’๐œŒ2/3 ๐œ”1 log (โˆš๐‘‹0 )
๐‘–โˆž
(114)
that satisfies ๐ท0 (0) = 1 โˆ’ โˆš๐‘‹0 = โˆš๐‘Š0 and
(iv) R2 โˆช R3 : ]1 = ๐‘‚(1), ๐‘Œ โˆ’ (โˆš๐‘‹0 โˆ’ ๐‘‹0 ) = ๐œŒโˆ’1/3 ๐œ”1 =
๐‘‚(๐œŒโˆ’1/3 )
โ‹…โˆซ
๐‘˜! ๐ท โˆš๐‘‹ [๐‘Œ + 2๐ท2 (1 โˆ’ ๐ท )]
0
0
0
0
,
๐ท03 โˆ’ 2๐ท02 + (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ) ๐ท0 + ๐‘Œ = 0
(iii) R3 โˆฉ R4 or R4 : ๐‘› = ๐‘‚(1) or ]1 = ๐‘‚(1).
+๐œŒ
๐‘˜
(1 + ๐‘Œ โˆ’ ๐ท02 ) (1 โˆ’ ๐ท0 ) ๐‘Œ
where ๐ท0 = ๐ท0 (๐‘Œ) is the root of the cubic equation
where ] = (1 โˆ’ โˆš๐‘‹0 )1/3 ๐‘‹0โˆ’1/3 ]1 and ๐ถ1 is again given
in Proposition 2 for the different ranges R๐‘— .
1/3
๐‘˜
(๐‘‹0 + ๐‘Œ) โˆ’ ๐‘‹0
5/2
โˆš2๐œ‹ (๐‘‹0 + ๐‘Œ)
(
๐‘›
๐‘‹0
) ๐‘’๐œŒฮจ+ (๐‘‹0 ,๐‘Œ) ,
๐‘‹0 + ๐‘Œ
(113)
where ฮจ+ (๐‘‹0 , ๐‘Œ) is given in (74) and ๐ถ has the expansions in (31)โ€“(33).
Note that the asymptotics are most complicated in (112),
which occurs when (๐‘‹, ๐‘Œ) โ‰ˆ (๐‘‹0 , โˆš๐‘‹0 โˆ’ ๐‘‹0 ) and this is
where the curve ๐‘Œโˆ— (๐‘‹) hits the line ๐‘‹ = ๐‘‹0 . This intersection
occurs only for regions R2 and R3 . The integrand in (112) is
a meromorphic function of ๐œƒ, having double poles at all roots
of the Airy function Ai(โ‹…).
โˆ’ ฮ” ๐ฟ (๐‘Œ) = (1 โˆ’ ๐ด 1 ) {๐ด 1 + ๐‘‹0 + ๐‘Œ0 +
โˆ’
๐‘‹0
๐‘‹0
โˆ’1
1 โˆ’ ๐ด1
+ ๐ด 1 [1 โˆ’
2
(1 โˆ’ ๐ด 1 )
(120)
๐‘‹ (๐‘‹ + ๐‘Œ )
2๐‘‹0
+ 0 0 20 ]}
1 โˆ’ ๐ด1
(1 โˆ’ ๐ด 1 )
and the expansion of ๐‘„(0, 0) is given in Proposition 1
for the three cases R1 โˆช R2 , R2 โˆฉ R3 , and R3 โˆช R4
(when ๐‘„(0, 0) โˆผ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ).
Advances in Operations Research
15
(iii) R1 โˆช R2 โˆช R3 : ๐‘Œ โˆ’ ๐‘Œ๐‘ˆ = ๐‘ฆโˆ— /โˆš๐œŒ = ๐‘‚(๐œŒโˆ’1/2 )
ฬƒ
ฬƒ
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐‘„ (0, 0) ๐‘’๐œŒฮจ(0,๐‘Œ(0)) ๐‘’โˆš๐œŒ๐‘ฆโˆ— ฮจ๐‘Œ (0,๐‘Œ(0)) โˆš๐œŒ
โ‹…
๐‘˜
๐œŒ๐‘˜
๐‘‹0
1
ฬƒ (0))]
] exp [ ๐‘ฆโˆ—2 ฮจ+,๐‘Œ๐‘Œ (0, ๐‘Œ
[๐‘Œ0 +
๐‘˜!
๐‘‹0 + ๐‘Œ0
2
โ‹…โˆš
๐‘‹0
๐‘Œ0
(121)
2
โ‹…
โˆž
(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0
โˆš(๐‘‹0 + ๐‘Œ0 )3 + ๐‘‹0 (๐‘Œ0 โˆ’ ๐‘‹0 )
2
(โˆซ
๐‘Ž๐‘ ๐‘ฆโˆ—
๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข) ,
We see that for each of the three cases the dependence of
๐œ‹(๐‘˜, ๐‘Ÿ) on ๐‘˜ is of the form ๐œŒ๐‘˜ [๐ด โˆ— (๐‘Œ)]๐‘˜ /๐‘˜! (times a function of
๐‘Œ or ๐‘ฆโˆ— ), where the geometric ratio ๐ด โˆ— depends upon ๐‘Œ = ๐‘Ÿ/๐œŒ
ฬƒ
and undergoes a transition when ๐‘Œ increases past ๐‘Œ๐‘ˆ = ๐‘Œ(0),
which can occur only for regions R1 , R2 , and R3 . We note
that ๐ด 1 (๐‘Œ๐‘ˆ) = ๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ) and ๐ท0 (๐‘Œ๐‘ˆ) = ๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ),
so that ๐ด โˆ— is continuous along ๐‘Œ = ๐‘Œ๐‘ˆ, with ๐ด โˆ— (๐‘Œ๐‘ˆ) = 1 +
๐‘Œ0 โˆ’ ๐‘‹0 /(๐‘‹0 + ๐‘Œ0 ), as indicated in (121). The expansion in
(117) develops a singularity as ๐‘Œ โ†“ ๐‘Œ๐‘ˆ, in view of the factor
[๐‘Œ0 โˆ’ ๐ด 1 (๐‘‹0 + ๐‘Œ0 )]โˆ’1 . The expansion is also singular as ๐‘Œ โ†‘ ๐‘Œ0
(for all regions R๐‘— ) and as ๐‘Œ โ†“ 0 (for region R4 only). Then
we are approaching the corner points (0, ๐‘Œ0 ) or (0, 0) of the
state space. Using the expansions
where
ฬƒ (0))
ฮจ (0, ๐‘Œ
= ๐‘‹0 log ๐‘‹0 + ๐‘Œ0 log ๐‘Œ0 โˆ’ (๐‘‹0 + ๐‘Œ0 ) log (๐‘‹0 + ๐‘Œ0 ) โˆ’
+
๐‘‹0 ๐‘Œ0
2
(๐‘‹0 + ๐‘Œ0 )
+ ๐‘Œ0 [
๐‘‹0
๐‘‹0 + ๐‘Œ0
โˆซ
๐‘Ž๐‘ ๐‘ฆโˆ—
(122)
[2 log (๐‘‹0 + ๐‘Œ0 ) โˆ’ log ๐‘Œ0 ]
๐‘‹0
(๐‘‹0 + ๐‘Œ0 )
2
โˆ’ 1] log [1 โˆ’
๐‘‹0
2
(๐‘‹0 + ๐‘Œ0 )
],
ฬƒ (0)) = ฮจ+,๐‘Œ (0, ๐‘Œ
ฬƒ (0))
ฮจ๐‘Œ (0, ๐‘Œ
ฬƒ (0))
ฮจ+,๐‘Œ๐‘Œ (0, ๐‘Œ
2
2
(124)
(๐‘‹0 + ๐‘Œ0 )
๐‘‹0
๐‘Œ (๐‘‹0 + ๐‘Œ0 ) + ๐‘‹0
],
[1 โˆ’ 0
3
2
๐‘Œ0 (๐‘‹0 + ๐‘Œ0 ) + ๐‘‹0 (๐‘Œ0 โˆ’ ๐‘‹0 )
๐‘‹0 (๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0
๐‘Ž๐‘
5/2
=
(๐‘‹0 + ๐‘Œ0 )
โˆš(๐‘‹0 + ๐‘Œ0 )2 โˆ’ ๐‘‹0
3
2
โˆš๐‘‹0 ๐‘Œ0 โˆš(๐‘‹0 + ๐‘Œ0 ) + ๐‘‹0 (๐‘Œ0 โˆ’ ๐‘‹0 )โˆš(๐‘‹0 + ๐‘Œ0 ) + ๐‘Œ0 โˆ’ ๐‘‹0
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐‘„ (0, 0) ๐‘’๐œŒฮจ(๐‘‹,๐‘Œ0 )
2
๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข
โˆš2๐œ‹,
{
{
{
โˆผ{
2 2
{
{(๐‘Ž๐‘ ๐‘ฆโˆ— )โˆ’1 exp (โˆ’ ๐‘Ž๐‘ ๐‘ฆโˆ— ) ,
2
{
๐‘ฆโˆ— ๓ณจ€โ†’ โˆ’โˆž
(126)
๐‘ฆโˆ— ๓ณจ€โ†’ +โˆž
(123)
2
= log ๐‘Œ0 โˆ’ log [(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0 ] ,
=
โˆž
.
(125)
we can easily show that (121) matches to (117) (for region R1 โˆช
R2 โˆช R3 in the intermediate limit where ๐‘ฆโˆ— โ†’ +โˆž and ๐‘Œ โ†“
๐‘Œ๐‘ˆ) and to (114) (with now ๐‘ฆโˆ— โ†’ โˆ’โˆž and ๐‘Œ โ†‘ ๐‘Œ๐‘ˆ). Note
also that the ratio ๐‘„(0, 0)/๐ถ(๐œŒ) is asymptotically the same for
each of the three regions R1 , R2 , and R3 , in view of (28)โ€“
(33). For any region R๐‘— , for ๐‘˜ = ๐‘‚(1) and ๐‘Œ โˆˆ (0, ๐‘Œ0 ), ๐œ‹(๐‘˜, ๐‘Ÿ)
is exponentially small in ๐œŒ.
Proposition 11. For ๐‘… โˆ’ ๐‘Ÿ = ๐‘ = ๐‘‚(1) and 0 < ๐‘‹ < ๐‘‹0 one
has (for all regions R๐‘— in parameter space)
2
(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) + 4๐‘Œ0
๐œŒ๐‘
๐‘ โˆš1 โˆ’ ๐ด max
]
[
[๐‘Œ0 (๐‘’๐œ๐‘ˆ โˆ’ 1)]
โˆ’๐œ
๐‘!
โˆš๐‘’ ๐‘ˆ โˆ’ ๐ด max (1 โˆ’ ๐‘Œ0 โˆ’ ๐‘‹)2 โˆ’ 4๐ด max (1 โˆ’ ๐‘‹0 / (1 โˆ’ ๐ด max ))
1/4
,
(127)
โˆ’ ๐‘Œ0 ๐œ๐‘ˆ โˆ’ ๐‘‹ log (1 โˆ’ ๐ด max ๐‘’๐œ๐‘ˆ ) .
where ๐œ๐‘ˆ = ๐œ๐‘ˆ(๐‘‹) = ๐œ๐‘ˆ(๐‘‹; ๐‘‹0 , ๐‘Œ0 ) is given by
(129)
๐œ๐‘ˆ = โˆ’ log [1 โˆ’ ๐‘Œ0 โˆ’ ๐‘‹
2
โˆ’ โˆš (1 โˆ’ ๐‘Œ0 โˆ’ ๐‘‹) โˆ’ 4๐ด max (1 โˆ’
+ log [2 (1 โˆ’
๐‘‹0
)]
1 โˆ’ ๐ด max
(128)
๐‘‹0
)] ,
1 โˆ’ ๐ด max
where ๐ด max is given in (69), ๐‘„(0, 0) has the respective expansions in (28)โ€“(30), and
ฮจ (๐‘‹, ๐‘Œ0 ) = ๐ด max (1 โˆ’ ๐‘’๐œ๐‘ˆ ) + ๐‘‹0 log (1 โˆ’ ๐ด max )
Thus (127) gives the expansion when there are only a few
secondary spaces empty and a fraction ๐‘‹/๐‘‹0 = ๐‘˜/๐‘š โˆˆ (0, 1)
of primary spaces occupied. The expressions can be simplified
in the limits ๐‘‹ โ†’ 0 (then ๐œ๐‘ˆ(0) = โˆ’log(๐ด max )) and ๐‘‹ โ†’ ๐‘‹0
(then ๐œ๐‘ˆ(๐‘‹0 ) = 0), but then other โ€œcornerโ€ expansions will
apply. Note that (127) is a completely explicit expression in
terms of ๐‘ and ๐‘‹.
Next we examine the four corners of the state space, where
(๐‘‹, ๐‘Œ) = (0, ๐‘Œ0 ), (0, 0), (๐‘‹0 , 0), and (๐‘‹0 , ๐‘Œ0 ). We recall that
these ranges are important in that for region R1 โˆฉ R2 (๐‘‹0 โ‰ˆ
1) most of the mass concentrates near the corner (๐‘‹0 , 0),
while for region R3 โˆช R4 (๐‘‹0 + ๐‘Œ0 < 1) most of the mass
16
Advances in Operations Research
occurs near (๐‘‹0 , ๐‘Œ0 ). We will start with the corner (0, ๐‘Œ0 )
and proceed about the perimeter of the state space in a
counterclockwise manner.
(iv) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R4 (0 < ๐‘Œ0 < โˆš๐‘‹0 โˆ’ ๐‘‹0 )
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ โˆš2๐œ‹๐œŒโˆš๐‘‹0 + ๐‘Œ0 (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
Proposition 12. For ๐‘˜ = ๐‘‚(1), ๐‘ = ๐‘… โˆ’ ๐‘Ÿ = ๐‘‚(1), and any
parameter region R๐‘— one has
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ โˆš2๐œ‹๐œŒ๐‘„ (0, 0)
โ‹…[
๐‘Œ0 (1 โˆ’ ๐ด max )
]
๐ด max
โ‹… ๐‘’๐œŒฮจ(0,๐‘Œ0 ) โˆš
โ‹… ๐‘’๐œŒ[โˆ’๐‘‹0 โˆ’๐‘Œ0 +(๐‘‹0 +๐‘Œ0 )log(๐‘‹0 +๐‘Œ0 )]
๐œŒ๐‘˜+๐‘
๐‘˜
(1 + ๐‘Œ0 )
๐‘˜!๐‘!
โ‹…
๐‘
(130)
1/4
1 โˆ’ ๐ด max
2
[(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) + 4๐‘Œ0 ] ,
๐ด max
๐‘˜
๐‘˜+๐‘Ÿ
๐œŒ
๐‘‹0
๐‘Œ0
] [
โˆ’ ๐‘Œ0 ] .
[๐‘Œ0 +
๐‘˜!๐‘Ÿ!
๐‘‹0 + ๐‘Œ0
๐‘‹0 + ๐‘Œ0
(v) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 โˆช R3 ; ๐‘˜ = ๐œŒ2/3 ๐‘‹๓ธ€  , ๐‘Ÿ = ๐œŒ2/3 ๐‘Œ๓ธ€  ; ๐‘‹ =
๐œŒโˆ’1/3 ๐‘‹๓ธ€  , ๐‘Œ = ๐œŒโˆ’1/3 ๐‘Œ๓ธ€ 
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒ2/3 ๐ถ1 (๐œŒ)
where ๐‘„(0, 0) is given in Proposition 1, ๐ด max is in (69), and
ฮจ (0, ๐‘Œ0 ) = ๐ด max โˆ’ 1 + ๐‘‹0 log (1 โˆ’ ๐ด max )
(131)
+ ๐‘Œ0 log (๐ด max ) .
This gives the expansion when there are but a few primary
spaces occupied and a few secondary spaces empty. Next
we consider the corner point (0, 0), and this will typically
correspond to ๐‘˜, ๐‘Ÿ = ๐‘‚(1). The results will be very different
for region R1 compared to those for the remaining regions.
Proposition 13. For ๐‘˜, ๐‘Ÿ = ๐‘‚(1) and ๐œŒ โ†’ โˆž one has
๐‘–โˆž
โ‹…โˆซ
โˆ’๐‘–โˆž
๐œŒ๐‘˜+๐‘Ÿ ๐‘Ÿ
๐‘˜ 1
๐‘Š0 (1 โˆ’ ๐‘Š0 )
๐‘˜!๐‘Ÿ!
2๐œ‹๐‘–
๓ธ€ 
๐‘’โˆ’๐œ‰ ๐‘ง
๐‘‘๐‘ง
[๐ด๐‘– (๐‘ง)]2
2
(๐‘Œ๓ธ€  )
{1
2
๐‘Š0
โ‹… exp { ๐œŒ1/3 [
โˆ’
(๐‘‹๓ธ€  ) ]
2
2
๐‘Š0
(1 โˆ’ ๐‘Š0 )
[
]
{
(138)
3
๓ธ€ 
๐‘Š (๐‘Š + 2)
3 }
1 (๐‘Œ )
โˆ’ [
+ 0 0 4 (๐‘‹๓ธ€  ) ]} ,
2
6
๐‘Š
(1 โˆ’ ๐‘Š0 )
]}
[ 0
๐œ‰๓ธ€  =
(i) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 (๐‘‹0 > 1)
(137)
๐‘Ÿ
2/3
(1 โˆ’ โˆš๐‘‹0 )
๐‘‹01/6
[
๐‘Œ๓ธ€ 
๐‘‹๓ธ€ 
โˆ’
].
๐‘Š0 1 โˆ’ ๐‘Š0
(139)
๐œ‹ (๐‘˜, ๐‘Ÿ)
1โˆ’2๐‘Ÿ
๐œŒ (๐‘Ÿ โˆ’ 1)! ๐‘˜โˆ’๐‘Ÿ (๐‘‹0 โˆ’ 1)
โˆผโˆš
๐œŒ
2๐œ‹ ๐‘˜!
โˆš๐‘‹0
๐œŒ(โˆ’2+๐‘‹0 โˆ’๐‘‹0 log๐‘‹0 )
๐‘’
, (132)
๐‘Ÿ โฉพ 1,
๐œ‹ (๐‘˜, 0) โˆ’
๐œŒ๐‘˜ ๐‘’โˆ’๐œŒ
๐œŒ
๐œŒ๐‘˜ ๐‘’๐œŒ(โˆ’2+๐‘‹0 โˆ’๐‘‹0 log๐‘‹0 )
โˆผ โˆ’โˆš
.
๐‘˜!
2๐œ‹ (๐‘˜ โˆ’ 1)!
๐‘‹0 โˆ’ 1
(133)
(ii) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆฉ R2 (๐‘‹0 โˆ’ 1 = ๐›ฝ/โˆš๐œŒ = ๐‘‚(๐œŒโˆ’1/2 )),
๐‘Ÿโฉพ0
๐œŒ๐‘˜ ๐‘’โˆ’๐œŒ 1
ฮ“ (๐‘ง + ๐‘Ÿ)
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
๐‘‘๐‘ง,
โˆซ
๐‘˜!๐‘Ÿ! โˆš2๐œ‹๐‘– Br+ ๐ท๐‘ง (โˆ’๐›ฝ) ๐ท๐‘งโˆ’1 (โˆ’๐›ฝ)
(134)
We note that (136) and (137) are continuous along the
curve ๐‘‹0 + ๐‘Œ0 = โˆš๐‘‹0 , corresponding to R3 โˆฉ R4 , in view of
the expansion in (36) for ๐ถ1 in R3 . Thus the leading term for
๐‘˜, ๐‘Ÿ = ๐‘‚(1) for (๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 โˆฉ ๐‘…4 can be obtained by either
using (36) to compute ๐ถ1 in (136) or replacing ๐‘Œ0 by โˆš๐‘‹0 โˆ’๐‘‹0
in (137). The scale ๐‘˜, ๐‘Ÿ = ๐‘‚(๐œŒ2/3 ) must be considered (cf.
(138)), as the approximation in (136) cannot directly match
to those for ๐‘˜ = ๐‘‚(1), 0 < ๐‘Œ < ๐‘Œ๐‘ˆ (cf. (114)) or ๐‘Ÿ = ๐‘‚(1),
0 < ๐‘‹ < ๐‘‹0 (cf. (96)). We can view (136) as a special case of
(138), letting ๐‘‹๓ธ€  , ๐‘Œ๓ธ€  โ†’ 0 in the latter and noting that
(2๐œ‹๐‘–)โˆ’1 โˆซ
๐‘–โˆž
โˆ’๐‘–โˆž
[Ai (๐‘ง)]โˆ’2 ๐‘‘๐‘ง = 1.
(140)
(136)
For region R4 we see from Figure 6 that only state space
region D0 meets the corner (๐‘‹, ๐‘Œ) = (0, 0). Then (137)
matches directly to (98), in the limits ๐‘˜ โ†’ โˆž, ๐‘‹ โ†’ 0, and to
(117), in the limits ๐‘Ÿ โ†’ โˆž, ๐‘Œ โ†’ 0. Note that, for region R4 ,
๐ด 1 (0) = 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 , which follows from (118) (this is true
also for R3 , but then (117) applies only for ๐‘Œ > ๐‘Œ๐‘ˆ and thus
not near the corner (0, 0)). We can obtain a result analogous
to (138) for the transitional range R3 โˆฉR4 , but we do not give
that for the sake of brevity.
where ๐ถ1 is given by (34), (35), or (36) for R2 , R2 โˆฉR3 ,
or R3 , respectively.
Proposition 14. For ๐‘˜ = ๐‘š โˆ’ ๐‘‚(1) and ๐‘Ÿ = ๐‘‚(1), or for ๐‘˜ =
๐‘š โˆ’ ๐‘‚(โˆš๐œŒ) and ๐‘Ÿ = ๐‘‚(โˆš๐œŒ), the expansions of ๐œ‹(๐‘˜, ๐‘Ÿ) are as
follows:
where ๐ต๐‘Ÿ+ is as in (94), and when ๐›ฝ = 0
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
๐œŒ๐‘˜ ๐‘’โˆ’๐œŒ โˆ’๐‘Ÿ
2
๐‘˜!
(๐›ฝ = 0) .
(135)
(iii) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 โˆช R3 (๐‘‹0 < 1, ๐‘Œ0 + ๐‘‹0 > โˆš๐‘‹0 )
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒ2/3 ๐ถ1 (๐œŒ)
๐œŒ๐‘˜+๐‘Ÿ ๐‘’โˆ’๐œŒ ๐‘Ÿ
๐‘˜
๐‘Š0 (1 โˆ’ ๐‘Š0 ) ,
๐‘˜!๐‘Ÿ!
Advances in Operations Research
17
(i) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 , ๐‘š โˆ’ ๐‘˜ = ๐‘› โฉพ 0
(vi) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 โˆช R3 โˆช R4 , ๐‘š โˆ’ ๐‘˜ = ๐‘› โฉพ 0
1
๐‘’๐œŒ(โˆ’1+๐‘‹0 โˆ’๐‘‹0 log๐‘‹0 ) (๐‘‹0 โˆ’ 1) ๐‘‹0โˆ’๐‘Ÿโˆ’1 ,
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
โˆš2๐œ‹๐œŒ๐‘‹0
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒ1/3 ๐ถ1 (๐œŒ)
๐‘Ÿ โฉพ 1 (141)
๐œ‹ (๐‘˜, 0) โˆผ
1
1
๐‘’(โˆ’1+๐‘‹0 โˆ’๐‘‹0 log๐‘‹0 ) (๐‘‹0๐‘› โˆ’
).
๐‘‹0
โˆš2๐œ‹๐œŒ๐‘‹0
1/3
โ‹… ๐‘’๐œŒฮฆ(๐‘‹0 ,0) ๐‘’๐œŒ
โ‹… exp [โˆ’
(ii) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆฉ R2 (๐‘‹0 โˆ’ 1 = ๐›ฝ/โˆš๐œŒ), ๐‘š โˆ’ ๐‘˜ = ๐‘› โฉพ 0
โˆผ ๐œŒโˆ’1 ๐œŒโˆ’๐‘ง0 /2
2
(142)
๐‘›๐‘ง0
๐‘’โˆ’๐›ฝ /4
ฮ“ (๐‘ง0 + ๐‘Ÿ + 1) [
+ 1] ,
๐‘ง0 + ๐‘Ÿ
๐‘Ÿ!ฮ” 0 (๐›ฝ)
where ๐‘ง0 is the minimal root of the parabolic cylinder
function ๐ท๐‘ง (โ‹…); that is, ๐‘ง0 = ๐‘ง0 (๐›ฝ) = min{๐‘ง :
๐ท๐‘ง (โˆ’๐›ฝ) = 0}, and ฮ” 0 (๐›ฝ) = โˆ’(๐‘‘/๐‘‘๐‘ง)๐ท๐‘ง (โˆ’๐›ฝ)|๐‘ง=๐‘ง0 (๐›ฝ) .
(iii) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆฉ R2 (๐‘‹0 โˆ’ 1 = ๐›ฝ/โˆš๐œŒ), ๐‘˜ = ๐œŒ + โˆš๐œŒ๐›ผ,
and ๐‘Ÿ = โˆš๐œŒฮฉ, with ๐›ผ โฉฝ ๐›ฝ and ฮฉ > 0
2
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’1
1 ๐‘–โˆž ๐‘’โˆ’๐›ผ /4 ๐ท๐‘ง (โˆ’๐›ผ) ฮฉ๐‘งโˆ’1
๐‘‘๐‘ง
โˆซ
2๐œ‹๐‘– โˆ’๐‘–โˆž ๐ท๐‘ง (โˆ’๐›ฝ) ๐ท๐‘งโˆ’1 (โˆ’๐›ฝ)
(143)
which when ๐›ฝ = 0 simplifies to
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’1 โˆš
2
2
(ฮฉ โˆ’ ๐›ผ) ๐‘’โˆ’(ฮฉโˆ’๐›ผ) /2 ;
๐œ‹
(144)
๐›ผ < 0, ฮฉ > 0.
(iv) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆฉ R2 (๐‘‹0 โˆ’ 1 = ๐›ฝ/โˆš๐œŒ), ๐‘˜ = ๐œŒ + โˆš๐œŒ๐›ผ,
๐›ผ < ๐›ฝ, ๐‘Ÿ = ๐‘‚(1)
๐œ‹ (๐‘˜, ๐‘Ÿ)
2
โˆผ ๐œŒโˆ’1/2 ๐œŒโˆ’๐‘ง0 /2 ๐‘’โˆ’๐›ผ /4
(145)
๐ท๐‘ง0 (โˆ’๐›ผ)
ฮ“ (๐‘Ÿ + ๐‘ง0 )
.
๐‘Ÿ!
ฮ” 0 (๐›ฝ) ๐ท๐‘ง0 โˆ’1 (โˆ’๐›ฝ)
โˆ’1/4
=
(v) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆฉ R2 with now ๐‘‹0 โˆ’ 1 = ๐›ฝโˆ— ๐œŒ
โˆ’1/4
๐‘‚(๐œŒ ) and ๐›ฝโˆ— > 0, ๐‘Ÿ = ๐‘‚(1), ๐‘˜ = ๐œŒ+ โˆš๐œŒ๐›ผ, ๐›ผ = ๐‘‚(1)
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
โˆž
2
๐›ฝโˆ—3
(๐‘ข + ๐›ผ)๐‘Ÿโˆ’1
โŠ—
๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข,
โˆซ
โˆ—
๐‘Ÿ+1
2
2๐œ‹๐œŒ1/4
โˆ’๐›ผ (๐‘ข + ๐›ผ + ๐›ฝ )
โˆ—
(146)
๐‘Ÿ โฉพ 1,
2
๐œ‹ (๐‘˜, 0) โˆ’
โˆž
๐œŒ๐‘˜ ๐‘’โˆ’๐œŒ
๐›ฝ
๐‘’โˆ’๐‘ข /2
๐‘‘๐‘ข,
โˆผ โˆ’ โˆ—1/4 โŠ—โˆ— โˆซ
2
๐‘˜!
2๐œ‹๐œŒ
โˆ’๐›ผ ๐‘ข + ๐›ผ + ๐›ฝโˆ—
โŠ—โˆ— = exp [โˆ’
1
โˆš๐œŒ 2 ๐œŒ1/4 3
๐›ฝโˆ— +
๐›ฝโˆ— โˆ’ ๐›ฝโˆ—4 ] .
2
6
12
(147)
(148)
4/3
โˆ’ โˆš๐‘‹0 )
ฮฆโˆ— (0) (1
๐ด๐‘–๓ธ€  (๐‘Ÿ0 ) ๐‘‹01/3
(149)
1
log (1 โˆ’ โˆš๐‘‹0 )] ,
2โˆš๐‘‹0
2/3
ฮฆโˆ— (0) = โˆ’๐‘Ÿ0
๐œ‹ (๐‘˜, ๐‘Ÿ)
๐‘›
๐œŒ๐‘Ÿ ๐‘Š0๐‘Ÿ
(โˆš๐‘‹0 ) (๐‘› + 1)
๐‘Ÿ!
(1 โˆ’ โˆš๐‘‹0 )
๐‘‹01/6
log (1 โˆ’ โˆš๐‘‹0 ) ,
1
1
ฮฆ (๐‘‹0 , 0) = ๐‘Š0 log (๐‘‹0 ) โˆ’ ๐‘‹0 log (๐‘‹0 ) + โˆš๐‘‹0
2
2
(150)
(151)
โˆ’ 1,
and ๐ถ1 is given in Proposition 2 for the different regions
R๐‘— .
For region R1 , (141) show that the dependence of ๐œ‹(๐‘˜, ๐‘Ÿ)
on ๐‘š โˆ’ ๐‘˜ and ๐‘Ÿ is quite simple, but we have to distinguish the
cases ๐‘Ÿ = 0 and ๐‘Ÿ โฉพ 1. The same is true for regions R2 , R3 ,
and R4 , where (149) applies for all ๐‘Ÿ โฉพ 0, except now the form
of ๐ถ1 in (149) is different for the five cases in Proposition 2.
However, when ๐‘‹0 โ‰ˆ 1, the asymptotic structure of ๐œ‹(๐‘˜, ๐‘Ÿ)
is quite complicated, and we must consider separately the
scales ๐‘‹0 โˆ’ 1 = ๐‘‚(๐œŒโˆ’1/2 ) (๐‘š โˆ’ ๐œŒ = ๐‘‚(โˆš๐œŒ)) and ๐‘‹0 โˆ’ 1 =
๐‘‚(๐œŒโˆ’1/4 ) (๐‘š โˆ’ ๐œŒ = ๐‘‚(๐œŒ3/4 )). For X0 โˆ’ 1 = ๐‘‚(๐œŒโˆ’1/2 ) we
obtain the limiting density in (53) or (143), as the limit of
๐œŒ๐œ‹(๐œŒ + โˆš๐œŒ๐›ผ, โˆš๐œŒฮฉ) = ๐œŒ๐œ‹(๐‘š + โˆš๐œŒ(๐›ผ โˆ’ ๐›ฝ), โˆš๐œŒฮฉ) for ๐œŒ โ†’ โˆž.
This expansion applies for ฮฉ > 0, for any ๐›ผ โฉฝ ๐›ฝ, but becomes
invalid as ฮฉ โ†’ 0. For ฮฉ โ†’ 0 the asymptotic behavior of the
contour integral in (143) is determined by the singularity at
๐‘ง = ๐‘ง0 (๐›ฝ), and the density behaves as ๐‘‚(ฮฉ๐‘ง0 โˆ’1 ) for ฮฉ โ†’ 0 and
๐›ผ < ๐›ฝ. This corresponds to either an integrable singularity or
a zero of the density (unless ๐›ฝ = 0 then ๐‘ง0 = 1) and in either
case indicates a nonuniformity in the asymptotics. Thus we
need the expansion in (145) for ๐‘Ÿ = ๐‘‚(1). For ๐‘Ÿ โ†’ โˆž we
have, by Stirlingโ€™s formula,
ฮ“ (๐‘Ÿ + ๐‘ง0 ) ฮ“ (๐‘Ÿ + ๐‘ง0 )
๐‘ง โˆ’1
=
โˆผ ๐‘Ÿ๐‘ง0 โˆ’1 = (โˆš๐œŒฮฉ) 0
๐‘Ÿ!
ฮ“ (๐‘Ÿ + 1)
(152)
and then (145) matches to (143) in the intermediate limit
where ๐‘Ÿ โ†’ โˆž but ฮฉ = ๐‘Ÿ/โˆš๐œŒ โ†’ 0. The expansion in (145)
itself breaks down when ๐›ผ โ†’ ๐›ฝ, since by the definition of
๐‘ง0 (๐›ฝ) we have ๐ท๐‘ง0 (๐›ฝ) (โˆ’๐›ผ) โ†’ 0 as ๐›ผ โ†‘ ๐›ฝ. Then for ๐›ผ โˆผ ๐›ฝ we
have the expansion in (142), which holds for ๐‘› = ๐‘‚(1) and we
note that ๐‘› = ๐‘š โˆ’ ๐‘˜ = (๐›ฝ โˆ’ ๐›ผ)/โˆš๐œŒ so that ๐›ผ = ๐›ฝ โˆ’ ๐‘›๐œŒโˆ’1/2 .
We can show also that the expansions for ๐‘›, ๐‘Ÿ = ๐‘‚(1)
(cf. (141), (142), and (149)) match in appropriate intermediate
limits. Consider (142) for ๐›ฝ โ†’ โˆ’โˆž (then we are moving into
the range ๐‘‹0 < 1). We now have ๐‘ง0 โ†’ โˆž and more precisely
๐‘ง0 (๐›ฝ) =
๐›ฝ2
๐›ฝ 2/3 1
โˆ’ ๐‘Ÿ0 (โˆ’ ) โˆ’ + ๐‘œ (1) , ๐›ฝ ๓ณจ€โ†’ โˆ’โˆž (153)
4
2
2
18
Advances in Operations Research
so the approximation to the minimal root of the parabolic
cylinder function ๐ท๐‘ง (โˆ’๐›ฝ) involves the maximal root of the
Airy function Ai(โ‹…). Thus, for ๐›ฝ โ†’ โˆ’โˆž we have
๐‘ง /2
ฮ” 0 (๐›ฝ) โˆผ ๐‘ง00 ๐‘’โˆ’๐‘ง0 /2 (
1/3
2
)
โˆ’๐›ฝ
โˆš2๐œ‹Ai๓ธ€  (๐‘Ÿ0 )
๐›ฝ โˆ’๐›ฝ2 /2 โˆ’1 {1,
๐œŒ {
๐‘’
โˆš2๐œ‹
๐‘› + 1,
{
(154)
which can be obtained by approximated ๐ท๐‘ง (โˆ’๐›ฝ) by Airy
functions in the double limit where ๐›ฝ โ†’ โˆ’โˆž and ๐‘ง โ†’
โˆž, with ๐‘ง โˆ’ ๐›ฝ2 /4 = ๐‘‚[(โˆ’๐›ฝ)2/3 ]. Using (154) in (142) and
expanding ฮ“(๐‘ง0 (๐›ฝ) + ๐‘Ÿ + 1) by Stirlingโ€™s formula (since now
๐‘ง0 โ†’ โˆž) for a fixed ๐‘Ÿ, (142) becomes
2
๐›ฝ 4/3 ๐‘’โˆ’๐›ฝ /4 ๐‘ง0 /2 โˆ’๐‘ง0 /2 ๐‘ง0๐‘Ÿ
๐‘ง ๐‘’
๐œŒโˆ’1 ๐œŒโˆ’๐‘ง0 /2 (๐‘› + 1) (โˆ’ )
.
2
๐‘Ÿ!
Ai๓ธ€  (๐‘Ÿ0 ) 0
approximated by 1 if ๐‘Ÿ โฉพ 1 and is equal to ๐‘› + 1 if ๐‘Ÿ = 0. Now
also ฮ“(๐‘ง0 + ๐‘Ÿ + 1)/๐‘Ÿ! โ†’ 1 and (142) becomes, for ๐›ฝ โ†’ +โˆž,
(155)
Then (155) must agree with the expansion of (149) as ๐‘‹0 โ†‘ 1.
Then we use the fact that ๐œŒ1/3 ๐ถ1 โˆผ ๐œŒโˆ’1/3 in region R2 . Also,
as ๐‘‹0 โ†’ 1, ๐‘Š0 = (1 โˆ’ โˆš๐‘‹0 )2 โˆผ ๐›ฝ2 /(4๐œŒ),
๐›ฝ2
โˆ’๐›ฝ
3
log (
) โˆ’ ๐›ฝ2 + ๐‘œ (1) ,
4
2โˆš๐œŒ
8
โˆ’ ๐œŒ1/3 ๐‘Ÿ0 ๐‘‹0โˆ’1/6 (1 โˆ’ โˆš๐‘‹0 )
2/3
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
(๐‘Ÿ โˆ’ 1)!๐›ฝโˆ—1โˆ’2๐‘Ÿ ๐œŒโˆ’๐‘Ÿ/2 โŠ—โˆ— ๐œŒ(โˆ’1+๐‘‹โˆ’๐‘‹log๐‘‹)
๐‘’
,
2๐œ‹โˆš๐‘‹๐œŒ1/4 (1 โˆ’ ๐‘‹)๐‘Ÿ
for ๐‘‹ โˆ’ 1 = ๐›ผโˆ— ๐œŒโˆ’1/4 = ๐‘‚(๐œŒโˆ’1/4 ) with 0 < ๐›ผโˆ— < ๐›ฝโˆ— we have
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
(156)
log (1 โˆ’ โˆš๐‘‹0 )
โˆซ
โ‹… exp {[
2/3
๐›ฝ
๐›ฝ
โˆ’ ๐‘Ÿ0 (โˆ’ )
4
2
๐›ฝ
1
โˆ’ ] log (โˆ’
)
2
2โˆš๐œŒ
(๐‘ข + ๐›ผ +
โˆผ
(157)
(161)
โˆž
โˆ’๐›ผ
But by using (153) in (155) we obtain again the expression in
(157), which verifies the matching.
Now consider (141) for ๐‘‹0 โ†“ 1 and (142) for ๐›ฝ โ†’ +โˆž. We
now have
๐›ฝ โˆ’๐›ฝ2 /2
,
๐‘’
โˆš2๐œ‹
๐›ฝโˆ—โˆ’2โˆ’2๐‘Ÿ
2
๐‘Ÿ+1
๐›ฝโˆ—2 )
๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข
(162)
โˆ’๐›ผ2 /2
(๐‘Ÿ โˆ’ 1)!๐‘’
โˆ’๐‘Ÿ
(โˆ’๐›ผ) .
For ๐›ผ โ†’ +โˆž we have
โˆซ
3
โˆ’ ๐›ฝ2 } .
8
๐‘ง0 (๐›ฝ) โˆผ
(๐‘ข + ๐›ผ)๐‘Ÿโˆ’1
โˆž
โˆ’โˆž
4/3
๐›ฝ
1 ๐›ฝ2
(๐‘› + 1)
(โˆ’
( )
)
๓ธ€ 
๐‘Ÿ! 4
2โˆš๐œŒ
Ai (๐‘Ÿ0 )
2
โŠ—โˆ— ๐›ฝโˆ—3
, ๐‘Ÿ โฉพ 1;
โˆš2๐œ‹๐œŒ3/4 ๐›ผโˆ—2
and for the scale ๐‘šโˆ’๐‘˜ = ๐‘› = ๐‘‚(1) we have ๐›ผโˆ— โˆผ ๐›ฝโˆ— so the last
factor in (161) may be approximated by ๐›ฝโˆ—3 ๐›ผโˆ—โˆ’2 โˆผ ๐›ฝโˆ— . We can
easily verify that as ๐‘‹ โ†‘ 1, (159) matches to (146) as ๐›ผ โ†’ โˆ’โˆž.
Note that in this limit we have
Using (156) we see that as ๐‘‹0 โ†‘ 1, (149) becomes
๐‘Ÿ
(160)
๐‘Ÿ โฉพ 1;
๐›ฝ 2/3
๐›ฝ
โˆผ โˆ’๐‘Ÿ0 (โˆ’ ) log (โˆ’
).
2
2โˆš๐œŒ
๐œŒโˆ’1/3
(159)
๐‘Ÿ = 0,
and the above clearly agrees with (141), when we expand these
for ๐‘‹0 โ†’ 1.
The results in (146)โ€“(148) assume the scaling ๐‘‹0 โˆ’ 1 =
๐›ฝโˆ— ๐œŒโˆ’1/4 , and these are needed to asymptotically connect the
parameter ranges ๐‘‹0 โˆ’1 = ๐‘‚(๐œŒโˆ’1/2 ) and ๐‘‹0 > 1. It is only near
the corner (๐‘‹, ๐‘Œ) = (๐‘‹0 , 0) that we must consider this scaling
(and indeed also the ๐›ฝ-scale). For other ranges of ๐‘‹ and ๐‘Ÿ =
๐‘‚(1), we can get the expansions of ๐œ‹(๐‘˜, ๐‘Ÿ) as limiting cases
of other expansions, as they lie in the asymptotic matching
range where ๐‘‹0 โ†’ 1 but (๐‘‹0 โˆ’ 1)โˆš๐œŒ(= ๐›ฝ) โ†’ โˆž. For a fixed
๐›ฝโˆ— > 0 and 0 < ๐‘‹ < 1 we have
1
๐œŒ [โˆ’1 + โˆš๐‘‹0 โˆ’ ๐‘‹0 log ๐‘‹0 + ๐‘Š0 log (1 โˆ’ โˆš๐‘‹0 )]
2
=
๐‘Ÿโฉพ1
(๐‘ข + ๐›ผ)๐‘Ÿโˆ’1
(๐‘ข + ๐›ผ +
2
๐‘Ÿ+1
๐›ฝโˆ—2 )
๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข โˆผ
โˆš2๐œ‹
โˆš2๐œ‹
=
2
๐›ผ
โˆš๐œŒ๐›ผโˆ—2
(163)
and then (146) clearly matches to (160) and in fact contains
the latter as a limiting case. When ๐‘Ÿ = 0 we have, for 0 < ๐‘‹ <
1,
๐œ‹ (๐‘˜, 0) โˆ’
๐œŒ๐‘˜ ๐‘’โˆ’๐œŒ
โŠ—โˆ—
โˆ’โˆš๐‘‹
๐‘’๐œŒ(โˆ’1+๐‘‹โˆ’๐‘‹log๐‘‹) ;
โˆผ
๐‘˜!
1 โˆ’ ๐‘‹ 2๐œ‹๐œŒ3/4 ๐›ฝโˆ—
(164)
for ๐‘‹ โˆ’ 1 = ๐›ผโˆ— ๐œŒโˆ’1/4 , ๐›ผโˆ— > 0, we have
โˆš2๐œ‹ ๐›ฝ2 /4
ฮ” 0 (๐›ฝ) โˆผ
๐‘’ ,
๐›ฝ
(158)
๐›ฝ ๓ณจ€โ†’ +โˆž
so that ๐‘ง0 is exponentially small and ฮ” 0 is exponentially large.
The last factor in (142), namely, ๐‘›๐‘ง0 /(๐‘ง0 + ๐‘Ÿ) + 1, can be
๐œ‹ (๐‘˜, 0) โˆ’
๐œŒ๐‘˜ ๐‘’โˆ’๐œŒ
โŠ—โˆ— ๐›ฝโˆ—
;
โˆผโˆ’
โˆš2๐œ‹๐œŒ1/2 ๐›ผโˆ—
๐‘˜!
(165)
and for ๐‘› = ๐‘š โˆ’ ๐‘˜ = โˆš๐œŒ(๐›ฝ โˆ’ ๐›ผ) = ๐œŒ3/4 (๐›ฝโˆ— โˆ’ ๐›ผโˆ— ) = ๐‘‚(1)
๐œ‹ (๐‘˜, 0) โˆผ
โŠ—โˆ—
๐›ฝ (๐‘› + 1) .
โˆš2๐œ‹๐œŒ3/4 โˆ—
(166)
Advances in Operations Research
19
We can again easily verify that (147) matches to (164) for ๐‘‹ โ†’
1 and ๐›ผ โ†’ โˆ’โˆž and to (165) for ๐›ผ โ†’ +โˆž and ๐›ผโˆ— = ๐›ผ๐œŒโˆ’1/4 โ†’
0. Recalling that ๐‘˜ = ๐œŒ๐‘‹ = ๐œŒ + ๐œŒ3/4 ๐›ผโˆ— = ๐œŒ + ๐œŒ3/4 ๐›ฝโˆ— โˆ’ ๐‘›, we
have
where
F (], ๐‘‡) =
๐‘›๐›ฝ
โŠ—โˆ—
[exp ( 1/4โˆ— ) โˆ’ 1 + ๐‘‚ (๐œŒโˆ’3/4 )]
๐œŒ
โˆš2๐œ‹๐œŒ
โˆผ
โŠ—โˆ—
๐›ฝ ๐‘›
โˆš2๐œ‹๐œŒ3/4 โˆ—
๐ด๐‘– (] + ๐‘Ÿ๐‘— )
๐‘—=0
๐ด๐‘–๓ธ€  (๐‘Ÿ๐‘— )
(167)
๐‘‡1 =
Proposition 15. For ๐‘˜ = ๐‘š โˆ’ ๐‘œ(๐œŒ) and ๐‘Ÿ = ๐‘… โˆ’ ๐‘œ(๐œŒ) one uses
the variables ๐‘š = ๐‘š โˆ’ ๐‘˜ = ๐œŒ1/3 ]1 and ๐‘ = ๐‘… โˆ’ ๐‘Ÿ = ๐œŒ2/3 ๐‘‡1 , and
the expansions are as follows:
(i) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆช R2 โˆช R3 โˆช R4 , ๐‘› = ๐‘‚(1), ๐‘ = ๐‘‚(1)
๐‘„ (0, 0) 1
1 โˆ’ ๐‘ค โˆ’๐‘›โˆ’1 โˆ’๐‘โˆ’1
๐‘ค
๐‘‘๐‘ค,
๐‘ง
โˆฎ
๐‘‹0 2๐œ‹๐‘– ๐‘งโˆ’ โˆ’ ๐‘ค +
(170)
๐‘Ÿ๐‘— ๐‘‡
๐‘’
(168)
๐‘‹0
)
1 โˆ’ โˆš๐‘‹0
where ๐‘ง± (๐‘ค) are defined in (50) and the expansions
for ๐‘„(0, 0) are in Proposition 1; in particular for region
R3 โˆช R4 one has ๐‘„(0, 0) โˆผ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 > 0 and then
(168) is a proper discrete distribution over the range(s)
๐‘› โฉพ 0, ๐‘ โฉพ 0.
(ii) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R4 , ๐‘š โˆ’ ๐‘˜ = ๐œŒ1/3 ]1 = ๐‘‚(๐œŒ1/3 ), ]1 > 0,
๐‘… โˆ’ ๐‘Ÿ = ๐œŒ2/3 ๐‘‡1 = ๐‘‚(๐œŒ2/3 )
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒ
2/3
(1 โˆ’ โˆš๐‘‹0 )
5/3
โ‹…
(1 โˆ’ โˆš๐‘‹0 )
๐‘‹0โˆ’1/6
(โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) (๐‘Š0 + ๐‘Œ0 )
โ‹…(
F (], ๐‘‡) (โˆš๐‘‹0 )
๐‘
๐‘Œ0
)
๐‘Œ0 + ๐‘Š0
โ‹…
๐‘Š0 ๐‘‹0โˆ’1/2
(โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) (๐‘Š0 + ๐‘Œ0 )
โ‹…(
โ‹… exp [โˆ’
๐‘Š (๐‘Š + 2๐‘Œ0 ) 3
๐œŒ1/3 ๐‘Š0
๐‘‡ ],
๐‘‡2 โˆ’ 0 0
2๐‘Œ0 (๐‘Š0 + ๐‘Œ0 ) 1 6๐‘Œ02 (W0 + ๐‘Œ0 )2 1
(โˆš๐‘‹0 )
๐‘›
๐‘
โˆš๐‘‹0 (๐‘Œ0 + ๐‘Š0 )
๐‘Œ0
) [๐‘› +
]
๐‘Œ0 + ๐‘Š0
(๐‘Œ0 + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘Œ0
(172)
โˆž
๐‘Š0
โ‹… [ โˆ‘๐‘’๐‘Ÿ๐‘— ๐‘‡ ] exp [โˆ’๐œŒ1/3
๐‘‡12
2๐‘Œ
(๐‘Š
+
๐‘Œ
)
0
0
0
[๐‘—=0 ]
โˆ’
๐‘Š0 (๐‘Š0 + 2๐‘Œ0 )
2
6๐‘Œ02 (๐‘Š0 + ๐‘Œ0 )
๐‘‡13 ] ,
๐‘‡ > 0.
(iv) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 โˆฉ R4 , ๐‘š โˆ’ ๐‘˜ = ๐‘› = ๐œŒ1/3 ]1 = ๐‘‚(๐œŒ1/3 ),
]1 โฉพ 0, ๐‘… โˆ’ ๐‘Ÿ = ๐‘ = ๐œŒ2/3 ๐‘‡1 = ๐‘‚(๐œŒ2/3 )
โ‹…(
โˆ’
4/3
๐‘‹0โˆ’1/3 (โˆš๐‘‹0 )
๐‘›
๐‘
๐‘Š0
๐‘Œ0
) exp [โˆ’๐œŒ1/3
๐‘‡2
๐‘Œ0 + ๐‘Š0
2๐‘Œ0 (๐‘Š0 + ๐‘Œ0 ) 1
๐‘Š0 (๐‘Š0 + 2๐‘Œ0 )
2
6๐‘Œ02 (๐‘Š0 + ๐‘Œ0 )
(173)
๐‘‡13 ] F (], ๐‘‡; ๐›ฟ1 ) ,
where
๐›ฟ1 ๐‘ข
โ‹… (โˆซ ๐‘’
๐œƒ
(169)
๐‘‡,
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’1 (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
โˆž
๐‘›
(171)
and ๐‘Ÿ๐‘— are the roots of ๐ด๐‘–(โ‹…), ordered as 0 > ๐‘Ÿ0 > ๐‘Ÿ1 >
โ‹…โ‹…โ‹….
(iii) (๐‘‹0 , ๐‘Œ0 ) โˆˆ R4 , ๐‘šโˆ’๐‘˜ = ๐‘› = ๐‘‚(1), ๐‘…โˆ’๐‘Ÿ = ๐‘ = ๐œŒ2/3 ๐‘‡1 =
๐‘‚(๐œŒ2/3 )
F (], ๐‘‡; ๐›ฟ1 ) =
(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
,
(๐‘Š0 + ๐‘Œ0 ) ๐‘‹01/6
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’1/3 (1 โˆ’ โˆš๐‘‹0 )
โˆ’2/3
, ๐‘‡ > 0,
1/3
]1 = ] (
and this agrees with (166) for ๐‘› โ†’ โˆž, which verifies the
matching between (165) and (166). Thus we have given ๐œ‹(๐‘˜, ๐‘Ÿ)
for all ranges of ๐‘˜ for ๐‘Ÿ = ๐‘‚(1) and the scaling ๐‘š = ๐œŒ + ๐œŒ3/4 ๐›ฝโˆ— ,
๐›ฝโˆ— > 0. However, only for the range ๐‘˜ = ๐œŒ + ๐‘‚(โˆš๐œŒ) do we get
the new results in (146) and (147).
Next we examine the corner (๐‘‹, ๐‘Œ) = (๐‘‹0 , ๐‘Œ0 ), so both
primary and secondary spaces will be nearly full. For regions
R3 โˆช R4 most of the mass is in the range. We will need to
consider the scales ๐‘š โˆ’ ๐‘˜, ๐‘… โˆ’ ๐‘Ÿ = ๐‘‚(1) and also ๐‘š โˆ’ ๐‘˜ =
๐‘‚(๐œŒ1/3 ). Consider ๐‘… โˆ’ ๐‘Ÿ = ๐‘‚(๐œŒ2/3 ).
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
โˆž
=โˆ‘
๐œŒ๐‘˜ ๐‘’โˆ’๐œŒ
๐›ฝโˆ—
โŠ—โˆ— ๐›ฝโˆ— ๐œŒ๐‘˜ ๐‘’โˆ’๐œŒ
โŠ—โˆ—
โˆ’
=
โˆ’
1/2
โˆš2๐œ‹๐œŒ ๐‘˜!
๐‘˜!
๐‘˜!
โˆš2๐œ‹๐œŒ ๐›ฝโˆ— โˆ’ ๐œŒโˆ’3/4 ๐‘›
=
๐‘–โˆž
๐ด๐‘– (] + ๐œƒ) ๐œƒ๐‘‡
1 ๐‘‘
๐‘’ ๐‘‘๐œƒ}
{โˆซ
2๐œ‹๐‘– ๐‘‘๐‘‡ โˆ’๐‘–โˆž ๐œƒ๐ด๐‘– (๐œƒ)
1 ๐‘–โˆž ๐ด๐‘– (] + ๐œƒ) ๐œƒ(๐‘‡โˆ’๐›ฟ1 )
๐‘’
โˆซ
2๐œ‹๐‘– โˆ’๐‘–โˆž [๐ด๐‘– (๐œƒ)]2
(174)
๐ด๐‘– (๐‘ข) ๐‘‘๐‘ข) ๐‘‘๐œƒ,
๐‘‹0 + ๐‘Œ0 = โˆš๐‘‹0 + ๐œŒโˆ’1/3 ๐›ฟโˆ— ,
๐›ฟโˆ— = ๐‘‹01/6 (1 โˆ’ โˆš๐‘‹0 )
1/3
(175)
๐›ฟ1
and (], ๐‘‡) is given by (171) in terms of (]1 , ๐‘‡1 ).
20
Advances in Operations Research
When (๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 โˆช R4 most mass concentrates
on the (๐‘›, ๐‘) scale so there tend to be but a few available
primary and secondary spaces. For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆชR2 (๐‘‹0 +
๐‘Œ0 > 1), the result in (168) still applies but now ๐‘„(0, 0) is
exponentially small (cf. (30)). For ๐‘‹0 + ๐‘Œ0 โˆ’ 1 = ๐‘‚(๐œŒโˆ’1/2 )
we have ๐‘„(0, 0) = ๐‘‚(๐œŒโˆ’1/2 ). Later we will study the behavior
of the contour integral in (168) as ๐‘› and/or ๐‘ โ†’ โˆž, and
we will see that for R1 โˆช R2 we can get exponential growth
in certain sectors, such as if ๐‘ โ†’ โˆž with ๐‘› = ๐‘‚(1). From
Proposition 15 we also see that the probabilities of finding
๐‘‚(๐œŒ1/3 ) empty primary spaces and ๐‘‚(๐œŒ2/3 ) secondary spaces
are quite complicated, and their estimation involves contour
integrals of Airy functions. These probabilities are however
1/3
quite small, in view of the factors (โˆš๐‘‹0 )๐‘› = (โˆš๐‘‹0 )๐œŒ ]1 and
region(s) R1 โˆช R2 โˆช R3 , D+ meets Dโˆ’ for region R2 โˆช R3 ,
and D0 meets Dโˆ’ for region R4 (see also Figures 3โ€“6).
ฬƒ
โ‰ก
Proposition 16. For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆช R2 โˆช R3 , ๐‘Œ โˆ’ ๐‘Œ(๐‘‹)
๐œ‚โˆ— /โˆš๐œŒ = ๐‘‚(๐œŒโˆ’1/2 ), and 0 < ๐‘‹ < ๐‘‹0 one has
ฬƒ (๐‘‹))
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐ถ (๐œŒ) ๐พ+ (๐‘‹, ๐‘Œ
โ‹…
ฬƒ (๐‘‹)) ๐œ‚โˆ—
+ โˆš๐œŒฮจ+,๐‘Œ (๐‘‹, ๐‘Œ
(176)
1
ฬƒ (๐‘‹)) ๐œ‚2 ] ,
+ ฮจ+,๐‘Œ๐‘Œ (๐‘‹, ๐‘Œ
โˆ—
2
2/3
[๐‘Œ0 /(๐‘Œ0 + ๐‘Š0 )]๐‘ = [๐‘Œ0 /(๐‘Œ0 + ๐‘Š0 )]๐œŒ ๐‘‡1 in (169) and (173). In
(173) we can use (175) and rewrite the result in terms of ๐‘‹0
and ๐›ฟโˆ— , thus eliminating ๐‘Œ0 .
Finally we give results that apply near the transition
curves that separate D0 , Dโˆ’ , and D+ . Note D0 meets D+ for
โˆž
2
1
ฬƒ (๐‘‹))
๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข) exp [๐œŒฮจ+ (๐‘‹, ๐‘Œ
(โˆซ
โˆš2๐œ‹ ๐œ‚โˆ— /โˆš๐‘(๐‘กโˆ— )
where
ฬƒ (๐‘‹)) = ๐‘‹0 log ๐‘‹0 + ๐‘‹0 + ๐‘Œ0 โˆ’ 1 โˆ’ 2๐‘‹0 log (๐‘‹0 + ๐‘Œ0 ) +
ฮจ+ (๐‘‹, ๐‘Œ
๐‘Œ0
๐‘Œ ๐‘’๐‘กโˆ—
ฬƒ (๐‘‹)
(1 โˆ’ ๐‘’๐‘กโˆ— ) โˆ’ ๐‘‹ log (1 โˆ’ 0
)โˆ’๐‘Œ
๐‘‹0 + ๐‘Œ0
๐‘‹0 + ๐‘Œ0
(177)
๐‘กโˆ—
โ‹… log [1 โˆ’ (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐‘’ ] ,
ฬƒ (๐‘‹))] ,
๐‘กโˆ— = log ๐‘Œ0 โˆ’ log [๐‘Œ0 โˆ’ (๐‘‹0 + ๐‘Œ0 ) (๐‘Œ0 โˆ’ ๐‘Œ
(178)
ฬƒ (๐‘‹)) = log [
ฮจ+,๐‘Œ (๐‘‹, ๐‘Œ
ฬƒ (๐‘‹))
๐‘Œ0 โˆ’ (๐‘‹0 + ๐‘Œ0 ) (๐‘Œ0 โˆ’ ๐‘Œ
],
ฬƒ (๐‘‹)
(๐‘‹0 + ๐‘Œ0 ) ๐‘Œ
(179)
ฬƒ (๐‘‹)) = โˆ’๐‘’๐‘กโˆ—
ฮจ+,๐‘Œ๐‘Œ (๐‘‹, ๐‘Œ
๐‘ ๐‘Œ0 โˆ’ (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐‘ก๐‘Œ0
,
1 โˆ’ (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐‘’๐‘กโˆ—
(180)
๐‘ ๐‘Œ0
=
(๐‘‹0 + ๐‘Œ0 ) (๐‘‹0 + ๐‘Œ0 + ๐‘Œ0 ๐‘’โˆ’๐‘กโˆ— ๐‘ก๐‘Œ0 )
2
(๐‘‹0 + ๐‘Œ0 ) + (๐‘’โˆ’๐‘กโˆ— โˆ’ 1) ๐‘‹0
,
(181)
2
๐‘ก๐‘Œ0 = ๐‘’๐‘กโˆ— (1 โˆ’ ๐‘’๐‘กโˆ— ) (๐‘‹0 + ๐‘Œ0 ) [๐‘‹0 ๐‘’๐‘กโˆ— + (๐‘‹0 + ๐‘Œ0 ) ]
2 2
2
โˆ’1
โ‹… {(๐‘‹0 + ๐‘Œ0 ) (๐‘‹02 โˆ’ ๐‘Œ02 โˆ’ ๐‘‹0 ) + ๐‘’๐‘กโˆ— [๐‘‹0 โˆ’ (๐‘‹0 + ๐‘Œ0 ) ] + ๐‘’2๐‘กโˆ— (2 โˆ’ ๐‘’๐‘กโˆ— ) ๐‘‹0 ๐‘Œ0 + ๐‘’3๐‘กโˆ— ๐‘Œ0 (๐‘‹ + ๐‘Œ0 ) } ,
2
๐‘Œ0 โˆš๐‘‹0 [(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0 ]
ฬƒ (๐‘‹)) =
๐พ+ (๐‘‹, ๐‘Œ
3/2
ฬƒ (๐‘‹)โˆš๐‘‹0 ๐‘Œ0 โˆ’ (๐‘‹0 + ๐‘Œ0 )2 (๐‘Œ0 โˆ’ ๐‘Œ
ฬƒ (๐‘‹))
โˆš2๐œ‹ ๓ต„จ๓ต„จ๓ต„จ๓ต„จฮ”0+ ๓ต„จ๓ต„จ๓ต„จ๓ต„จ1/2 (๐‘‹0 + ๐‘Œ0 )3 โˆš๐‘Œ
๓ต„จ ๓ต„จ๓ต„จ ๓ต„จ
โˆ’2
๐‘‹0 ๐‘Œ0 ๓ต„จ๓ต„จ๓ต„จ๓ต„จฮ”0 ๓ต„จ๓ต„จ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ๓ต„จ๓ต„จฮ”0+ ๓ต„จ๓ต„จ๓ต„จ๓ต„จ
๐‘Œ0 ๐‘’๐‘กโˆ—
โˆ’๐‘กโˆ—
๐‘ (๐‘กโˆ— ) =
โˆ’
๐‘Œ
)
๐‘’
โˆ’
]
,
[(1
โˆ’
๐‘‹
0
0
2
๐‘‹0 + ๐‘Œ0
(๐‘‹0 + ๐‘Œ0 ) [(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0 ]
ฮ”0+ = ฮ”0+ (๐‘‹) =
๐ทโˆ— =
(182)
,
1
2
[๐ทโˆ— (๐ธโˆ— โˆ’ ๐ทโˆ— ) ๐‘’๐‘กโˆ— โˆ’ 2๐ทโˆ— (1 โˆ’ ๐ทโˆ— ) โˆ’ (๐ทโˆ— โˆ’ ๐ธโˆ— ) ๐‘’โˆ’๐‘กโˆ— + (๐ทโˆ— + ๐ธโˆ— โˆ’ 2๐ทโˆ— ๐ธโˆ— ) ๐‘’โˆ’2๐‘กโˆ— ] ,
1 โˆ’ ๐ธโˆ—
๐‘Œ0
,
๐‘‹0 + ๐‘Œ0
(183)
(184)
(185)
(186)
๐ธโˆ— = 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ,
2
0
0
โˆ’๐‘กโˆ—
ฮ” = ฮ” (๐‘‹) = (๐‘’
๐‘Œ0 ((๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0 ) ๐‘ก
๐‘Œ0
3
+
๐‘’ โˆ— + ๐‘’โˆ’๐‘กโˆ— (1 โˆ’ 2 (๐‘‹0 + ๐‘Œ0 ) + (๐‘‹0 + ๐‘Œ0 ) ๐‘‹0โˆ’1 )] .
๐‘‹0 + ๐‘Œ0
๐‘‹0 (๐‘‹0 + ๐‘Œ0 )
[
]
โˆ’ 1) [
(187)
Advances in Operations Research
21
ฬƒ
๐‘Œ(๐‘‹)
is given by (56), and ๐ถ(๐œŒ) has the expansions in (31)โ€“(33)
for the different regions R๐‘— .
For ๐œ‚โˆ— โ†’ โˆ’โˆž we are moving into region D+ and the
integral in (176) approaches โˆš2๐œ‹, and then (176) becomes
simply the expansion of the D+ result in (60), about Y =
ฬƒ
๐‘Œ(๐‘‹).
Thus the matching of (176) to D+ is immediate, and
we can also verify the matching to (65), by expanding the
ฬƒ
latter as ๐‘Œ โ†“ ๐‘Œ(๐‘‹),
and (176) for ๐œ‚โˆ— โ†’ +โˆž. We recall that
Proposition 2 shows that the expansion of ๐ถ0 (๐œŒ)/๐ถ(๐œŒ) is the
same for regions R1 , R2 , and R3 . The function ๐‘กโˆ— = ๐‘กโˆ— (๐‘‹)
ฬƒ
in (178) is obtained by setting ๐‘  = ๐‘Œ0 and then ๐‘Œ = ๐‘Œ(๐‘‹)
in (62). The function ฮ”0+ (๐‘‹) is obtained by setting ๐‘  = ๐‘Œ0
and ๐‘ก = ๐‘กโˆ— (๐‘‹) in (64) and corresponds to the values of this
ฬƒ
Jacobian along the curve ๐‘Œ = ๐‘Œ(๐‘‹).
Note also that ๐‘กโˆ— (๐‘‹) can
ฬƒ
be obtained by setting ๐ด = ๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ) and ๐‘Œ = ๐‘Œ(๐‘‹)
in
0
(68), and ฮ” (๐‘‹) corresponds to the Jacobian in (71) along the
ฬƒ
curve ๐‘Œ = ๐‘Œ(๐‘‹),
with ๐œ = ๐‘กโˆ— (๐‘‹).
Proposition 17. For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 โˆช R3 , ๐‘Œ โˆ’ ๐‘Œโˆ— (๐‘‹) =
๐œŒโˆ’1/3 ๐œ‰1 = ๐‘‚(๐œŒโˆ’1/3 ), and 0 < ๐‘‹ < ๐‘‹0 one has
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐œŒโˆ’1/2 ๐ถ (๐œŒ) exp [๐œŒฮฆ (๐‘‹, ๐‘Œโˆ— (๐‘‹) + ๐œŒโˆ’1/3 ๐œ‰1 )]
โ‹…
1 ๐‘Š0
2๐œ‹ ๐‘Œโˆ— (๐‘‹) โˆš
โ‹…โˆซ
๐‘–โˆž
โˆ’๐‘–โˆž
1
2
๐‘Š0 โˆ’ (๐‘Š0 + ๐‘Œโˆ— (๐‘‹))
1
2๐œ‹๐‘–
2/3
(1 โˆ’ โˆš๐‘‹0 )
1
exp [โˆ’ 1/6
2
[๐ด๐‘– (๐œƒ)]
๐‘‹ (๐‘Š0 + ๐‘Œโˆ— (๐‘‹))
[ 0
โ‹… ๐œ‰1 ๐œƒ] ๐‘‘๐œƒ,
]
(188)
ฮฆ๐‘Œ๐‘Œ (๐‘‹, ๐‘Œโˆ— ) = โˆ’
ฮฆ๐‘Œ๐‘Œ๐‘Œ (๐‘‹, ๐‘Œโˆ— ) =
๐‘Š0 (๐‘Š0 + 2๐‘Œโˆ— )
2
๐‘Œโˆ—2 (๐‘Š0 + ๐‘Œโˆ— )
,
(189)
and ๐ถ(๐œŒ) has the expansions in (31)โ€“(33) (one can replace
๐œŒโˆ’1/2 ๐ถ(๐œŒ) by ๐œŒโˆ’1/3 ๐ถ1 (๐œŒ) in (188)), and ๐‘Œโˆ— = ๐‘Œโˆ— (๐‘‹) =
๐‘Œโˆ— (๐‘‹; ๐‘‹0 ) is given in (75).
For ๐œ‰1 โ†’ +โˆž we can expand the integral in (188) by the
saddle point method, after shifting the integration contour far
to the right, with Re(๐œƒ) โ‰ซ 1. Then the Airy function in the
integrand may be approximated using
Ai (๐‘ง) โˆผ
1 โˆ’1/4 โˆ’(2/3)๐‘ง3/2
๐‘ง ๐‘’
;
2โˆš๐œ‹
๓ต„จ
๓ต„จ
๐‘ง ๓ณจ€โ†’ โˆž, ๓ต„จ๓ต„จ๓ต„จarg ๐‘ง๓ต„จ๓ต„จ๓ต„จ < ๐œ‹
(190)
and we can verify that (188) for ๐œ‰1 โ†’ +โˆž matches to the D+
result in (60), as ๐‘Œ โ†“ ๐‘Œโˆ— (๐‘‹). For ๐œ‰1 โ†’ โˆ’โˆž the behavior of
the integral in (188) is determined by the singularity with the
largest real part, which is the double pole at ๐œƒ = ๐‘Ÿ0 (< 0).
Then standard singularity analysis can be used to show that
(188) for ๐œ‰1 โ†’ โˆ’โˆž agrees with the expansion of (79) as ๐‘Œ โ†‘
๐‘Œโˆ— (๐‘‹). Note that in this limit ๐œŒ1/3 ฮฆโˆ— (๐‘ 1 ) becomes ๐‘‚(1) and
proportional to ๐œ‰1 .
Proposition 18. For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R4 , ๐‘Œ โˆ’ ๐‘Œ๐‘ (๐‘‹) = ๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— =
๐‘‚(๐œŒโˆ’1/3 ), and ๐‘‹๐ฟ < ๐‘‹ < ๐‘‹0 (with ๐‘‹๐ฟ defined in item (vii) of
Proposition 8) one has
4/3
1/6
1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 (1 โˆ’ โˆš๐‘‹0 ) ๐‘‹0
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
๐œŒ5/6 โˆš2๐œ‹ โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0
where
โ‹…โˆš
๐œŒฮฆ (๐‘‹, ๐‘Œโˆ— + ๐œŒโˆ’1/3 ๐œ‰1 )
= ๐œŒฮฆ (๐‘‹, ๐‘Œโˆ— ) + ๐œŒ2/3 ฮฆ๐‘Œ (๐‘‹, ๐‘Œโˆ— ) ๐œ‰1
1
1
+ ๐œŒ1/3 ฮฆ๐‘Œ๐‘Œ (๐‘‹, ๐‘Œโˆ— ) ๐œ‰12 + ฮฆ๐‘Œ๐‘Œ๐‘Œ (๐‘‹, ๐‘Œโˆ— ) ๐œ‰13
2
6
+ ๐‘œ (1) ,
ฮฆ (๐‘‹, ๐‘Œโˆ— )
= ๐‘Œโˆ— log (1 +
โˆ’ ๐‘‹ log (
๐‘Š0
,
๐‘Œโˆ— (๐‘Š0 + ๐‘Œโˆ— )
๐‘Š0
๐‘Š0
)โˆ’
๐‘Œโˆ—
๐‘Š0 + ๐‘Œโˆ—
๐‘Œโˆ—
),
๐‘Š0 + ๐‘Œโˆ—
๐‘Š
ฮฆ๐‘Œ (๐‘‹, ๐‘Œโˆ— ) = log (1 + 0 ) ,
๐‘Œโˆ—
๐‘Œ0
๐‘Š0 + ๐‘Œ0
โˆš
{[2๐‘Š0 + ๐‘Œ0 + ๐‘Œ๐‘ (๐‘‹)]
๐‘Œ๐‘ (๐‘‹) ๐‘Œ0 โˆ’ ๐‘Œ๐‘ (๐‘‹)
โˆ’1/2
โ‹… [๐‘Š0 + ๐‘Œ๐‘ (๐‘‹) โˆ’ โˆš๐‘Š0 (๐‘Š0 + ๐‘Œ0 )]}
โ‹… exp {๐œŒ [ฮฆ (๐‘‹, ๐‘Œ๐‘ (๐‘‹) + ๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— ) โˆ’ ฮฆ (๐‘‹0 , ๐‘Œ0 )]}
(191)
2/3
โ‹…
(1 โˆ’ โˆš๐‘‹0 )
1
1 ๐‘–โˆž
exp [โˆ’ 1/6
โˆซ
2๐œ‹๐‘– โˆ’๐‘–โˆž ๐ด๐‘– (๐œƒ)
๐‘‹ (๐‘Š0 + ๐‘Œ0 (๐‘‹))
[ 0
โ‹… ๐œ‚โˆ—โˆ— ๐œƒ] ๐‘‘๐œƒ,
]
where ๐‘Œ๐‘ (๐‘‹) = ๐‘Œ๐‘ (๐‘‹; ๐‘‹0 , ๐‘Œ0 ) is defined in (86).
Thus the transition from D0 to Dโˆ’ involves a slightly
different integral (cf. (191)) compared to the transition from
D+ to Dโˆ’ (cf. (188)), as the former has simple poles at the
22
Advances in Operations Research
Airy roots. Using standard asymptotic analysis we can show
that
3
1 ๐‘–โˆž ๐‘’โˆ’โ‹†๐œƒ
๐‘‘๐œƒ โˆผ 2 โ‹† ๐‘’โˆ’โ‹† /3 , โ‹† ๓ณจ€โ†’ +โˆž,
โˆซ
2๐œ‹๐‘– โˆ’๐‘–โˆž Ai (๐œƒ)
(192)
๐‘’โˆ’โ‹†๐‘Ÿ0
1 ๐‘–โˆž ๐‘’โˆ’โ‹†๐œƒ
๐‘‘๐œƒ โˆผ ๓ธ€ 
, โ‹† ๓ณจ€โ†’ โˆ’โˆž
โˆซ
2๐œ‹๐‘– โˆ’๐‘–โˆž Ai (๐œƒ)
Ai (๐‘Ÿ0 )
(193)
and (192) can be used to verify the matching between (191)
and the D0 result in (65), where ๐ถ0 โˆผ ๐œŒโˆ’1/2 (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) in
R4 . Similarly (193) can be used to verify matching to the Dโˆ’
result in (79), with ๐ถ1 now given by (41). The factor involving
๐œŒฮฆ(๐‘‹, ๐‘Œ๐‘ +๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— ) in (191) can be expanded in Taylor series,
similarly to (189), by replacing ๐‘Œโˆ— (๐‘‹) by ๐‘Œ๐‘ (๐‘‹) and ๐œ‰1 by ๐œ‚โˆ—โˆ— .
As we approach R3 โˆฉ R4 (where ๐‘‹0 + ๐‘Œ0 = โˆš๐‘‹0 ) from
within R4 we see that (191) develops a singularity, in view of
the factor (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )โˆ’1 . As we approach R3 โˆฉ R4 from
ฬƒ
in (183) vanishes
within R3 , the expression for ๐พ+ (๐‘‹, ๐‘Œ(๐‘‹))
and that for ๐‘(๐‘กโˆ— ) in (184) develops a singularity. Thus the
expansions in both Propositions 16 and 18 become invalid,
and below we give a new result that applies for R3 โˆฉR4 , where
D0 meets Dโˆ’ .
Proposition 19. For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R3 โˆฉ R4 , with ๐‘‹0 + ๐‘Œ0 =
โˆš๐‘‹0 + ๐›ฟโˆ— ๐œŒโˆ’1/3 and ๐›ฟโˆ— = ๐‘‚(1),
3
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
(1 โˆ’ โˆš๐‘‹0 ) ๐‘‹01/4 exp {๐œŒ [ฮฆ (๐‘‹, ๐‘Œ๐‘ (๐‘‹) + ๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— ) โˆ’ ฮฆ (๐‘‹0 , ๐‘Œ0 )]}
1
2๐œ‹๐‘–
โˆš2๐œ‹๐œŒ๐‘Œโˆ— (๐‘‹) โˆšโˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œโˆ— (๐‘‹)โˆš๐‘Œโˆ— (๐‘‹) + (1 โˆ’ โˆš๐‘‹0 ) (2 โˆ’ โˆš๐‘‹0 )
โ‹…โˆซ
๐‘–โˆž
โˆ’๐‘–โˆž
โˆ’๐œƒ๐›ฟ1
๐‘’
โˆž
โˆซ๐œƒ ๐‘’๐›ฟ1 ๐‘ข Ai (๐‘ข) ๐‘‘๐‘ข
exp [โˆ’
2
[Ai (๐œƒ)]
where ๐›ฟ1 = ๐‘‹0โˆ’1/6 (1 โˆ’ โˆš๐‘‹0 )โˆ’1/3 ๐›ฟโˆ— and ๐‘Œ๐‘ (๐‘‹) is in (86) and
๐‘Œโˆ— (๐‘‹) in (75).
With the scaling ๐‘‹0 + ๐‘Œ0 โˆ’ โˆš๐‘‹0 = ๐‘‚(๐œŒโˆ’1/3 ), the curves
ฬƒ
nearly coincide, with the differences
๐‘Œ๐‘ (๐‘‹), ๐‘Œโˆ— (๐‘‹), and ๐‘Œ(๐‘‹)
โˆ’1/3
being ๐‘‚(๐œŒ ). In (194) we can again replace ฮฆ(๐‘‹, ๐‘Œ๐‘ +
๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— ) by its Taylor expansion and replace ๐‘Œ0 everywhere
by โˆš๐‘‹0 โˆ’ ๐‘‹0 + ๐›ฟโˆ— ๐œŒโˆ’1/3 , thus writing the result in terms of
๐‘‹0 and ๐›ฟโˆ— (or ๐›ฟ1 ), along with ๐‘‹ and ๐œ‚โˆ—โˆ— . Note that ๐œ‚โˆ—โˆ— is
still defined by ๐œ‚โˆ—โˆ— = ๐œŒ1/3 [๐‘Œ โˆ’ ๐‘Œ๐‘ (๐‘‹)], which differs from
๐œŒ1/3 [๐‘Œ โˆ’ ๐‘Œโˆ— (๐‘‹)] by an amount that is ๐‘‚(1). Thus, for region
R3 โˆฉ R4 the transition range in state space, between Dโˆ’
and D0 , involves a somewhat more complicated integral than
those in Propositions 18 and 19.
This completes our summary and discussion of the
various regions of state space, which carry zero volume in
(๐‘‹, ๐‘Œ) space but are necessary since the results in D0 , D+ ,
and Dโˆ’ do not always apply.
4. Asymptotic Expansion in Region D0
In this section we will construct the expansion for (๐‘‹, ๐‘Œ) โˆˆ
D0 , that is, (65). The analysis for the complementary regions
D+ and Dโˆ’ is virtually identical to that for the model with
an infinite secondary capacity (๐‘… = โˆž), and the detailed
calculations can be found in [10]. Here we will only discuss,
for regions D+ and Dโˆ’ , those aspects that change when ๐‘… <
โˆž. In order to uniquely determine the expansion in D0 , we
will need to use asymptotic matching to the corner expansion
that applies on the scale ๐‘˜ = ๐‘šโˆ’๐‘‚(1), ๐‘Ÿ = ๐‘…โˆ’๐‘‚(1), and this is
discussed in Section 4.2. For parameter region R4 (and also
for R3 โˆฉ R4 ) we will also need to carefully analyze the scale
๐‘˜ = ๐‘š โˆ’ ๐‘‚(๐œŒ1/3 ) and ๐‘Ÿ = ๐‘… โˆ’ ๐‘‚(๐œŒ2/3 ), which will be necessary
[
2/3
(1 โˆ’ โˆš๐‘‹0 )
๐‘‹01/6
(๐‘Š0 + ๐‘Œโˆ— (๐‘‹))
(194)
๐œ‚โˆ—โˆ— ๐œƒ] ๐‘‘๐œƒ,
]
to determine the multiplicative constant ๐ถ1 = ๐ถ1 (๐œŒ; ๐‘‹0 , ๐‘Œ0 )
that arises in the asymptotic expansion in Dโˆ’ ; this analysis is
done in Section 4.3.
4.1. Ray Expansion in the Interior of D0 . We analyze the
scaled equation in (17) using the ray method of geometrical
optics, where we assume an expansion of the form
๐‘ƒ (๐‘‹, ๐‘Œ) = ๐ถ0 (๐œŒ) ๐‘’๐œŒฮจ(๐‘‹,๐‘Œ) [๐พ (๐‘‹, ๐‘Œ) + ๐œŒโˆ’1 ๐พ(1) (๐‘‹, ๐‘Œ)
+ ๐œŒโˆ’2 ๐พ(2) (๐‘‹, ๐‘Œ) + โ‹… โ‹… โ‹…] .
(195)
Then we have
๐‘ƒ (๐‘‹ ± ๐œŒโˆ’1 , ๐‘Œ)
๐‘ƒ (๐‘‹, ๐‘Œ)
= ๐‘’±ฮจ๐‘‹ (๐‘‹,๐‘Œ) [1
±๐พ
1
+ ๐œŒ ( ๐‘‹ + ฮจ๐‘‹๐‘‹ (๐‘‹, ๐‘Œ)) + ๐‘‚ (๐œŒโˆ’2 )]
๐พ
2
(196)
โˆ’1
and using (195) in (17) we obtain in the limit as ๐œŒ โ†’ โˆž the
โ€œeikonalโ€ equation
1 + ๐‘‹ + ๐‘Œ = ๐‘Œ๐‘’ฮจ๐‘Œ + ๐‘‹๐‘’ฮจ๐‘‹ + ๐‘’โˆ’ฮจ๐‘‹
(197)
and at the next order in ๐œŒโˆ’1 the โ€œtransportโ€ equation
1
๐‘’ฮจ (๐‘Œ๐พ๐‘Œ + ๐‘Œฮจ๐‘Œ๐‘Œ๐พ + ๐พ)
2
1
+ ๐‘’ฮจ๐‘‹ (๐‘‹๐พ๐‘‹ + ๐‘‹ฮจ๐‘‹๐‘‹ ๐พ + ๐พ)
2
1
+ ๐‘’โˆ’ฮจ๐‘‹ (โˆ’๐พ๐‘‹ + ฮจ๐‘‹๐‘‹ ๐พ) = 0.
2
(198)
Advances in Operations Research
23
The first-order PDE in (197) can be solved by the method of
characteristics (see [14]), where one must solve the five ODEs
๐‘‘๐‘‹
= ๐‘’โˆ’ฮจ๐‘‹ โˆ’ ๐‘‹๐‘’ฮจ๐‘‹ ,
๐‘‘๐œ
2
๐‘‘ฮจ
๐‘‘๐‘‹
๐‘‘๐‘Œ
= ฮจ๐‘‹
+ ฮจ๐‘Œ
๐‘‘๐‘ก
๐‘‘๐œ
๐‘‘๐œ
= ฮจ๐‘‹ (๐‘’
(200)
ฮจ๐‘‹
ฮจ๐‘Œ
โˆ’ ๐‘‹๐‘’ ) โˆ’ ๐‘Œฮจ๐‘Œ๐‘’ ,
๐‘‘ฮจ๐‘‹
= ๐‘’ฮจ๐‘‹ โˆ’ 1,
๐‘‘๐œ
(201)
๐‘‘ฮจ๐‘Œ
= ๐‘’ฮจ๐‘Œ โˆ’ 1.
๐‘‘๐œ
Here ๐œ is a parameter along a given characteristic curve,
which is also called a โ€œray,โ€ due to applications in optics.
To uniquely specify the solution ฮจ(๐‘‹, ๐‘Œ) to (197), we must
either specify ฮจ along some curve, called the โ€œinitial manifold,โ€ in the (๐‘‹, ๐‘Œ) plane, or use a singular solution, where
all the rays emanate from a single point. The appropriate
solution to the eikonal equation must be determined for each
individual problem, and we will see that for the present model
we will need to use three different solutions ฮจ to (197), with
two having the boundary ๐‘‹ = ๐‘‹0 as the initial manifold and
the third corresponding to all the rays emanating from the
corner point (๐‘‹0 , ๐‘Œ0 ). The first two solutions will correspond
to regions D+ and Dโˆ’ and the third to D0 . Since D+ and Dโˆ’
arose also in the infinite capacity model, where ๐‘… = โˆž, we
discuss these only briefly, and the details of the corresponding
solutions to (197)โ€“(201) can be found in [10].
Let us denote the solution in region D+ as
๐ถ(๐œŒ)๐พ+ (๐‘‹, ๐‘Œ)๐‘’๐œŒฮจ+ (๐‘‹,๐‘Œ) to distinguish it from (195), which
will apply in D0 . If this expansion will satisfy the boundary
equation along ๐‘‹ = ๐‘‹0 (or ๐‘˜ = ๐‘š) in (4), or, equivalently,
(18), we must have
๐‘‹0 ๐‘’ฮจ+,๐‘‹ (๐‘‹0 ,๐‘Œ) = ๐‘’โˆ’ฮจ+,๐‘Œ (๐‘‹0 ,๐‘Œ) .
(202)
Requiring ฮจ+ (๐‘‹, ๐‘Œ) to satisfy (202) is equivalent, up to an
additive constant in ฮจ+ which can be incorporated into ๐ถ(๐œŒ),
to specifying ฮจ+ along the initial manifold ๐‘‹ = ๐‘‹0 . Solving
(199)โ€“(201) subject to (202) leads to
ฮจ+,๐‘‹ = โˆ’ log (1 โˆ’
(๐‘Œ + ๐‘‹0 ) โˆ’ ๐‘‹0
๐‘ก + ๐‘‚ (๐‘ก2 ) .
๐‘‹0 โˆ’ ๐‘‹ =
๐‘Œ + ๐‘‹0
(199)
๐‘‘๐‘Œ
= โˆ’๐‘Œ๐‘’ฮจ๐‘Œ ,
๐‘‘๐œ
โˆ’ฮจ๐‘‹
which is an explicit function of ๐‘Œ. From the first expression
in (62) we find that for ๐‘ก โ†’ 0
๐‘ 
๐‘’๐‘ก ) ,
๐‘  + ๐‘‹0
(203)
๐‘ก
ฮจ+,๐‘Œ = โˆ’ log [1 + (๐‘  + ๐‘‹0 โˆ’ 1) ๐‘’ ]
and then the rays are given in parametric form by (62), which
relates (๐‘ , ๐‘ก) to (๐‘‹, ๐‘Œ). When ๐‘ก = 0 we have (๐‘‹, ๐‘Œ) = (๐‘‹0 , ๐‘ )
so that ๐‘  is the point where a ray hits the line ๐‘‹ = ๐‘‹0 . We use
now ๐‘ก instead of ๐œ as the parameter along a given ray, and ๐‘ 
is used to index the family. Finally, solving (200) with (ฮจ, ๐œ)
replaced by (ฮจ+ , ๐‘ก) leads to the expression in (61). We also note
that when ๐‘ก = 0 (๐‘‹ = ๐‘‹0 ) we have
ฮจ+ (๐‘‹0 , ๐‘Œ) = ๐‘‹0 โˆ’ 1 + ๐‘Œ โˆ’ (๐‘‹0 + ๐‘Œ) log (๐‘‹0 + ๐‘Œ)
(204)
(205)
It follows that for ๐‘ก > 0 the rays that start from ๐‘‹ = ๐‘‹0 enter
the state space, where ๐‘‹ โฉฝ ๐‘‹0 , for ๐‘ก > 0 only if (๐‘Œ+๐‘‹0 )2 โˆ’๐‘‹0 >
0, or ๐‘Œ+๐‘‹0 > โˆš๐‘‹0 . If ๐‘‹0 > 1 this condition holds for all ๐‘Œ โฉพ 0
and hence the rays fill the region D+ indicated in Figure 3. If
๐‘‹0 < 1 and ๐‘Œ0 + ๐‘‹0 > โˆš๐‘‹0 then the condition holds only
for ๐‘Œ in the interval โˆš๐‘‹0 โˆ’ ๐‘‹0 < ๐‘Œ < ๐‘Œ0 . Then these rays fill
the domain D+ indicated in Figures 4 and 5. But if ๐‘‹0 < 1
and ๐‘‹0 + ๐‘Œ0 < โˆš๐‘‹0 , which is true for parameter region R4 ,
the condition never holds and then this ray expansion plays
no role in the analysis (see also Figure 6). Once we compute
ฮจ+ in D+ , we can integrate (198) to obtain ๐พ+ (๐‘‹, ๐‘Œ) in (63).
Thus we have shown that (63), up to the constant ๐ถ(๐œŒ) which
we have yet to determine, holds in the portion D+ of the state
space, for parameter regions R1 โˆช R2 โˆช R3 .
Now we observe that if ๐‘‹0 > 1, ฮจ+ (๐‘‹0 , ๐‘Œ) is maximal at
๐‘Œ = 0 and by evaluating also ๐พ+ at ๐‘‹ = ๐‘‹0 and ๐‘Œ = 0 we find
that near the corner (๐‘‹, ๐‘Œ) = (๐‘‹0 , 0) with ๐‘‹ = ๐‘‹0 (๐‘˜ = ๐‘š)
and ๐‘Œ = ๐‘Ÿ/๐œŒ, and we have
๐ถ๐พ+ ๐‘’๐œŒฮจ+ โˆผ ๐ถ
1 ๐‘‹0 โˆ’ 1 โˆ’๐‘Ÿ ๐œŒ(๐‘‹0 โˆ’1โˆ’๐‘‹0 log๐‘‹0 )
๐‘‹ ๐‘’
.
โˆš2๐œ‹ ๐‘‹03/2 0
(206)
The scale ๐‘Ÿ = ๐‘‚(1) for ๐‘‹0 > 1 must be analyzed separately and
the details are carried out in [10]. For ๐‘Ÿ = ๐‘‚(1) and ๐‘š โˆ’ ๐‘˜ =
๐‘› = ๐‘‚(1) the result in (141) applies, and by asymptotically
matching this to (206) (for ๐‘Ÿ โฉพ 1) we conclude that
๐ถ (๐œŒ) โˆผ ๐œŒโˆ’1/2 ,
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 .
(207)
If ๐‘‹0 < 1 and ๐‘‹0 + ๐‘Œ0 > 1 then ฮจ+ (๐‘‹0 , ๐‘Œ) in (204) is maximal
at ๐‘Œ = 1 โˆ’ ๐‘‹0 , which lies in the range (0, ๐‘Œ0 ) precisely for
parameter region R2 . Expanding ฮจ+ (๐‘‹, ๐‘Œ) in (61) about ๐‘‹ =
๐‘‹0 and ๐‘Œ = 1 โˆ’ ๐‘‹0 leads to
๐ถ๐พ+ ๐‘’๐œŒฮจ+
โˆผ ๐ถ (1 โˆ’ ๐‘‹0 ) ๐‘‹0๐‘›
(208)
1
1
2
exp {โˆ’ [๐‘Ÿ โˆ’ (๐œŒ โˆ’ ๐‘š)] } .
โˆš2๐œ‹
2๐œŒ
For parameter region R2 the expansions in Dโˆ’ and D0 will
be uniformly exponentially small in ๐œŒ, as there is little mass
in these state space ranges. Thus the main contribution to the
double sum in the normalization condition (10) will come
from D+ and in particular from the scale ๐‘š โˆ’ ๐‘˜ = ๐‘› =
๐‘‚(1) and ๐‘Ÿ = ๐œŒ โˆ’ ๐‘š + ๐‘‚(โˆš๐œŒ) (corresponding to ๐‘Œ = 1 โˆ’
๐‘‹0 +๐‘‚(๐œŒโˆ’1/2 )). Then normalizing the approximation in (208),
after approximating the sum over ๐‘Ÿ by an integral over ๐‘Œ, we
conclude that ๐ถ(๐œŒ) โˆผ ๐œŒโˆ’1/2 , and hence (207) applies also for
parameter region R2 (and, by continuity, the relation holds
in R1 โˆฉ R2 (๐‘‹0 โˆ’ 1 = ๐‘‚(๐œŒโˆ’1/2 )) also).
We have thus shown that the ray expansion in D+ has the
state space regions Dโˆ’ and D0 as โ€œshadows,โ€ and thus the
24
Advances in Operations Research
other solutions to (197) must apply. To construct the solution
in Dโˆ’ we must slightly modify the ansatz in (195) and now
expand the joint distribution as
1/3
๐‘ƒ (๐‘‹, ๐‘Œ) = ๐ถ1 (๐œŒ) ๐‘’๐œŒฮฆ(๐‘‹,๐‘Œ) ๐‘’๐œŒ
ฮฆ1 (๐‘‹,๐‘Œ)
[๐ฟ (๐‘‹, ๐‘Œ)
+ ๐œŒโˆ’1/3 ๐ฟ(1) (๐‘‹, ๐‘Œ) + ๐œŒโˆ’2/3 ๐ฟ(2) (๐‘‹, ๐‘Œ) + โ‹… โ‹… โ‹…] .
(209)
Now ฮฆ will satisfy (197) and ๐ฟ will satisfy (198), and the
subexponential term ฮฆ1 will satisfy the PDE
๐‘Œ๐‘’ฮฆ๐‘Œ ฮฆ1,๐‘Œ + (๐‘‹๐‘’ฮฆ๐‘‹ โˆ’ ๐‘’โˆ’ฮฆ๐‘‹ ) ฮฆ1,๐‘‹ = 0.
(210)
Again the detailed analysis can be found in [10]. We now find
that
ฮฆ๐‘‹ = โˆ’ log [1 โˆ’ (1 โˆ’ โˆš๐‘‹0 ) ๐‘’๐‘ก1 ] ,
ฮฆ๐‘Œ = โˆ’ log [1 โˆ’
๐‘Š0 ๐‘ก1
๐‘’ ]
๐‘Š0 + ๐‘ 1
(211)
and the rays are given in parametric form by
๐‘‹ = [1 โˆ’ (1 โˆ’ โˆš๐‘‹0 ) ๐‘’๐‘ก1 ] [1 โˆ’ (1 โˆ’ โˆš๐‘‹0 ) ๐‘’โˆ’๐‘ก1 ] ,
โˆ’๐‘ก1
๐‘Œ = โˆ’๐‘Š0 + (๐‘Š0 + ๐‘ 1 ) ๐‘’
(212)
,
where we recall that ๐‘Š0 = (1 โˆ’ โˆš๐‘‹0 )2 . When ๐‘ก1 = 0 we have
๐‘‹ = ๐‘‹0 and Y = ๐‘ 1 , but unlike the rays in D+ , those in Dโˆ’
are all tangent to the boundary ๐‘‹ = ๐‘‹0 . Thus the boundary
is a โ€œcaustic boundary,โ€ for 0 < ๐‘Œ < โˆš๐‘‹0 โˆ’ ๐‘‹0 for region
R2 โˆช R3 and for all ๐‘Œ with 0 < ๐‘Œ < ๐‘Œ0 for region R4 . The
solution ฮฆ to (197) is now given by
โˆ’๐‘ก1
ฮฆ (๐‘‹, ๐‘Œ) = [๐‘Š0 โˆ’ (๐‘Š0 + ๐‘ 1 ) ๐‘’
๐ถ1 (๐œŒ)
โˆผ ๐œŒโˆ’1/6 ,
๐ถ (๐œŒ)
(๐‘‹0 , ๐‘Œ0 ) โˆˆ R2 โˆช R3 .
ฮจ๐‘Œ = โˆ’ log (1 โˆ’ ๐ต๐‘’๐œ ) ,
(213)
โ‹… log (1 โˆ’ โˆš๐‘Š0 ๐‘’๐‘ก1 ) โˆ’ โˆš๐‘Š0 ๐‘’๐‘ก1 + ๐‘Š0
1
โ‹… log (๐‘Š0 + ๐‘ 1 ) โˆ’ ๐‘Š0 log ๐‘Š0 .
2
For region Dโˆ’ we can invert transformation (212) and write
๐‘ 1 and ๐‘ก1 explicitly in terms of ๐‘‹ and ๐‘Œ. This leads to the
expression in (81) for ๐‘ 1 = ๐‘ 1 (๐‘‹, ๐‘Œ), and then (80) gives ฮฆ
in terms of ๐‘‹ and ๐‘Œ.
Equation (210) implies that ฮฆ1 (๐‘‹, ๐‘Œ) is constant along a
caustic ray, so we write ฮฆ1 (๐‘‹, ๐‘Œ) = ฮฆโˆ— (๐‘ 1 ). To determine
ฮฆโˆ— (โ‹…) and also completely determine ๐ฟ(๐‘‹, ๐‘Œ) in (209), we
need to construct two โ€œnestedโ€ boundary layer corrections
to the expansion in (209), near ๐‘‹ = ๐‘‹0 , corresponding
to the scales ๐‘‹0 โˆ’ ๐‘‹ = ๐‘‚(๐œŒโˆ’2/3 ) (๐‘š โˆ’ ๐‘˜ = ๐‘‚(๐œŒ1/3 )) and
๐‘‹0 โˆ’ ๐‘‹ = ๐‘‚(๐œŒโˆ’1 ) (๐‘š โˆ’ ๐‘˜ = ๐‘‚(1)). The boundary condition
in (18) can only be imposed on the expansion that applies for
๐‘› = ๐‘š โˆ’ ๐‘˜ = ๐‘‚(1). Using asymptotic matching between the
expansions for ๐‘‹0 โˆ’ ๐‘‹ = ๐‘‚(๐œŒโˆ’1 ), ๐‘‹0 โˆ’ ๐‘‹ = ๐‘‚(๐œŒโˆ’2/3 ), and the
(214)
In R2 we have ๐ถ(๐œŒ) โˆผ ๐œŒโˆ’1/2 so that ๐ถ1 (๐œŒ) โˆผ ๐œŒโˆ’2/3 , but
we have yet to determine either ๐ถ or ๐ถ1 for region R3 . The
conclusion in (214) can also be reached by constructing an
expansion near the point (๐‘‹, ๐‘Œ) = (๐‘‹0 , โˆš๐‘‹0 โˆ’ ๐‘‹0 ), with the
scaling ๐‘‹0 โˆ’ ๐‘‹ = ๐‘‚(๐œŒโˆ’2/3 ) and ๐‘Œ โˆ’ (โˆš๐‘‹0 โˆ’ ๐‘‹0 ) = ๐‘‚(๐œŒโˆ’1/3 )
(see subsection 5.3 in [10] for that analysis). Note also that the
curve ๐‘Œ = ๐‘Œโˆ— (๐‘‹) corresponds to the ray with ๐‘ 1 = โˆš๐‘‹0 โˆ’ ๐‘‹0
in (212) and also the ray with ๐‘  = โˆš๐‘‹0 โˆ’ ๐‘‹0 in (62). Then
we have ฮจ+ (๐‘‹, ๐‘Œโˆ— (๐‘‹)) = ฮฆ(๐‘‹, ๐‘Œโˆ— (๐‘‹)) so that the exponential
factors in the expansions in (60) and (209) are continuous
along ๐‘Œ = ๐‘Œโˆ— (๐‘‹), which separates D+ from Dโˆ’ .
The region D0 is a shadow of both the D+ and Dโˆ’ rays
for parameter regions R2 โˆช R3 and a shadow of the Dโˆ’ rays
for parameter region R4 . For R4 , the caustic rays that fill Dโˆ’
correspond to 0 < ๐‘ 1 < ๐‘Œ0 in (212), and ๐‘ 1 = ๐‘Œ0 corresponds
to the curve ๐‘Œ = ๐‘Œ๐‘ (๐‘‹) in (86), which separates Dโˆ’ from D0 .
To fill the shadow D0 and thus obtain an approximation to
๐‘ƒ(๐‘‹, ๐‘Œ) for (๐‘‹, ๐‘Œ) โˆˆ D0 , we must use a singular solution to
(197), one that has all rays start from the corner point (๐‘‹, ๐‘Œ) =
(๐‘‹0 , ๐‘Œ0 ). To construct this solution we first integrate the two
ODEs in (201), which yields
ฮจ๐‘‹ = โˆ’ log (1 โˆ’ ๐ด๐‘’๐œ ) ,
๐‘Š0 ๐‘’๐‘ก1
] log [1 โˆ’
]
๐‘Š0 + ๐‘ 1
โˆ’ (1 โˆ’ โˆš๐‘‹0 โˆ’ ๐‘’โˆ’๐‘ก1 ) (1 โˆ’ โˆš๐‘‹0 โˆ’ ๐‘’๐‘ก1 )
ray expansion in (209) allows us to determine (209) up to the
multiplicative constant ๐ถ1 .
To determine ๐ถ1 we need to, for regions R2 and R3 , first
relate ๐ถ1 (๐œŒ) to the constant ๐ถ(๐œŒ) in the D+ expansion. This
can be done by analyzing the transition curve ๐‘Œ = ๐‘Œโˆ— (๐‘‹),
with the scaling ๐‘Œ โˆ’ ๐‘Œโˆ— (๐‘‹) = ๐‘‚(๐œŒโˆ’1/3 ). The details are again
presented in [10], and this leads to the conclusion that
(215)
where ๐ด and ๐ต are constant along a given ray. Evaluating the
eikonal equation in (197) along the corner ๐‘‹ = ๐‘‹0 , ๐‘Œ = ๐‘Œ0
and using (215) with ๐œ = 0 gives
1 + ๐‘‹0 + ๐‘Œ0 =
๐‘Œ0
๐‘‹0
+
+1โˆ’๐ด
1โˆ’๐ต 1โˆ’๐ด
(216)
and this leads to the relation between ๐ด and ๐ต in (67). Here
we take ๐œ = 0 to correspond to when a ray starts from the
corner point ๐‘‹ = ๐‘‹0 , ๐‘Œ = ๐‘Œ0 . Using (215) we solve the two
ODEs in (199), subject to ๐‘‹|๐œ=0 = ๐‘‹0 and ๐‘Œ|๐œ=0 = ๐‘Œ0 , and we
thus obtain the expressions in (68), which give the corner rays
in parametric form. Using (215) and (68) we then integrate
(200), and choosing ฮจ(๐‘‹0 , ๐‘Œ0 ) = 0 for convenience, we obtain
(66). Note that ฮจ can only be determined from (197) up to
an additive constant, but such a constant can be incorporated
into ๐ถ0 = ๐ถ0 (๐œŒ; ๐‘‹0 , ๐‘Œ0 ) in (195).
We can view ๐ด as indexing this family of rays. If ๐ด is such
that (๐ด + ๐‘‹0 + ๐‘Œ0 )(1 โˆ’ ๐ด) โˆ’ ๐‘‹0 = 0 then ๐ต in (216) and
(67) becomes infinite, and this corresponds to ๐ด = ๐ด max in
(69). This critical ray corresponds to ๐‘Œ = ๐‘Œ0 , and for ๐œ โˆˆ
(0, โˆ’log(๐ด max )) we have ๐‘‹ โˆˆ (0, ๐‘‹0 ), so the ray is the upper
Advances in Operations Research
25
boundary of the state space rectangle, where all secondary
storage spaces are full. The ray ๐ด = ๐ด min = 1โˆ’โˆš๐‘‹0 (for ๐‘‹0 <
1) corresponds to the curve ๐‘Œ = ๐‘Œ๐‘ (๐‘‹) = ๐‘Œ๐‘ (๐‘‹; ๐‘‹0 , ๐‘Œ0 ) in
(86). For regions R1 โˆชR2 โˆชR3 we have ๐‘Œ0 /(๐‘‹0 +๐‘Œ0 ) > 1โˆ’โˆš๐‘‹0
ฬƒ
and then the ray with ๐ด = ๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ) is the curve ๐‘Œ(๐‘‹)
in
(56). Thus for regions R1 โˆชR2 โˆชR3 it suffices to consider ๐ด in
the range (๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ), ๐ด max ) to fill region D0 in state space.
We also note that in order for the rays, which all start from
(๐‘‹, ๐‘Œ) = (๐‘‹0 , ๐‘Œ0 ), to enter the state space we need ๐‘‹๐œ |๐œ=0 < 0
and ๐‘Œ๐œ |๐œ=0 < 0, which implies that 1 โˆ’ ๐ด โˆ’ ๐‘‹0 /(1 โˆ’ ๐ด) < 0
and ๐‘‹0 /(1 โˆ’ ๐ด) โˆ’ (๐ด + ๐‘‹0 + ๐‘Œ0 ) < 0. Adding the last two
inequalities implies that ๐ด > (1/2)(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) and this is
certainly true if ๐ด > ๐ด min .
We next solve the transport equation (198) for ๐พ(๐‘‹, ๐‘Œ).
This equation can be written as an ODE along a ray, with
๐พ๐œ
1
1
= ( ๐‘Œฮจ๐‘Œ๐‘Œ + 1) ๐‘’ฮจ๐‘Œ + ( ๐‘‹ฮจ๐‘‹๐‘‹ + 1) ๐‘’ฮจ๐‘‹
๐พ
2
2
1
+ ฮจ๐‘‹๐‘‹ ๐‘’โˆ’ฮจ๐‘‹
2
= ๐‘’ฮจ๐‘‹ + ๐‘’ฮจ๐‘Œ โˆ’
โˆ’
(217)
1
(๐‘‹ + ๐‘‹๐œ ๐‘’ฮจ๐‘‹ )
2 ๐œ๐œ
1
(๐‘Œ + ๐‘Œ๐œ ๐‘’ฮจ๐‘Œ ) ,
2 ๐œ๐œ
๐พ๐œ 1
1
1 1
1 ฮ”๐œ
+
โˆ’
=
๐œ
๐œ
๐พ
2 1 โˆ’ ๐ด๐‘’
2 1 โˆ’ ๐ต๐‘’
2 ฮ”
= [(๐‘’
โˆ’ ๐ด) (๐‘’
โˆ’ ๐ต) |ฮ” (๐œ, ๐ด)|]
(221)
so that
๐‘ (๐ด + ๐‘‹0 + ๐‘Œ0 ) (1 โˆ’ ๐ด) โˆ’ ๐‘‹0
๐‘Œ0 โˆ’ ๐‘Œ
,
= โˆผ
๐‘‹0 โˆ’ ๐‘‹ ๐‘›
๐‘‹0 โˆ’ (1 โˆ’ ๐ด)2
(222)
๐œ ๓ณจ€โ†’ 0.
Here we recall that ๐‘Œ = ๐‘Œ0 โˆ’ ๐‘/๐œŒ and ๐‘‹ = ๐‘‹0 โˆ’ ๐‘›/๐œŒ, and (222)
gives the slope at which the ray indexed by ๐ด hits the corner
point (๐‘‹0 , ๐‘Œ0 ).
We can thus invert the transformation in (68) locally, with
(222) corresponding to a quadratic equation for ๐ด = ๐ด(๐‘›/๐‘),
and hence
๐ด โˆผ ๐ด๐‘  โ‰ก 1 +
1 1
[(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘›
2๐‘โˆ’๐‘›
(223)
๐พ0 (๐ด) .
Then we define ๐ต๐‘  by replacing ๐ด by ๐ด ๐‘  in (67). Note that
the right-hand side of (223) approaches ๐ด max if ๐‘› โ†’ โˆž,
approaches ๐ด min = 1 โˆ’ โˆš๐‘‹0 as ๐‘ โ†’ โˆž, and is equal to
๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ) if ๐‘›/๐‘ = [(๐‘‹0 + ๐‘Œ0 )2 โˆ’ ๐‘‹0 ]/๐‘Œ0 . For ๐œ โ†’ 0 we
also have ฮจ(๐‘‹, ๐‘Œ) โ†’ 0 with
ฮจ (๐‘‹, ๐‘Œ) = [(๐ด +
+
๐‘‹0
โˆ’ 1) log (1 โˆ’ ๐ด)
1โˆ’๐ด
๐‘Œ0
log (1 โˆ’ ๐ต)] ๐œ + ๐‘‚ (๐œ2 ) = (๐‘‹0 โˆ’ ๐‘‹)
1โˆ’๐ต
(224)
โ‹… log (1 โˆ’ ๐ด ๐‘  ) + (๐‘Œ0 โˆ’ ๐‘Œ) log (1 โˆ’ ๐ต๐‘  ) + ๐‘‚ (๐œ2 )
๐พ (๐‘‹, ๐‘Œ)
โˆ’1/2
๐‘‹0
+ ๐ด โˆ’ 1) ๐œ,
1โˆ’๐ด
๐‘Œ0
๐‘Œ0 โˆ’ ๐‘Œ โˆผ
๐œ
1โˆ’๐ต
(218)
and the most general solution to (218) is given by
โˆ’๐œ
๐‘‹0 โˆ’ ๐‘‹ โˆผ (
2
โˆ’ โˆš(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘›2 + 4 (๐‘2 โˆ’ ๐‘›2 ) ๐‘‹0 ] .
where we used (199), and the last equality in (217) follows
by differentiating (199) with respect to ๐œ. Introducing the
Jacobian ฮ” โ‰ก ๐‘‹๐œ ๐‘Œ๐ด โˆ’๐‘‹๐ด๐‘Œ๐œ associated with the mapping from
(๐œ, ๐ด) to (๐‘‹, ๐‘Œ) variables, after some calculation we find that
(217) becomes
โˆ’๐œ
For ๐œ โ†’ 0 we also have
(219)
Here ๐พ0 (๐ด) is an arbitrary function of the parameter that
indexes the rays and is thus constant along any particular
ray. We have thus determined the expansion in (195) up to
the constant ๐ถ0 and the function ๐พ0 (โ‹…). To complete the D0
ray expansion we will need to use asymptotic matching to
a local expansion valid near the corner (๐‘‹, ๐‘Œ) = (๐‘‹0 , ๐‘Œ0 ).
This is constructed in Section 4.2. In order to accomplish
the matching we will need the behavior of (195) as ๐‘‹ โ†‘ ๐‘‹0 ,
๐‘Œ โ†‘ ๐‘Œ0 , and this is examined next.
We note that (๐‘‹, ๐‘Œ) โ†’ (๐‘‹0 , ๐‘Œ0 ) corresponds to ๐œ โ†’ 0
and in this limit the Jacobian in (71) vanishes, and
so that ๐‘’๐œŒฮจ(๐‘‹,๐‘Œ) โˆผ (1 โˆ’ ๐ด ๐‘  )๐‘› (1 โˆ’ ๐ต๐‘  )๐‘ . We have thus shown that
as ๐œ โ†’ 0 we have
๐ถ0 ๐พ (X, ๐‘Œ) ๐‘’๐œŒฮจ(๐‘‹,๐‘Œ) โˆผ ๐ถ0
๐‘›
๐พ0 (๐ด ๐‘  )
โˆš1 โˆ’ ๐ด ๐‘  โˆš1 โˆ’ ๐ต๐‘ 
(1
๐‘
โˆ’ ๐ด ๐‘  ) (1 โˆ’ ๐ต๐‘  )
โ‹…
๐‘‹0
1
)
[(1 + ๐‘‹0 + ๐‘Œ0 ) (1 +
2
โˆš๐œ
(1 โˆ’ ๐ด ๐‘  )
(225)
โˆ’1/2
4๐‘‹0
โˆ’
]
1 โˆ’ ๐ด๐‘ 
,
where ๐ด โˆผ ๐ด ๐‘  was approximated by (223), and by (221) we
have
ฮ”
โˆผ (โˆ’๐œ) [(1 + ๐‘‹0 + ๐‘Œ0 ) (1 +
๐‘‹0
4๐‘‹0
)โˆ’
] , (220)
2
1โˆ’๐ด
(1 โˆ’ ๐ด)
๐œ ๓ณจ€โ†’ 0+ .
๐œโˆผ
(1 โˆ’ ๐ต๐‘  ) (๐‘Œ0 โˆ’ ๐‘Œ) 1 โˆ’ ๐ต๐‘  ๐‘
โˆผ
,
๐‘Œ0
๐‘Œ0 ๐œŒ
so that (225) becomes an explicit function of ๐‘› and ๐‘.
(226)
26
Advances in Operations Research
4.2. Analysis of the Scale ๐‘˜ = ๐‘š โˆ’ ๐‘‚(1), ๐‘Ÿ = ๐‘… โˆ’ ๐‘‚(1). We
use the variables ๐‘› = ๐‘š โˆ’ ๐‘˜ and ๐‘ = ๐‘… โˆ’ ๐‘Ÿ and obtain an
approximation to ๐œ‹(๐‘˜, ๐‘Ÿ) that is valid when all but a few of
the primary and secondary spaces are occupied. This is likely
for parameter regions R3 and R4 but unlikely for R1 and
R2 . We define ๐‘„ by
๐œ‹ (๐‘˜, ๐‘Ÿ) = ๐œ‹ (๐‘˜, ๐‘Ÿ; ๐œŒ, ๐‘š, ๐‘…) = ๐‘„ (๐‘›, ๐‘; ๐œŒ, ๐‘‹0 , ๐‘Œ0 ) .
โˆž โˆž
ฬƒ (๐‘ง, ๐‘ค) = โˆ‘ โˆ‘ ๐‘„๐ฟ (๐‘›, ๐‘) ๐‘ง๐‘› ๐‘ค๐‘
๐‘„
(227)
We thus denote by ๐‘„(๐‘›, ๐‘) the exact probability that there are
๐‘› (resp., ๐‘) empty primary (resp., secondary) spaces, and we
will later denote by ๐‘„๐ฟ (๐‘›, ๐‘) the leading term in an asymptotic
expansion of this probability, which is valid for the scale
๐‘›, ๐‘ = ๐‘‚(1). Then clearly ๐‘„(0, 0) โˆผ ๐‘„๐ฟ (0, 0) so in asymptotic
relations involving ๐‘„(0, 0) we can drop the subscript ๐ฟ.
Writing the balance equations in (3), (4), and (5) in terms
of (๐‘›, ๐‘) leads to
[1 + ๐‘‹0 + ๐‘Œ0 โˆ’ ๐œŒโˆ’1 (๐‘› + ๐‘)] ๐‘„ (๐‘›, ๐‘)
= [๐‘Œ0 + ๐œŒโˆ’1 (1 โˆ’ ๐‘)] ๐‘„ (๐‘›, ๐‘ โˆ’ 1)
Here ๐‘„๐ฟ (๐‘›, ๐‘) in (232)โ€“(234) is understood to be the leading
term in an asymptotic expansion of ๐‘„(๐‘›, ๐‘; ๐œŒ), for ๐œŒ โ†’ โˆž,
and the corner equation in (231) must also be satisfied by this
leading term.
We introduce the double generating function
and from (231)โ€“(234) we obtain
1 ฬƒ
[1 + ๐‘‹0 (1 โˆ’ ๐‘ง) + ๐‘Œ0 (1 โˆ’ ๐‘ค) โˆ’ ] ๐‘„
(๐‘ง, ๐‘ค)
๐‘ง
1
1 1 ฬƒ
= ( โˆ’ )๐‘„
(0, ๐‘ค) + (1 โˆ’ ) ๐‘„๐ฟ (0, 0) .
๐‘ค ๐‘ง
๐‘ค
ฬƒ
ฬƒ (๐‘ง, 1) = ๐‘„ (0, 1)
๐‘„
1 โˆ’ ๐‘ง๐‘‹0
โ„“
โˆ‘ ๐‘„๐ฟ (๐‘›, ๐‘) = ๐‘„๐ฟ (0, 0) (๐‘‹0 + ๐‘Œ0 ) ,
[1 + ๐‘‹0 + ๐‘Œ0 โˆ’ ๐œŒโˆ’1 ๐‘] ๐‘„ (0, ๐‘)
(229)
๐‘ โฉพ 1,
[1 + ๐‘‹0 + ๐‘Œ0 โˆ’ ๐œŒโˆ’1 ๐‘›] ๐‘„ (๐‘›, 0)
= [๐‘‹0 + ๐œŒโˆ’1 (1 โˆ’ ๐‘›)] ๐‘„ (๐‘› โˆ’ 1, 0) + ๐‘„ (๐‘› + 1, 0) ,
(230)
๐‘› โฉพ 1,
and the corner condition in (9) becomes
(๐‘‹0 + ๐‘Œ0 ) ๐‘„ (0, 0) = ๐‘„ (1, 0) + ๐‘„ (0, 1) .
(238)
The expression in (238) shows that the total number of empty
spaces (= ๐‘š + ๐‘… โˆ’ ๐‘˜ โˆ’ ๐‘Ÿ = ๐‘› + ๐‘) follows asymptotically
a geometric distribution if ๐‘‹0 + ๐‘Œ0 < 1, and this could be
also deduced from (12), by expanding the exact (truncated
Poisson) distribution for ๐œŒ โ†’ โˆž. Note, however, that (238)
holds also for ๐‘‹0 + ๐‘Œ0 โฉพ 1. The factor in brackets in the lefthand side of (236) vanishes when ๐‘ง = ๐‘ง± (๐‘ค), where ๐‘ง± are
ฬƒ ๐‘ค) to be analytic at the smaller
given in (51). Requiring ๐‘„(๐‘ง,
ฬƒ
root ๐‘งโˆ’ (๐‘ค) determines ๐‘„(0, ๐‘ค) as
ฬƒ (0, ๐‘ค) = ๐‘ง+ (๐‘ค) (1 โˆ’ ๐‘ค) ๐‘„๐ฟ (0, 0) .
๐‘„
(๐‘งโˆ’ (๐‘ค) โˆ’ ๐‘ค) ๐‘‹0
(231)
Note that near this corner only the boundaries ๐‘‹ = ๐‘‹0 and
๐‘Œ = ๐‘Œ0 of the state space rectangle are relevant, and the
problem in (228)โ€“(231) corresponds to a random walk in a
quarter plane, in (๐‘›, ๐‘) space. For ๐œŒ โ†’ โˆž the problem in
(228)โ€“(231) may be further approximated by
(239)
Then using (239) in (236) and partially inverting the transform in (236) lead to
โˆž
โˆ‘ ๐‘ค๐‘ ๐‘„๐ฟ (๐‘›, ๐‘)
๐‘=0
(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘„๐ฟ (๐‘›, ๐‘)
= ๐‘Œ0 ๐‘„๐ฟ (๐‘›, ๐‘ โˆ’ 1) + ๐‘‹0 ๐‘„๐ฟ (๐‘› โˆ’ 1, ๐‘)
(232)
=
+ ๐‘„๐ฟ (๐‘› + 1, ๐‘) ; ๐‘› โฉพ 1, ๐‘ โฉพ 1,
1โˆ’๐‘ค
โˆ’๐‘›โˆ’1
[๐‘ง (๐‘ค)]
๐‘„๐ฟ (0, 0) ,
(๐‘งโˆ’ (๐‘ค) โˆ’ ๐‘ค) ๐‘‹0 +
(240)
๐‘› โฉพ 0,
(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘„๐ฟ (0, ๐‘)
and hence by the Cauchy integral formula
= ๐‘Œ0 ๐‘„๐ฟ (0, ๐‘ โˆ’ 1) + ๐‘„๐ฟ (1, ๐‘) + ๐‘„๐ฟ (0, ๐‘ + 1) ,
(233)
๐‘ โฉพ 1,
= ๐‘‹0 ๐‘„๐ฟ (๐‘› โˆ’ 1, 0) + ๐‘„๐ฟ (๐‘› + 1, 0) , ๐‘› โฉพ 1.
โ„“ โฉพ 0.
๐‘›+๐‘=โ„“
= [๐‘Œ0 + ๐œŒโˆ’1 (1 โˆ’ ๐‘)] ๐‘„ (0, ๐‘ โˆ’ 1) + ๐‘„ (1, ๐‘)
(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘„๐ฟ (๐‘›, 0)
(237)
ฬƒ ๐‘ง) = ๐‘„๐ฟ (0, 0)/[1 โˆ’ (๐‘‹0 + ๐‘Œ0 )๐‘ง].
and if ๐‘ง = ๐‘ค we find that ๐‘„(๐‘ง,
Setting ๐‘ง = ๐‘ค then in (235) leads to
+ ๐‘„ (๐‘› + 1, ๐‘) ; ๐‘› โฉพ 1, ๐‘ โฉพ 1,
+ ๐‘„ (0, ๐‘ + 1) ,
(236)
From (236), by setting ๐‘ค = 1 we obtain
(228)
+ [๐‘‹0 + ๐œŒโˆ’1 (1 โˆ’ ๐‘›)] ๐‘„ (๐‘› โˆ’ 1, ๐‘)
(235)
๐‘›=0 ๐‘=0
๐‘„๐ฟ (๐‘›, ๐‘)
=
(234)
(241)
๐‘„๐ฟ (0, 0)
1โˆ’๐‘ค
โˆ’๐‘›โˆ’1 โˆ’๐‘โˆ’1
๐‘ค
๐‘‘๐‘ค,
[๐‘ง+ (๐‘ค)]
โˆฎ
๐‘‹0 (2๐œ‹๐‘–) ๐‘งโˆ’ (๐‘ค) โˆ’ ๐‘ค
where the contour is over a small loop about ๐‘ค = 0.
Advances in Operations Research
27
When ๐‘‹0 + ๐‘Œ0 < 1 (๐‘š + ๐‘… < ๐œŒ, region R3 โˆช R4 ), most
primary and secondary spaces will be full, and then (241)
becomes a normalized discrete distribution with
๐‘„ (0, 0) โˆผ ๐‘„๐ฟ (0, 0) = 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 , R3 โˆช R4 ,
(242)
leading to the limit law in (50).
For regions R1 โˆช R2 , (241) still represents a local
approximation to ๐œ‹(๐‘˜, ๐‘Ÿ), but now different arguments must
be used to determine ๐‘„๐ฟ (0, 0), and indeed now ๐‘„๐ฟ (0, 0) will
turn out to be exponentially small for large ๐œŒ. We proceed to
relate (241) to the ray expansions in D0 , D+ , and Dโˆ’ , noting
that, for parameter region R1 โˆช R2 โˆช R3 , D0 and D+ both
border the corner point, while, for R4 , D0 and Dโˆ’ border
this point. We will need to expand (241) asymptotically, for ๐‘›
and/or ๐‘ โ†’ โˆž. The integrand in (241) has branch points at
๐‘ค = (1+๐‘‹0 +๐‘Œ0 ±2โˆš๐‘‹0 )/๐‘Œ0 and possible poles at solutions of
๐‘งโˆ’ (๐‘ค) = ๐‘ค. Now, ๐‘งโˆ’ (1) = 1 for ๐‘‹0 > 1 but ๐‘ค = 1 is not a pole
in view of the factor 1 โˆ’ ๐‘ค in the numerator. The only other
possible solution to ๐‘งโˆ’ (๐‘ค) = ๐‘ค occurs at ๐‘ค = 1/(๐‘‹0 + ๐‘Œ0 ) and
this is a pole if
๐‘Œ0
2๐‘‹0
= 1 + ๐‘‹0 + ๐‘Œ0 โˆ’
๐‘‹0 + ๐‘Œ0
๐‘‹0 + ๐‘Œ0
โˆ’ โˆš (1 + ๐‘‹0 + ๐‘Œ0 โˆ’
(i) ๐‘ = ๐‘‚(1), ๐‘› โ†’ โˆž
โˆ’๐‘›
๐‘„๐ฟ (๐‘›, ๐‘) โˆผ ๐‘„ (0, 0)
๐‘
โ‹… ๐‘›๐‘ (
2
๐‘โˆ’๐‘›โˆ’2
.
(248)
(iii) ๐‘, ๐‘› โ†’ โˆž with ๐œƒ1 < ๐‘›/๐‘ < โˆž, for R1 โˆช R2 โˆช R3
๐‘„๐ฟ (๐‘›, ๐‘)
โˆผ
2
๐‘Œ0
) โˆ’ 4๐‘‹0
๐‘‹0 + ๐‘Œ0
1
1
๐‘ค=1+
(1 + ๐‘‹0 โˆ’ ๐‘‹0 ๐‘ข โˆ’ )
๐‘Œ0
๐‘ข
(243)
โ‹…
โˆ’1/4
๐‘„ (0, 0) 2
2
[๐‘› (1 + ๐‘‹0 + ๐‘Œ0 ) + 4 (๐‘2 โˆ’ ๐‘›2 ) ๐‘‹0 ]
โˆš2๐œ‹
(249)
(1 โˆ’ ๐‘ข๐‘  ) (๐‘‹0 ๐‘ข๐‘ 2 โˆ’ 1)
๐‘ข๐‘ 3/2 (๐‘‹0 + ๐‘Œ0 โˆ’ ๐‘‹0 ๐‘ข๐‘  ) โˆš(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘ข๐‘  โˆ’ 1 โˆ’ ๐‘‹0 ๐‘ข๐‘ 2
๐‘
โ‹… ๐‘ข๐‘ ๐‘โˆ’๐‘› ๐‘Œ0 [(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘ข๐‘  โˆ’ 1 โˆ’ ๐‘‹0 ๐‘ข๐‘ 2 ]
โˆ’๐‘
,
where
๐‘›
1
๐‘ข๐‘  = ๐‘ข๐‘  ( ) =
[(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘›
๐‘
2๐‘‹0 (๐‘› + ๐‘)
(250)
2
+ โˆš(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘›2 + 4๐‘‹0 (๐‘2 โˆ’ ๐‘›2 )] .
(244)
and (241) becomes
(iv) ๐‘, ๐‘› โ†’ โˆž, ๐‘›/๐‘ โ‰ˆ ๐œƒ1 (with ๐‘› โˆ’ ๐‘๐œƒ1 = ๐‘‚(โˆš๐‘)), for
R1 โˆช R2 โˆช R3
๐‘„๐ฟ (0, 0)
2๐œ‹๐‘–
(245)
๐‘
(1 โˆ’ ๐‘ข) (๐‘‹0 ๐‘ข2 โˆ’ 1) ๐‘Œ0 ๐‘ข๐‘โˆ’๐‘›โˆ’2
(๐‘‹0 + ๐‘Œ0 โˆ’ ๐‘‹0 ๐‘ข) [(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘ข โˆ’ ๐‘‹0 ๐‘ข2 โˆ’ 1]
๐‘‘๐‘ข,
๐‘+1
๐œ‚
โˆ’โˆž
๐‘ง+ (0)
1
2
[1 + X0 + ๐‘Œ0 + โˆš(1 + ๐‘‹0 + ๐‘Œ0 ) โˆ’ 4๐‘‹0 ] ,
2๐‘‹0
๐‘โˆ’๐‘›โˆ’2
๐‘„๐ฟ (๐‘›, ๐‘) โˆผ ๐‘„ (0, 0) ๐‘‹0๐‘› (๐‘‹0 + ๐‘Œ0 )
โ‹…โˆซ
where ฮ“ is a small loop about ๐‘ข = ๐‘ง+ (0), with
=
) .
โˆผ ๐‘„ (0, 0) [(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0 ] ๐‘‹0๐‘› (๐‘‹0 + ๐‘Œ0 )
But (243) holds precisely when (๐‘‹0 + ๐‘Œ0 ) > ๐‘‹0 , which is
true for regions R1 โˆช R2 โˆช R3 . Thus for R4 the pole is
absent and along the transition curve R3 โˆฉ R4 (cf. (25))
the pole coalesces with the lower branch point, both being
at ๐‘ค = 1/โˆš๐‘‹0 (> 1). We can recast the integral in (241) by
using the conformal map ๐‘ข = ๐‘ง+ (๐‘ค), so that the inverse is
ฮ“
โˆš(1 + ๐‘‹0 + ๐‘Œ0 )2 โˆ’ 4๐‘‹0
(247)
๐‘„๐ฟ (๐‘›, ๐‘)
2
โ‹…โˆซ
๐‘Œ0
(ii) ๐‘, ๐‘› โ†’ โˆž with 0 โฉฝ ๐‘›/๐‘ < ๐œƒ1 , ๐œƒ1 = [(๐‘‹0 + ๐‘Œ0 )2 โˆ’
๐‘‹0 ]/๐‘Œ0 , for (๐‘‹0 , ๐‘Œ0 ) โˆˆ R1 โˆช R2 โˆช R3
๓ต„จ๓ต„จ
๓ต„จ
๓ต„จ๓ต„จ(๐‘‹0 + ๐‘Œ0 )2 โˆ’ ๐‘‹0 ๓ต„จ๓ต„จ๓ต„จ
๐‘‹0
๓ต„จ
๓ต„จ.
= ๐‘‹0 + ๐‘Œ0 +
โˆ’
๐‘‹0 + ๐‘Œ0
๐‘‹0 + ๐‘Œ0
๐‘„๐ฟ (๐‘›, ๐‘) =
[๐‘ง+ (0)]
๐‘!
๐œ‚=
(246)
and the integrand in (245) has a pole of order ๐‘ + 1 at ๐‘ข =
๐‘ง+ (0). Below we collect some asymptotic results for ๐‘„๐ฟ (๐‘›, ๐‘)
that will be used in the matching calculations.
Proposition 20. For ๐‘› and/or ๐‘ โ†’ โˆž the function ๐‘„๐ฟ (๐‘›, ๐‘)
has the following asymptotic expansions:
2
[(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0 ]
1
โˆš2๐œ‹
2
(251)
๐‘’โˆ’V /2 ๐‘‘V,
๐‘Œ0 โˆš๐‘
3
โˆš๐‘‹0 + ๐‘Œ0 โˆš(๐‘‹0 + ๐‘Œ0 ) + ๐‘‹0 + (๐‘‹0 + ๐‘Œ0 ) (๐‘Œ0 โˆ’ 2๐‘‹0 )
๐‘›
โˆ’ ) = ๐‘‚ (1) .
๐‘
(๐œƒ1
(252)
(v) ๐‘, ๐‘› โ†’ โˆž, 0 < ๐‘›/๐‘ โฉฝ โˆž, for region R4 .
The expression in (249) holds for all 0 < ๐‘›/๐‘ < โˆž and
(247) holds for ๐‘› โ†’ โˆž with ๐‘ = ๐‘‚(1).
28
Advances in Operations Research
(vi) ๐‘› = ๐‘‚(1), ๐‘ โ†’ โˆž, for region R4
๐‘„๐ฟ (๐‘›, ๐‘) โˆผ
โ‹…
and (257) is equivalent to the quadratic equation
๐‘
๐‘Œ0
๐‘„ (0, 0) ๐‘›/2โˆ’1/4
๐‘‹0
(
)
๐‘Œ0 + ๐‘Š0
2โˆš๐œ‹
(
โˆš๐‘Š0 + ๐‘Œ0 (1 โˆ’ โˆš๐‘‹0 )
(253)
โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0
โ‹… ๐‘โˆ’3/2 [๐‘› +
โˆš๐‘‹0
โˆš๐‘‹0 โˆ’ 1
+
โˆš๐‘‹0
โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0
].
(vii) ๐‘›, ๐‘ โ†’ โˆž with ๐‘› = ๐‘‚(โˆš๐‘), for region R3 โˆฉ R4 , with
๐‘Œ = โˆš๐‘‹0 โˆ’ ๐‘‹0 + ๐œŒโˆ’1/2 ๐›ฟ, ๐›ฟ = ๐‘‚(1)
๐‘{
{ โˆš1 โˆ’ โˆš๐‘‹0
๐‘Œ0
๐‘„ (0, 0) ๐‘›/2
๐‘‹0 (
) { 1/4
โˆš๐œ‹
๐‘Œ0 + ๐‘Š0 { ๐‘‹0 โˆš๐‘
{
๐‘„๐ฟ (๐‘›, ๐‘) โˆผ
โ‹… exp [
2
๐‘›2
๐›ฟ
1
โˆš
)] +
(1 โˆ’
4๐‘
๐œŒ
๐‘‹
โˆš๐‘‹0
โˆš
0
}
โˆž
}
2
โ‹… (โˆซ ๐‘’โˆ’V /2 ๐‘‘V)} ,
}
๐œ‚0
}
๐œ‚0 =
โˆš1 โˆ’ โˆš๐‘‹0 ๐‘›
โˆš2
โˆš๐‘๐›ฟ
โˆ’
.
1/4
โˆš2๐‘‹0
โˆš๐‘ โˆš1 โˆ’ โˆš๐‘‹ ๐‘‹1/4 โˆš๐œŒ
0 0
โˆ’๐‘›โˆ’1
[๐‘ง+ (๐‘ค)]
โˆผ [๐‘ง+ (0)]
โˆ’๐‘›โˆ’1
โˆ’๐‘›โˆ’1
[1 +
๐‘ค๐‘ง+๓ธ€  (0)
+ ๐‘‚ (๐‘ค2 )]
๐‘ง+ (0)
(256)
Note that (247) is not only asymptotically true but also an
exact expression when ๐‘ = 0, since ๐‘„(๐‘›, 0) satisfies the
boundary equation in (234). Turning to (245) we see that the
integrand has a simple pole at ๐‘ข = ๐‘ขโˆ— โ‰ก (๐‘‹0 + ๐‘Œ0 )/๐‘‹0 and
saddle point(s) where
(257)
2
1
< ๐‘ขโˆ— < ๐‘ข๐‘  < ๐‘ง+ (0)
โˆš๐‘‹0
โˆ’ ๐‘ log [(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘ข โˆ’ ๐‘‹0 ๐‘ข โˆ’ 1]} = 0,
(260)
and then the pole does not contribute as we dilate ฮ“ to the
saddle point contour. Setting
๐บ (๐‘ข) =
โ‹…
(1 โˆ’ ๐‘ข) (๐‘‹0 ๐‘ข2 โˆ’ 1)
(๐‘‹0 + ๐‘Œ0 ) ๐‘ข โˆ’ 1
1
,
๐‘ข2 [(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘ข โˆ’ ๐‘‹0 ๐‘ข2 โˆ’ 1]
(261)
๐‘›
๐‘›
๐น (๐‘ข) = ๐น (๐‘ข; ) = log ๐‘Œ0 + (1 โˆ’ ) log ๐‘ข
๐‘
๐‘
โˆ’ log [(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘ข โˆ’ ๐‘‹0 ๐‘ข2 โˆ’ 1]
we use for (245) the standard saddle point estimate
๐‘ง๓ธ€  (0)
โˆ’๐‘›โˆ’1
๐‘ค ).
โˆผ [๐‘ง+ (0)]
exp (โˆ’ +
๐‘ง+ (0) 1
๐‘‘
{(๐‘ โˆ’ ๐‘›) log ๐‘ข
๐‘‘๐‘ข
(259)
and we note that ๐‘ขโˆ— < ๐‘ง+ (0) is always true. Then we dilate
the small loop ฮ“ about ๐‘ข = ๐‘ง+ (0) to the saddle point contour
|๐‘ข โˆ’ ๐‘ง+ (0)| = |๐‘ข๐‘  โˆ’ ๐‘ง+ (0)|, which is a circular contour that
traverses the saddle ๐‘ข๐‘  in the steepest descent directions,
which are arg(๐‘ข โˆ’ ๐‘ข๐‘  ) = ±๐œ‹/2. But in doing the dilation
we must take into account the contribution from the residue
at the pole ๐‘ข = ๐‘ขโˆ— , in view of (259). It turns out that the
residue dominates the saddle point contribution, and we thus
obtain the expression in (248). For ๐‘›/๐‘ โˆˆ (๐œƒ1 , โˆž) we have the
ordering
(255)
The results in (247)โ€“(255) may be obtained by expanding
the integrals in (241) or (245) by a combination of singularity
analysis and the saddle point method. Good references on
asymptotic expansion of integrals are the books [15โ€“19], but
since these methods are now well established, we merely
sketch the proof of Proposition 20.
To obtain (247) we approximate the integrand in (241) for
๐‘ค = ๐‘‚(๐‘›โˆ’1 ), scaling ๐‘ค = ๐‘ค1 /๐‘› and using
(258)
One root of (258) is given by ๐‘ข๐‘  = ๐‘ข๐‘  (๐‘›/๐‘) in (250), and the
complementary root, with a minus sign in front of the square
root, will correspond to a second saddle which will not play
any role in the analysis. The pole ๐‘ขโˆ— and saddle ๐‘ข๐‘  , whose
location depends on the ratio ๐‘›/๐‘, coalesce when ๐‘›/๐‘ = ๐œƒ1 ,
for regions R1 , R2 , and R3 . Note also that as ๐‘›/๐‘ โ†’ โˆž we
have ๐‘ข๐‘  โ†’ ๐‘ง+ (0) and that the integrand in (245) has a zero at
๐‘ข = 1/โˆš๐‘‹0 . For region R1 โˆช R2 โˆช R3 and ๐‘›/๐‘ โˆˆ (0, ๐œƒ1 ) we
have the ordering
1
< ๐‘ข๐‘  < ๐‘ขโˆ— < ๐‘ง+ (0)
โˆš๐‘‹0
(254)
๐‘๐›ฟ2
๐‘›๐›ฟ
โ‹… exp [
]
โˆ’
๐œŒโˆš๐‘‹0 (1 โˆ’ โˆš๐‘‹0 ) โˆš๐œŒโˆš๐‘‹0
๐‘›
๐‘›
๐‘›
+ 1) ๐‘‹0 ๐‘ข2 โˆ’ (1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘ข + โˆ’ 1 = 0.
๐‘
๐‘
๐‘
1
1
โˆซ ๐บ (๐‘ข) ๐‘’๐‘๐น(๐‘ข) ๐‘‘๐‘ข =
โˆซ ๐บ (๐‘ข) ๐‘’๐‘๐น(๐‘ข) ๐‘‘๐‘ข
2๐œ‹๐‘– ฮ“
2๐œ‹๐‘– ฮ“๐‘ 
๐บ (๐‘ข๐‘  ) ๐‘๐น(๐‘ข๐‘  )
1
,
๐‘’
โˆผ
โˆš2๐œ‹๐‘ โˆš๐น๓ธ€ ๓ธ€  (๐‘ข )
(262)
๐‘ 
and this leads to the expression in (249). The transitional
result in (251) corresponds to ๐‘›/๐‘ โ‰ˆ ๐œƒ1 and then we have ๐‘ขโˆ— โ‰ˆ
๐‘ข๐‘  , so the saddle is close to a simple pole. Such situations are
discussed in detail in [15], and by expanding the integrand in
(245) about ๐‘ขโˆ— we ultimately obtain a simpler integrand that is
Advances in Operations Research
29
related to ๐ทโˆ’1 (โ‹…), the parabolic cylinder function of order โˆ’1,
which can in turn be expressed in terms of the standard error
function, leading to (251). Note that as ๐œ‚ โ†’ +โˆž we approach
the region ๐‘›/๐‘ < ๐œƒ1 and then (251) reduces to (248).
The pole at ๐‘ขโˆ— and zero at 1/โˆš๐‘‹0 coalesce when ๐‘‹0 +๐‘Œ0 =
โˆš๐‘‹0 , which is precisely the curve R3 โˆฉ R4 which separates
R3 from R4 in parameter space. For (๐‘‹0 , ๐‘Œ0 ) โˆˆ R4 we have
the ordering
๐‘ขโˆ— <
1
< ๐‘ข๐‘  < ๐‘ง+ (0) .
โˆš๐‘‹0
(263)
Then for any ๐‘›/๐‘ โˆˆ (0, โˆž) we can deform ฮ“ into the saddle
point contour and obtain (249) as the approximation to
๐‘„๐ฟ (๐‘›, ๐‘). The limits ๐‘› = ๐‘‚(1), ๐‘ โ†’ โˆž, and ๐‘› โ†’ โˆž,
๐‘ = ๐‘‚(1) require a separate analysis. For the latter ๐‘ข๐‘  becomes
close to ๐‘ง+ (0) and we again obtain (247), while for the former
the saddle ๐‘ข๐‘  gets close to zero at 1/โˆš๐‘‹0 . By expanding the
integrand near ๐‘ข = 1/โˆš๐‘‹0 , setting ๐‘ข = 1/โˆš๐‘‹0 + V/โˆš๐‘, we
obtain
where Br+ is a vertical contour in the complex V-plane, which
is to the right of the pole at V = ๐›ฟ/๐‘‹0 . The integral in (266)
may be evaluated as a combination of a Gaussian and an error
function, and this ultimately leads to (254) with (255). Since
the large parameter ๐œŒ appears explicitly in (254) and (266)
we can define the asymptotic limit more precisely, as ๐œŒ โ†’ โˆž
with ๐‘Œ0 + ๐‘‹0 โˆ’ โˆš๐‘‹0 = ๐‘‚(๐œŒโˆ’1/2 ), ๐‘ = ๐‘‚(๐œŒ), and ๐‘› = ๐‘‚(โˆš๐œŒ).
With Proposition 20 we are now ready to relate the corner
approximation ๐‘„๐ฟ (๐‘›, ๐‘) to the various ray expansions, via
asymptotic matching. First consider parameter region R1 โˆช
R2 โˆช R3 , so that D0 and D+ come together at the corner
point (๐‘‹0 , ๐‘Œ0 ). In D+ the function ฮจ+ (๐‘‹, ๐‘Œ) can be expanded
in Taylor series about (๐‘‹, ๐‘Œ) = (๐‘‹0 , ๐‘Œ0 ) and as (๐‘‹, ๐‘Œ) โ†’
(๐‘‹0 , ๐‘Œ0 ) we obtain
๐ถ (๐œŒ) ๐พ+ (๐‘‹, ๐‘Œ) ๐‘’๐œŒฮจ+ (๐‘‹,๐‘Œ) โˆผ ๐ถ (๐œŒ) ๐พ+ (๐‘‹0 , ๐‘Œ0 )
โ‹… ๐‘’๐œŒฮจ+ (๐‘‹0 ,๐‘Œ0 ) exp [๐œŒ (๐‘‹ โˆ’ ๐‘‹0 ) ฮจ+,๐‘‹ (๐‘‹0 , ๐‘Œ0 )
+ ๐œŒ (๐‘Œ โˆ’ ๐‘Œ0 ) ฮจ+,๐‘Œ (๐‘‹0 , ๐‘Œ0 )] = ๐ถ (๐œŒ)
๐‘
๐‘‹0
๐‘Œ0
๐‘„๐ฟ (๐‘›, ๐‘) = ๐‘„๐ฟ (0, 0) (โˆš๐‘‹0 ) (
)
๐‘Œ0 + ๐‘Š0
๐‘Œ0 + ๐‘Š0
๐‘›
โ‹…
2
โ‹…
1 ๐‘–โˆž V
1
[2โˆš๐‘‹0 (โˆš๐‘‹0 โˆ’ 1)
โˆซ
๐‘‹0 + ๐‘Œ0 โˆ’ โˆš๐‘‹0 2๐œ‹๐‘– โˆ’๐‘–โˆž ๐‘
โˆ’
๐‘‹0 + ๐‘Œ0 โˆ’ โˆš๐‘‹0
.
(265)
Evaluating the integral(s) in (264) we obtain (253). Note that
the coefficient of the ๐‘‚(๐‘โˆ’1 ) term in the integral is zero, so
the result is ๐‘‚(๐‘โˆ’3/2 ).
When ๐‘Œ0 + ๐‘‹0 โ‰ˆ โˆš๐‘‹0 the pole at ๐‘ขโˆ— and zero at 1/โˆš๐‘‹0
are close together. If ๐‘›, ๐‘ โ†’ โˆž so that ๐‘›/๐‘ remains fixed and
positive, the saddle lies well to the right of these, and then
(249) holds. But if ๐‘›, ๐‘ โ†’ โˆž with ๐‘› = ๐‘‚(โˆš๐‘) then the
saddle, pole, and zero are all close. Then we must reexamine
the integrand in (245) and expand it about ๐‘ข = 1/โˆš๐‘‹0 .
Again setting V = โˆš๐œŒ(๐‘ข โˆ’ 1/โˆš๐‘‹0 ) = ๐‘‚(1) and replacing
๐‘Œ0 by โˆš๐‘‹0 โˆ’ ๐‘‹0 + ๐›ฟ/โˆš๐œŒ (with ๐›ฟ = ๐‘‚(1)), (245) becomes
asymptotically
๐‘„๐ฟ (๐‘›, ๐‘) โˆผ ๐‘„ (0, 0) ๐‘‹0๐‘›/2 (
โ‹…โˆซ
Br+
+
๐‘
2โˆš๐‘‹0 1
๐‘Œ0
)
๐‘Œ0 + ๐‘Š0
โˆš๐œŒ 2๐œ‹๐‘–
๐‘‹0 V
๐‘›
โˆš๐‘‹0 V
exp [โˆ’
๐‘‹0 V โˆ’ ๐›ฟ
โˆš๐œŒ
3/2
๐‘ ๐‘‹0
V2 ] ๐‘‘V,
๐œŒ ๐‘Œ0 + ๐‘Š0
๐‘›
๐‘‹0
) (๐‘‹0
๐‘‹0 + ๐‘Œ0
๐‘
where
2๐‘‹03/2 (โˆš๐‘‹0 โˆ’ 1)
(๐‘‹0 + ๐‘Œ0 )
(267)
โˆš2๐œ‹
+ ๐‘Œ0 ) ,
๐‘‹3/2 V2
๐‘‹02
V3
) ๐‘‘V,
] exp ( 0
๐‘Œ0 + ๐‘Š0 โˆš๐‘
๐‘Œ0 + ๐‘Š0
B = โˆ’5๐‘‹03/2 + 3๐‘‹0 +
5/2
โ‹… ๐‘’๐œŒ[๐‘‹0 +๐‘Œ0 โˆ’1โˆ’(๐‘‹0 +๐‘Œ0 )log(๐‘‹0 +๐‘Œ0 )] (
(264)
V
V
+B
+ ๐‘‚ (๐‘โˆ’1 )] [1 โˆ’ โˆš๐‘‹0 ๐‘›
] [1
โˆš๐‘
โˆš๐‘
(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0
(266)
where we used ๐œŒ(๐‘‹ โˆ’ ๐‘‹0 ) = โˆ’๐‘› and ๐œŒ(๐‘Œ โˆ’ ๐‘Œ0 ) = โˆ’๐‘. Near
ฬƒ
๐‘‹ = ๐‘‹0 , the curve ๐‘Œ = ๐‘Œ(๐‘‹)
that separates D0 from D+ has
๓ธ€ 
ฬƒ
ฬƒ
the slope ๐‘Œ (๐‘‹0 ) = ๐‘Œ0 /[(๐‘‹0 + ๐‘Œ0 )2 โˆ’ ๐‘‹0 ] so that ๐‘Œ(๐‘‹)
can be
๓ธ€ 
ฬƒ (๐‘‹0 )(๐‘‹ โˆ’ ๐‘‹0 ),
approximated by the straight line ๐‘Œ โˆ’ ๐‘Œ0 = ๐‘Œ
which is the same as ๐‘/๐‘› = 1/๐œƒ1 . Then D+ meets the corner
in the sector ๐‘›/๐‘ โˆˆ [0, ๐œƒ1 ), and this corresponds precisely to
where the asymptotic result (248) applies. Comparing (267)
to (248) we see that the matching is possible, if ๐‘„(0, 0) and
๐ถ(๐œŒ) are related by
๐ถ (๐œŒ)
โˆผ โˆš2๐œ‹โˆš๐‘‹0 + ๐‘Œ0 ๐‘’๐œŒ[1โˆ’๐‘‹0 โˆ’๐‘Œ0 +(๐‘‹0 +๐‘Œ0 )log(๐‘‹0 +๐‘Œ0 )] ๐‘„ (0, 0)
(268)
and this holds throughout R1 โˆช R2 โˆช R3 . For R1 โˆช R2
we have previously determined that ๐ถ(๐œŒ) โˆผ ๐œŒโˆ’1/2 and thus
(268) determines ๐‘„(0, 0), as in (30). For region R3 we have
๐‘„(0, 0) โˆผ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 and then (268) leads to (33). For
R1 โˆฉR2 , corresponding to ๐‘‹0 +๐‘Œ0 โˆ’1 = ๐›พ/โˆš๐œŒ = ๐‘‚(๐œŒโˆ’1/2 ), the
approximation in (208) holds for ๐‘› = ๐‘‚(1) and ๐‘Œ โˆ’ (1 โˆ’ ๐‘‹0 ) =
๐‘‚(๐œŒโˆ’1/2 ), but now the upper boundary ๐‘Œ = ๐‘Œ0 lies within this
range. Then applying the normalization condition in (10) to
(208) leads to
1
โˆž โˆž
๐œŒ
๐ถ
2
(1 โˆ’ ๐‘‹0 ) ๐‘‹0๐‘› exp [โˆ’ (๐‘Œ + ๐‘‹0 โˆ’ 1) ]
โˆš
2
2๐œ‹
๐‘=0 ๐‘›=0
โˆผโˆ‘โˆ‘
30
Advances in Operations Research
2
๐œŒ ๐›พ
๐‘
๐ถ โˆž
=
โˆ’ )]
โˆ‘ exp [โˆ’ (
โˆš2๐œ‹ ๐‘=0
2 โˆš๐œŒ ๐œŒ
โˆผ
if we approach the corner along any straight line (excluding
slopes 0 and โˆž) we are approaching from within D0 . By the
asymptotic matching principle, the expansion of ๐‘„๐ฟ (๐‘›, ๐‘) for
๐‘›, ๐‘ โ†’ โˆž should agree with the expansion of ๐ถ0 ๐พ๐‘’๐œŒฮจ as
๐‘‹ โ†’ ๐‘‹0 , ๐‘Œ โ†’ ๐‘Œ0 . Thus in D0 we must compare (249) to
(225). But from (250) and (223) we see that (1 โˆ’ ๐ด ๐‘  )๐‘ข๐‘  = 1
and from (67) we obtain
โˆž
๐›พ
2
2
โˆš๐œŒ
โˆš๐œŒ
๐ถ โˆซ ๐‘’โˆ’(๐›พโˆ’V) /2 ๐‘‘V =
๐ถ โˆซ ๐‘’โˆ’V /2 ๐‘‘V
โˆš2๐œ‹ 0
โˆš2๐œ‹ โˆ’โˆž
(269)
and then ๐ถ is given by (33). Then ๐‘„๐ฟ (0, 0) โˆผ ๐‘„(0, 0) can
be computed from (268), and since ๐œŒ[1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 + (๐‘‹0 +
๐‘Œ0 )log(๐‘‹0 + ๐‘Œ0 )] โˆผ ๐›พ2 /2, we obtain the expression in (29). We
have thus determined both ๐‘„(0, 0) and ๐ถ(๐œŒ) for all cases of
the parameters ๐‘‹0 , ๐‘Œ0 .
To match ๐‘„(๐‘›, ๐‘) to the ray expansion in D0 we note that,
for regions R1 โˆช R2 โˆช R3 , D0 meets the corner over the
sector ๐‘›/๐‘ โˆˆ (๐œƒ1 , โˆž), while for region R4 this holds for all
๐‘›/๐‘ โˆˆ (0, โˆž). We recall that for R4 the curve ๐‘Œ = ๐‘Œ๐‘ (๐‘‹)
separates D0 from Dโˆ’ , but this curve has infinite slope at
๐‘‹ = ๐‘‹0 and is thus tangent to the line ๐‘‹ = ๐‘‹0 at ๐‘Œ = ๐‘Œ0 . So
1 โˆ’ ๐ต๐‘  =
๐‘Œ0 ๐‘ข๐‘ 
.
(๐‘‹0 + ๐‘Œ0 โˆ’ 1) ๐‘ข๐‘  โˆ’ 1 โˆ’ ๐‘‹0 ๐‘ข๐‘ 2
It follows that
๐‘›
(1 โˆ’ ๐ด ๐‘  ) (1 โˆ’ ๐ต๐‘  )
= ๐‘ข๐‘ โˆ’๐‘› {
๐‘
๐‘
๐‘ข๐‘  ๐‘Œ0
}
[(1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘ข๐‘  โˆ’ 1 โˆ’ ๐‘‹0 ๐‘ข๐‘ 2 ]
๐œŒ
๐‘‹0
4๐‘‹0
)โˆ’
]
โˆš [(1 + ๐‘‹0 + ๐‘Œ0 ) (1 +
2
1 โˆ’ ๐ด๐‘ 
โˆš1 โˆ’ ๐ด ๐‘  (1 โˆ’ ๐ต๐‘  ) ๐‘
(1 โˆ’ ๐ด ๐‘  )
โˆ’1/2
2
2
2
2
2
๐‘„ (0, 0) (1 โˆ’ ๐‘ข๐‘  ) (๐‘‹0 ๐‘ข๐‘  โˆ’ 1) [๐‘› (1 + ๐‘‹0 + ๐‘Œ0 ) + 4 (๐‘ โˆ’ ๐‘› ) ๐‘‹0 ]
โˆผ
โˆš2๐œ‹
๐‘ข3/2 (๐‘‹ + ๐‘Œ โˆ’ ๐‘‹ ๐‘ข ) โˆš(1 + ๐‘‹ + ๐‘Œ ) ๐‘ข โˆ’ 1 โˆ’ ๐‘‹ ๐‘ข2
0
0
Using (258) to express ๐‘›/๐‘ in terms of ๐‘ข๐‘  , after some
calculation we find that
(1 + ๐‘‹0 + ๐‘Œ0 )
=[
2
๐‘›2
๐‘›2
+
4๐‘‹
(1
โˆ’
)
0
๐‘2
๐‘2
(๐‘‹0 ๐‘ข๐‘ 2 + 1) (1 + ๐‘‹0 + ๐‘Œ0 ) โˆ’ 4๐‘‹0 ๐‘ข๐‘ 
๐‘‹0 ๐‘ข๐‘ 2 + 1 โˆ’ (1 + ๐‘‹0 + ๐‘Œ0 ) ๐‘ข๐‘ 
2
(273)
] .
Then choosing ๐ถ0 (๐œŒ) = ๐‘„๐ฟ (0, 0)/โˆš๐œŒ we have
๐ถ0 (๐œŒ) โˆผ
1
๐‘„ (0, 0)
โˆš๐œŒ
(R1 โˆช R2 โˆช R3 โˆช R4 ) .
(274)
Then we use (273) to simplify (272) to
๐พ0 (๐ด ๐‘  ) โˆš๐‘Œ0
โˆš1 โˆ’ ๐ด ๐‘  (1 โˆ’ ๐ต๐‘  )
=
๐‘‹0 ๐‘ข๐‘ 2 โˆ’ 1
1 1 โˆ’ ๐‘ข๐‘ 
โˆš2๐œ‹ ๐‘ข๐‘ 3/2 ๐‘‹0 + ๐‘Œ0 โˆ’ ๐‘‹0 ๐‘ข๐‘ 
2
๐ด ๐‘  [(1 โˆ’ ๐ด ๐‘  ) โˆ’ ๐‘‹0 ]
1
=
โˆš2๐œ‹ โˆš1 โˆ’ ๐ด ๐‘  [๐‘Œ0 โˆ’ (๐‘‹0 + ๐‘Œ0 ) ๐ด ๐‘  ]
(275)
so we have determined the functional form of ๐พ0 (โ‹…), and
(275) along with (219) leads to (70). We have thus completely
determined the ray expansion in D0 , as ๐ถ0 is known for all
parameter regions R๐‘— via (274).
(271)
and the matching is possible if
๐ถ0 ๐พ0 (๐ด ๐‘  ) โˆš๐‘Œ0
๐‘ 
(270)
0 ๐‘ 
0
0
๐‘ 
(272)
โˆ’1/4
.
0 ๐‘ 
It remains only to determine the constant ๐ถ1 in the caustic
ray expansion, for regions R4 and R3 โˆฉ R4 (๐‘‹0 + ๐‘Œ0 โ‰ˆ
โˆš๐‘‹0 ) (for R3 , ๐ถ1 can be inferred from (214)). For this we
must relate ๐‘„(0, 0) to ๐ถ1 (๐œŒ) by asymptotic matching, but this
matching will require the analysis of another scale, which is
intermediate to the (๐‘‹, ๐‘Œ) and (๐‘›, ๐‘) scales. This analysis is
carried out in the next subsection.
4.3. Analysis of the Scale ๐‘˜ = ๐‘šโˆ’๐‘‚(๐œŒ1/3 ), ๐‘Ÿ = ๐‘…โˆ’๐‘‚(๐œŒ2/3 ). We
will consider ๐‘š โˆ’ ๐‘˜ = ]1 ๐œŒ1/3 = ๐‘‚(๐œŒ1/3 ) and ๐‘… โˆ’ ๐‘Ÿ = ๐‘‡1 ๐œŒ2/3 =
๐‘‚(๐œŒ2/3 ). Then ๐‘‹0 โˆ’ ๐‘‹ = ๐‘‚(๐œŒโˆ’2/3 ) and ๐‘Œ0 โˆ’ ๐‘Œ = ๐‘‚(๐œŒโˆ’1/3 )
so we are examining the vicinity of the corner point (๐‘‹0 , ๐‘Œ0 )
along parabolas, where (๐‘Œ0 โˆ’ ๐‘Œ)2 /(๐‘‹0 โˆ’ ๐‘‹) is constant. We
note that the scale ๐‘˜ = ๐‘š โˆ’ ๐‘‚(๐œŒ1/3 ) (with ๐‘Ÿ = ๐œŒ๐‘Œ and
๐‘Œ > 0) was also important in the analysis of the model with
๐‘… = โˆž (see [10]). There, a more geometric interpretation
is given, in terms of caustic rays and caustic boundaries and
also in terms of sample paths of large deviations. Since the
caustic rays in region Dโˆ’ cannot fill the entire domain (for
parameter regions R4 and R3 โˆฉ R4 ) we would expect a
boundary effect near ๐‘Œ = ๐‘Œ0 or ๐‘Ÿ = ๐‘…. The corner scale
๐‘˜ = ๐‘š โˆ’ ๐‘‚(1), ๐‘Ÿ = ๐‘… โˆ’ ๐‘‚(1) that we analyzed in Section 4.2
is insufficient for fully understanding this boundary effect,
and hence we analyze the scaling ๐‘Ÿ = ๐‘… โˆ’ ๐‘‚(๐œŒ2/3 ), which
will connect the cases ๐‘Ÿ = ๐‘… โˆ’ ๐‘‚(1) and ๐‘Ÿ = ๐œŒ๐‘Œ, ๐‘Œ < ๐‘Œ0 .
We cannot give an a priori probabilistic argument of why this
scale is needed but mention that it leads to an interesting PDE,
namely, (285), and such problems arise in many other areas,
Advances in Operations Research
31
including queues with time-dependent arrival rates (see [20])
and steady two-dimensional convection-diffusion problems
past curved obstacles (see [21]).
We first set
๐‘›
๐‘„ (๐‘›, ๐‘) = (โˆš๐‘‹0 ) (
๐‘
๐‘Œ0
) Q (๐‘›, ๐‘)
๐‘Œ0 + ๐‘Š0
[1 + ๐‘‹0 + ๐‘Œ0 โˆ’ ๐œŒ (๐‘› + ๐‘)] Q (๐‘›, ๐‘)
๐‘Š0 + ๐‘Œ0
] Q (๐‘›, ๐‘ โˆ’ 1)
๐‘Œ0
1
] Q (๐‘› โˆ’ 1, ๐‘)
โˆš๐‘‹0
(277)
๐‘‡1 =
โ‹… Q (๐‘›, ๐‘) โˆ’ [๐‘Š0 + ๐‘Œ0 + ๐œŒ
+ ๐‘Œ0
(1 โˆ’ ๐‘)]
๐‘Œ0
5/3
๐‘2
๐‘Š0
] Q (๐‘›, ๐‘)
2๐‘Œ0 (๐‘Š0 + ๐‘Œ0 ) ๐œŒ
๐‘Š0
๐œŒ1/3 ๐‘‡12 ] Q (๐‘›, ๐‘)
2๐‘Œ0 (๐‘Š0 + ๐‘Œ0 )
Q (]1 , ๐‘‡1 ) =
(278)
(279)
(281)
2
๐‘Œ02 (๐‘Š0 + ๐‘Œ0 )
๐œŒ
๐‘Ž๐œŒ
Q๐‘’
๐‘„ (0, 0)
(๐‘Š0 + ๐‘Œ0 )
(284)
,
where we isolated dominant term in (281) on the scale ๐‘ =
๐‘‚(๐œŒ2/3 ). Setting ๐‘ = ๐œŒ2/3 ๐‘‡1 and ๐‘› = ๐œŒ1/3 ]1 , multiplying (278)
(285)
Including the exponential factor in (284) allows us to eliminate the last term in the left-hand side of (282), while the other
factors (such as ๐œŒโˆ’2/3 and ๐‘„(0, 0)) are purely for convenience.
We will show, by asymptotic matching between the (๐‘›, ๐‘)
and (], ๐‘‡) scales, that Q must be proportional to ๐‘„(0, 0),
and including the factor ๐œŒโˆ’2/3 in (284) will lead to F being
asymptotically ๐‘‚(1).
Next we examine the boundary condition in (18), which
can be also written as (๐‘‹0 + ๐œŒโˆ’1 )๐‘ƒ(๐‘‹0 + ๐œŒโˆ’1 , ๐‘Œ) = ๐‘ƒ(๐‘‹0 , ๐‘Œ โˆ’
๐œŒโˆ’1 ), or, using the (๐‘›, ๐‘) variables, as
(286)
In view of (276) and (279) we can also write (286) as
(โˆš๐‘‹0 +
2
4๐‘Ž2 ๐‘2
4๐‘Ž๐‘
2๐‘Ž
=( 2 Q+
Q๐‘ + Q + Q๐‘๐‘ ) ๐‘’๐‘Ž๐‘ /๐œŒ
๐œŒ
๐œŒ
๐œŒ
๐‘‡12
(โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’
๐‘Œ0 ) ๐‘‹01/6
(๐‘‹0 + ๐œŒโˆ’1 ) ๐‘„ (โˆ’1, ๐‘) = ๐‘„ (0, ๐‘ + 1) .
2
2๐‘Ž๐‘
๐‘Š0
Q + Q๐‘ ) ๐‘’๐‘Ž๐‘ /๐œŒ , ๐‘Ž = โˆ’
, (280)
๐œŒ
2๐‘Œ0 (๐‘Š0 + ๐‘Œ0 )
1/3
๐œŒโˆ’2/3 (1 โˆ’ โˆš๐‘‹0 )
๐‘‡3 ๐‘Š (๐‘Š + 2๐‘Œ0 )
] F (], ๐‘‡)
โ‹… exp [โˆ’ 1 0 0
6 ๐‘Œ2 (๐‘Š0 + ๐‘Œ0 )2
1 โˆ’1
๐œŒ ) Q (โˆ’1, ๐‘)
โˆš๐‘‹0
๐‘Œ0
Q (0, ๐‘ + 1)
=
๐‘Œ0 + ๐‘Š0
so that
โˆผ
๐‘‡
F]] โˆ’ ]F = F๐‘‡ ; ] > 0, ๐‘‡ > 0.
where the error term(s) involve derivatives of Q of order โฉพ 3
and terms of order ๐‘‚(๐œŒโˆ’1 ๐‘Q๐‘๐‘ ). We furthermore set
โˆ’2/3
2/3
(1 โˆ’ โˆš๐‘‹0 )
(283)
we obtain from (282) the separable, parabolic PDE
1
(๐‘› โˆ’ 1) Q๐‘› (๐‘›, ๐‘) + โˆš๐‘‹0 Q๐‘›๐‘› (๐‘›, ๐‘) + โ‹… โ‹… โ‹… ,
โˆš๐‘‹0
๐‘Š02 ๐‘‡12
(๐‘Œ0 + ๐‘Š0 ) ๐‘‹01/6
],
0
โˆ’1 ๐‘Š0
1
โ‹… Q๐‘ (๐‘›, ๐‘) + (๐‘Š0 + ๐‘Œ0 ) Q๐‘๐‘ (๐‘›, ๐‘) + ๐œŒโˆ’1
2
Q๐‘๐‘
๐‘‹0
)
1 โˆ’ โˆšX0
and letting
๐‘Š + ๐‘Œ0
1
(1 โˆ’ ๐‘) +
0 = ๐œŒ [๐‘› + ๐‘ + 0
(1 โˆ’ ๐‘›)]
๐‘Œ0
โˆš๐‘‹0
Q๐‘ = (
(282)
1/3
โˆ’1
= exp [โˆ’
๐œ•2 Q
1
๐œ•Q
+ ]1 (1 โˆ’
) Q โˆ’ (๐‘Š0 + ๐‘Œ0 )
๐œ•๐‘‡1
๐œ•]21
โˆš๐‘‹0
๐‘Š (๐‘Š + 2๐‘Œ0 ) 2
โˆ’ 02 0
๐‘‡ Q = 0,
2๐‘Œ0 (๐‘Š0 + ๐‘Œ0 ) 1
To obtain a limiting PDE on the (]1 , ๐‘‡1 ) scale, we first
formally expand (277) using Q(๐‘›±1, ๐‘) = Q(๐‘›, ๐‘)±Q๐‘› (๐‘›, ๐‘)+
(1/2)Q๐‘›๐‘› (๐‘›+๐‘)+โ‹… โ‹… โ‹… , where we anticipate that ๐‘› will be scaled
to be large, with ๐‘› = ๐‘‚(๐œŒ1/3 ) and also ๐‘ = ๐‘‚(๐œŒ2/3 ). We thus
rewrite (277) as
Q (๐‘›, ๐‘) = exp [โˆ’
, and using (279)โ€“(281), we obtain the limiting
]1 = (
+ โˆš๐‘‹0 Q (๐‘› + 1, ๐‘) .
โ‹…
๐‘‡12
which applies over the quarter plane ]1 > 0, ๐‘‡1 > 0, and
we now view Q as a function of (]1 , ๐‘‡1 ) instead of (๐‘›, ๐‘). By
rescaling ]1 and ๐‘‡1 using
โˆ’1
+ [โˆš๐‘‹0 + ๐œŒโˆ’1 (1 โˆ’ ๐‘›)
โˆš๐‘‹0
(276)
with which the main balance equation (228) becomes
= [๐‘Š0 + ๐‘Œ0 + ๐œŒโˆ’1 (1 โˆ’ ๐‘)
1/3
by ๐œŒ2/3 ๐‘’โˆ’๐‘Ž๐œŒ
PDE
(287)
or
(โˆš๐‘‹0 +
๐‘Œ0
1 โˆ’1
๐œŒ ) Q (โˆ’1, ๐‘) =
๐‘Œ0 + ๐‘Š0
โˆš๐‘‹0
๐‘Œ0
๐‘Ž
โ‹… exp [ (2๐‘ + 1)] Q (0, ๐‘ + 1) =
[1
๐œŒ
๐‘Œ0 + ๐‘Š0
โˆ’
๐‘Š0
๐œŒโˆ’1/3 ๐‘‡1 + ๐‘‚ (๐œŒโˆ’2/3 )] Q (0, ๐‘ + 1) ,
๐‘Œ0 (๐‘Š0 + ๐‘Œ0 )
where we used also (280) and (284).
(288)
32
Advances in Operations Research
]1 /โˆš๐‘‡1 fixed. But ๐‘› = ๐œŒ1/3 ]1 , ๐‘ = ๐œŒ2/3 ๐‘‡1 , and (283) shows
that
On the (]1 , ๐‘‡1 ) scale we have
Q (โˆ’1, ๐‘) = Q (โˆ’๐œŒโˆ’1/3 , ๐‘‡1 )
= Q (0, ๐‘‡1 ) + ๐‘‚ (๐œŒโˆ’1/3 ) ,
Q (0, ๐‘ + 1) = Q (0, ๐‘‡1 + ๐œŒโˆ’2/3 )
2
โˆš๐‘‹0 ]2
๐‘›2 ] 1
=
=
,
๐‘
๐‘‡1 ๐‘Š0 + ๐‘Œ0 ๐‘‡
(289)
2/3
(1 โˆ’ โˆš๐‘‹0 ) ๐‘‹01/12 ]
๐‘›
=
.
3/2 ๐‘‡3/2
๐‘3/2
๐œŒ2/3 (๐‘Š0 + ๐‘Œ0 )
= Q (0, ๐‘‡1 ) + ๐‘‚ (๐œŒโˆ’2/3 )
so as long as โˆš๐‘‹0 =ฬธ ๐‘Œ0 /(๐‘Œ0 + ๐‘Š0 ) we conclude from (288)
that Q must vanish along ]1 = 0 for all ๐‘‡1 > 0, and thus, in
view of (284) so must F; hence
F (0, ๐‘‡) = 0, ๐‘‡ > 0.
(290)
The case where โˆš๐‘‹0 = ๐‘Œ0 /(๐‘Œ0 + ๐‘Š0 ) corresponds to R3 โˆฉ
R4 , and then the boundary condition will become more
complicated. First we analyze the interior of R4 where (290)
holds.
To analyze (285) with (290), we first derive the behavior of
F as ], ๐‘‡ โ†’ 0, by matching the expansions on the (๐‘›, ๐‘) and
(], ๐‘‡) scales. To this end we need, for region R4 , the behavior
of ๐‘„๐ฟ (๐‘›, ๐‘) for ๐‘›, ๐‘ โ†’ โˆž with ๐‘› = ๐‘‚(โˆš๐‘). This asymptotic
limit lies in the asymptotic matching region between (249)
(which applies for 0 < ๐‘›/๐‘ < โˆž for region R4 ) and (253),
which applies for ๐‘ โ†’ โˆž but with ๐‘› = ๐‘‚(1). Setting ๐‘ข =
1/โˆš๐‘‹0 +V/โˆš๐‘ in the integral in (245) and shifting the contour
ฮ“ toward Re(๐‘ข) = 1/โˆš๐‘‹0 we obtain
๐‘›
๐‘„๐ฟ (๐‘›, ๐‘) โˆผ ๐‘„ (0, 0) (โˆš๐‘‹0 ) (
2๐‘‹03/2
(291)
๐‘ข
โˆผ
๐‘›
โˆš๐‘‹0 V) (292)
โˆš๐‘
๐‘›
(โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐‘3/2
โ‹… exp (โˆ’
๐‘‡ > 0.
(296)
(297)
(298)
Introducing the Laplace transform
(299)
(296) becomes
ฬ‚ = โˆ’๐›ฟ (] โˆ’ ]0 ) , ] > 0
ฬ‚ ]] โˆ’ (] + ๐œƒ) F
F
(293)
2
๐‘Š0 + ๐‘Œ0 ๐‘›
);
4โˆš๐‘‹0 ๐‘
๐‘›, ๐‘ ๓ณจ€โ†’ โˆž with ๐‘› = ๐‘‚ (โˆš๐‘) .
By asymptotic matching the expansion on the (]1 , ๐‘‡1 ) scale
must behave as the right side of (293), when ]1 , ๐‘‡1 โ†’ 0 with
(300)
ฬ‚ ๐œƒ) = 0. The problem in (300) is a
and (298) implies that F(0,
standard Greenโ€™s function problem with solution
ฬ‚ = โˆ’๐œ‹ Ai (]0 + ๐œƒ) [Ai (] + ๐œƒ) Bi (๐œƒ)
F
Ai (๐œƒ)
โˆ’ Bi (] + ๐œƒ) Ai (๐œƒ)] ,
(1 โˆ’ โˆš๐‘‹0 ) โˆš๐‘Š0 + ๐‘Œ0
๐‘‹01/4
]0 > 0
0
๐‘
๐‘›
๐‘Œ0
๐‘„ (0, 0)
(โˆš๐‘‹0 ) (
)
๐‘Œ0 + ๐‘Š0
2โˆš๐œ‹
โ‹…
Fโˆ—]] โˆ’ ]Fโˆ— = Fโˆ—๐‘‡ ; ] > 0, ๐‘‡ > 0
โˆž
and approximated ฮ“ by a vertical contour. Evaluating the
integral in (291) explicitly we conclude that
๐‘„๐ฟ (๐‘›, ๐‘) โˆผ
Note that (295) is consistent with the boundary condition in
(290) along ] = 0. The exponential factors in (279) and (284)
do not enter the matching condition, since ๐‘‡1 = ๐‘‚(1) and
๐œŒ1/3 ๐‘‡12 = ๐œŒโˆ’1 ๐‘2 , and we can choose ๐‘ so that ๐‘ = ๐‘œ(๐œŒ1/2 ) in
the matching region.
To solve (285) subject to (295) it is useful to view the
function (๐œ‹๐‘‡)โˆ’1/2 exp[โˆ’]2 /(4๐‘‡)] as being an approximation
to the delta function ๐›ฟ(]) for ๐‘‡ โ†’ 0, with the mass
concentrated in the range ] > 0. Then the right side of (295)
corresponds to the dipole โˆ’๐›ฟ๓ธ€  (]). Consider the problem
ฬ‚=F
ฬ‚ (], ๐œƒ; ]0 ) = โˆซ ๐‘’โˆ’๐œƒ๐‘‡ Fโˆ— (], ๐‘‡; ]0 ) ๐‘‘๐‘‡,
F
Here we used
๐‘‹0๐‘›/2 exp (โˆ’
(295)
], ๐‘‡ ๓ณจ€โ†’ 0 with ] = ๐‘‚ (โˆš๐‘‡) .
Fโˆ— (0, ๐‘‡) = 0,
๐‘‹03/2 2
๐‘›
โˆš๐‘‹0 V +
โ‹… โˆซ V exp [โˆ’
V ] ๐‘‘V.
๐‘Š0 + ๐‘Œ0
โˆš๐‘
โˆ’๐‘–โˆž
โˆ’๐‘›
]2
]
exp
(โˆ’
);
4๐‘‡
2โˆš๐œ‹๐‘‡3/2
Fโˆ— (], 0) = ๐›ฟ (] โˆ’ ]0 ) ,
๐‘–โˆž
1
V
=(
+
)
โˆš๐‘‹0 โˆš๐‘
F (], ๐‘‡) โˆผ
๐‘Œ0
)
๐‘Š0 + ๐‘Œ0
1
โ‹…
๐‘ (๐‘Š0 + ๐‘Œ0 ) (๐‘‹0 + ๐‘Œ0 โˆ’ โˆš๐‘‹0 ) 2๐œ‹๐‘–
โˆ’๐‘›
Then comparing (293) with (276) (using (279) and (284)) we
conclude that
๐‘
(โˆš๐‘‹0 โˆ’ 1)
(294)
(301)
0 < ] < ]0 ,
ฬ‚ = โˆ’๐œ‹ Ai (] + ๐œƒ) [Ai (]0 + ๐œƒ) Bi (๐œƒ)
F
Ai (๐œƒ)
(302)
โˆ’ Bi (]0 + ๐œƒ) Ai (๐œƒ)] , ] > ]0 ,
where Ai(โ‹…) and Bi(โ‹…) are the Airy functions. Then the solution
F to (285) will be
๓ต„จ๓ต„จ
๐œ•
๓ต„จ
F (], ๐‘‡; ]0 )๓ต„จ๓ต„จ๓ต„จ
.
F (], ๐‘‡) =
(303)
๓ต„จ๓ต„จ] =0
๐œ•]0
0
Advances in Operations Research
33
By differentiating (302) with respect to ]0 , setting ]0 = 0, and
noting the Wronskian identity Ai(๐œƒ)Bi๓ธ€  (๐œƒ)โˆ’Ai๓ธ€  (๐œƒ)Bi(๐œƒ) = ๐œ‹โˆ’1
we find that
ฬ‚ ๓ต„จ๓ต„จ๓ต„จ
๐œ•F
Ai (] + ๐œƒ)
๓ต„จ๓ต„จ
, ] > 0.
=
(304)
๓ต„จ
๐œ•]0 ๓ต„จ๓ต„จ๓ต„จ]0 =0
Ai (๐œƒ)
Inverting the Laplace transform in (299) leads to F(], ๐‘‡) in
(170), so we have established the expansion on the (]1 , ๐‘‡1 )
scale. We can also easily verify that (295) is indeed satisfied,
since
1 ๐‘‘ ๐‘–โˆž Ai (] + ๐œƒ) ๐œƒ๐‘‡
๐‘’ ๐‘‘๐œƒ
F (], ๐‘‡) =
โˆซ
2๐œ‹๐‘– ๐‘‘๐‘‡ โˆ’๐‘–โˆž Ai (๐œƒ)
1 ๐‘‘ ๐‘–โˆž ๐‘’๐œƒ๐‘‡โˆ’]
โˆผ
โˆซ
2๐œ‹๐‘– ๐‘‘๐‘‡ โˆ’๐‘–โˆž
๐œƒ
โˆš๐œƒ
]2
)] ๐‘‘๐œƒ
[1 + ๐‘‚ (
โˆš๐œƒ
1 ๐‘–โˆž ๐œ”2 ๐‘‡โˆ’๐œ”]
โˆผ
๐œ” ๐‘‘๐œ”
โˆซ ๐‘’
๐œ‹๐‘– โˆ’๐‘–โˆž
=
(305)
๐‘—=0
1 โˆ’ โˆš๐‘‹0
)
๐‘‹0
1/3
๐‘› โˆž โˆ’|๐‘Ÿ๐‘— |๐‘‡
,
โˆ‘๐‘’
๐œŒ1/3 ๐‘—=0
(306)
] ๓ณจ€โ†’ 0,
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐‘„ (0, 0) ๐œŒโˆ’1
0 = (๐‘Š0 โˆ’ 1 โˆ’ ๐‘‹0 ) Q (๐‘›, ๐‘‡1 )
+ โˆš๐‘‹0 [Q (๐‘› โˆ’ 1, ๐‘‡1 ) + Q (๐‘› + 1, ๐‘‡1 )] .
(1 โˆ’ โˆš๐‘‹0 )
(๐‘Š0 + ๐‘Œ0 ) โˆš๐‘‹0 (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
โ‹…(
๐‘›
๐‘
โˆš๐‘‹0 (๐‘Œ0 + ๐‘Š0 )
๐‘Œ0
) [๐‘› +
] ๐‘“โˆ— (๐‘‡)
๐‘Œ0 + ๐‘Š0
(๐‘Œ0 + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘Œ0
(309)
โ‹… exp [โˆ’
โˆ’
(โˆš๐‘‹0 )
๐‘Š0
๐œŒ1/3 ๐‘‡12
2๐‘Œ0 (๐‘Š0 + ๐‘Œ0 )
๐‘Š0 (๐‘Š0 + 2๐‘Œ0 )
2
๐‘Œ0 (๐‘Š0 + ๐‘Œ0 )
๐‘‡13 ] .
Here we made ๐‘Ž(โ‹…) proportional to ๐‘“โˆ— (โ‹…), which we will
determine shortly, and computed ๐‘(โ‹…) from (308). Now we
require (309), for ๐‘› โ†’ โˆž, to match to the (]1 , ๐‘‡1 ) scale result,
for ]1 โ†’ 0. But in view of (306) we see that the matching is
possible provided that
โˆž
๐‘“โˆ— (๐‘‡) = โˆ‘ ๐‘’โˆ’|๐‘Ÿ๐‘— |๐‘‡ .
(310)
๐‘—=0
Thus we now have three expansions valid for ๐‘› = ๐‘‚(1), on
the scales ๐‘ = ๐‘‚(1), ๐‘ = ๐‘‚(๐œŒ2/3 ), and ๐‘ = ๐‘‚(๐œŒ) with ๐‘Œ < ๐‘Œ0 .
The matching between the ๐‘ = ๐‘‚(1) result and (309) follows
by letting ๐‘ โ†’ โˆž in (241) (corresponding to (253) for region
R4 ) and letting ๐‘‡ โ†’ 0. The matching condition is satisfied if
1 โˆ’3/2 โˆš๐‘Š0 + ๐‘Œ0 (1 โˆ’ โˆš๐‘‹0 )
๐‘
2โˆš๐œ‹
๐‘‹01/4 (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
(311)
2
and this holds for any fixed ๐‘‡ > 0. Consider the scale ๐‘› = ๐‘‚(1)
and ๐‘‡1 > 0. Viewing Q in (277) now as a function of ๐‘› and ๐‘‡1
and noting that ๐‘ โ†’ ๐‘ ± 1 corresponds to ๐‘‡1 โ†’ ๐‘‡1 โˆ“ ๐œŒโˆ’2/3
the limiting form of (277) becomes
(307)
(308)
We have thus shown that the expansion on the (๐‘›, ๐‘‡1 ) scale is
given by
2
Here we approximated the first integrand for ๐œƒ โ†’ โˆž using
asymptotic properties of Ai(โ‹…).
We next relate the constant ๐ถ1 in Dโˆ’ to ๐‘„(0, 0) (โˆผ 1 โˆ’
๐‘‹0 โˆ’ ๐‘Œ0 in R4 ), having expressed the expansions near the
corner point (๐‘‹0 , ๐‘Œ0 ) in terms of ๐‘„(0, 0) on both the (๐‘›, ๐‘)
and (]1 , ๐‘‡1 ) scales. As we discussed previously, the caustic
ray expansion in Dโˆ’ does not satisfy the boundary condition
along ๐‘‹ = ๐‘‹0 , and different expansions must be constructed
on the ]1 and ๐‘› scales, corresponding to ๐‘‹0 โˆ’ ๐‘‹ = ๐‘‚(๐œŒโˆ’2/3 )
and ๐‘‹0 โˆ’ ๐‘‹ = ๐‘‚(๐œŒโˆ’1 ). For region R4 , these expansions are
given, respectively, in (111) and (109) (with (110)), up to the
constant ๐ถ1 . The details of their construction are given in [10].
We will need to carefully estimate ๐œ‹(๐‘˜, ๐‘Ÿ) for ๐‘› = ๐‘šโˆ’๐‘˜ = ๐‘‚(1).
For region R4 , (109) applies for ๐‘› = ๐‘‚(1) and all ๐‘Œ โˆˆ (0, ๐‘Œ0 )
(but breaks down as either ๐‘Œ โ†“ 0 or ๐‘Œ โ†‘ ๐‘Œ0 ). For ๐‘› = ๐‘‚(1) and
๐‘ = ๐‘‚(1), (241) holds as then ๐œ‹(๐‘˜, ๐‘Ÿ) โˆผ ๐‘„๐ฟ (๐‘›, ๐‘), and in (253)
we gave the asymptotics for ๐‘„(๐‘›, ๐‘) for ๐‘ โ†’ โˆž and ๐‘› = ๐‘‚(1).
However, we must derive yet another expansion on the scale
๐‘‡1 = ๐‘‚(1) (๐‘Œ0 โˆ’ ๐‘Œ = ๐‘‚(๐œŒโˆ’1/3 )) with ๐‘‡1 > 0 and ๐‘› = ๐‘‚(1). The
expansion in (169) develops a nonuniformity as ] โ†’ 0, since
F(0, ๐‘‡) = 0. Since by definition of the Airy roots ๐‘Ÿ๐‘— we have
Ai(๐‘Ÿ๐‘— ) = 0, from the infinite series form in (170) we conclude
that
โˆž
๐‘Œ0 ๐‘Ž (๐‘‡1 ) = (๐‘Š0 + ๐‘Œ0 ) โˆš๐‘‹0 [๐‘Ž (๐‘‡1 ) โˆ’ ๐‘ (๐‘‡1 )] .
โ‹…
]
]2
exp
(โˆ’
).
4๐‘‡
2โˆš๐œ‹๐‘‡3/2
F (], ๐‘‡) โˆผ ] โˆ‘๐‘’๐‘Ÿ๐‘— ๐‘‡ = (
But ๐‘Š0 = (1 โˆ’ โˆš๐‘‹0 )2 = 1 + ๐‘‹0 โˆ’ 2โˆš๐‘‹0 so that the general
solution of (307) is the linear function ๐‘Ž(๐‘‡1 ) + ๐‘›๐‘(๐‘‡1 ), where
๐‘Ž(โ‹…) and ๐‘(โ‹…) are arbitrary functions of ๐‘‡1 . Note also that
(307) applies asymptotically whether the exponential factors
in (279) and (284) are included or excluded. The boundary
condition in (287) can be applied on the ๐‘› = ๐‘‚(1) scale and
leads asymptotically to (๐‘Š0 + ๐‘Œ0 )โˆš๐‘‹0 Q(โˆ’1, ๐‘‡1 ) = ๐‘Œ0 Q(0, ๐‘‡1 ).
This restricts the functions ๐‘Ž(โ‹…) and ๐‘(โ‹…) in the linear solution
to (307), by
โˆผ
(1 โˆ’ โˆš๐‘‹0 ) ๐œŒโˆ’1
(๐‘Š0 + ๐‘Œ0 ) โˆš๐‘‹0 (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
๐‘“โˆ— (๐‘‡) ,
in some intermediate limit where ๐‘ โ†’ โˆž and ๐‘‡1 = ๐œŒโˆ’2/3 ๐‘ โ†’
0. Simplifying (311) by using (283) we must show that
๐‘“โˆ— (๐‘‡) โˆผ
1 โˆ’3/2
๐‘‡ , ๐‘‡ ๓ณจ€โ†’ 0.
2โˆš๐œ‹
(312)
34
Advances in Operations Research
The Airy roots ๐‘Ÿ๐‘— are well known to satisfy โˆ’๐‘Ÿ๐‘— โˆผ (3๐‘—๐œ‹/2)2/3 ,
๐‘— โ†’ โˆž, so for ๐‘‡ โ†’ 0 we approximate the sum in (310) by an
integral to get
โˆž
2/3
โˆž
3
โˆ‘๐‘’โˆ’|๐‘Ÿ๐‘— |๐‘‡ โˆผ โˆซ exp [โˆ’ ( ๐œ‰๐œ‹) ๐‘‡] ๐‘‘๐œ‰
2
0
๐‘—=0
=
โˆž
2 โˆ’3/2
3
(โˆซ ๐‘’โˆ’๐‘ข โˆš๐‘ข ๐‘‘๐‘ข)
๐‘‡
3๐œ‹
2
0
=
1 โˆ’3/2 3
๐‘‡ ฮ“( )
๐œ‹
2
(313)
which verifies (312).
Now we match (309) for ๐‘‡ โ†’ โˆž with (109) as ๐‘Œ โ†’ ๐‘Œ0 .
For ๐‘‡ โ†’ โˆž we have ๐‘“โˆ— (๐‘‡) โˆผ ๐‘’โˆ’|๐‘Ÿ0 |๐‘‡ as the zeroth term in the
sum in (310) dominates. By expanding (109) for ๐‘Œ โ†’ ๐‘Œ0 , after
canceling some common factors the matching implies that
๐‘
๐œŒโˆ’1 ๐‘„ (0, 0) ๐‘Š0
๐‘Œ0
) ๐‘’๐‘Ÿ๐‘‡
(
(๐‘Š0 + ๐‘Œ0 ) โˆš๐‘‹0 (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐‘Œ0 + ๐‘Š0
โ‹… exp [โˆ’
โˆ’
๐‘‡3 ]
2 1
๐‘Œ02 (๐‘Š0 + ๐‘Œ0 )
โˆผ๐œŒ
โˆ’1/6
1/3
โ‹… ๐‘’๐œŒฮฆ(๐‘‹0 ,๐‘Œ0 ) ๐‘’๐œŒฮฆ๐‘Œ (๐‘‹0 ,๐‘Œ0 )(๐‘Œโˆ’๐‘Œ0 ) ๐‘’๐œŒ
โˆ’
(314)
+ ๐œŒ1/3 ฮฆ๓ธ€ โˆ— (๐‘Œ0 ) (๐‘Œ โˆ’ ๐‘Œ0 )]
โ‹…
2โˆš๐‘‹0
log (
(๐‘Œ0 + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘Œ0
๐‘Œ0 + ๐‘Š0
1
1
)]
๓ธ€ 
โˆš2๐œ‹ Ai (๐‘Ÿ0 )
1 โˆ’ โˆš๐‘‹0
1/6
โˆš๐‘Œ0 ๐‘‹05/6 (1 โˆ’ โˆš๐‘‹0 )
.
๐‘’
=๐‘’
(315)
2/3
2
3
(318)
๐‘Œ0
[1
๐‘Œ0 + ๐‘Š0
๐‘Š0
๐œŒโˆ’1/3 ๐‘‡1 + ๐‘‚ (๐œŒโˆ’2/3 )] F (0, ๐‘‡1
๐‘Œ0 (๐‘Š0 + ๐‘Œ0 )
(319)
(๐‘Œ0 + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘Œ0
= (1 โˆ’ โˆš๐‘‹0 ) (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
By using (110) to compute ฮฆ๐‘Œ๐‘Œ and ฮฆ๐‘Œ๐‘Œ๐‘Œ and noting that
๐œŒ (๐‘Œ โˆ’ ๐‘Œ0 ) = โˆ’๐‘‡13
๐‘‡13 ] F (], ๐‘‡)
But now
(1 โˆ’ โˆš๐‘‹0 ) ]
= ๐‘’๐‘Ÿ0 ๐‘‡ .
= exp [๐‘Ÿ0 ๐‘‡1
1/6
(๐‘Š0 + ๐‘Œ0 ) ๐‘‹0
[
]
๐œŒ (๐‘Œ โˆ’ ๐‘Œ0 ) = ๐œŒ1/3 ๐‘‡12 ,
2
6๐‘Œ02 (๐‘Š0 + ๐‘Œ0 )
+ ๐œŒโˆ’2/3 ) .
๐‘
๐‘Œ0
=(
) ,
๐‘Œ0 + ๐‘Š0
exp [๐œŒ1/3 ฮฆ๓ธ€ โˆ— (๐‘Œ0 ) (๐‘Œ โˆ’ ๐‘Œ0 )] = exp [โˆ’๐‘‡1 ฮฆ๓ธ€ โˆ— (๐‘Œ0 )]
๐‘Š0 (2๐‘Œ0 + ๐‘Š0 )
(317)
Note that in (317) we included the factor ๐œŒโˆ’1/3 whereas in
(284) we have the two factors ๐œŒโˆ’2/3 and [โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ]โˆ’1 , as
the product of these becomes, in region R3 โˆฉ R4 , ๐‘‚(๐œŒโˆ’2/3 ) ×
๐‘‚(๐œŒ1/3 ) = ๐‘‚(๐œŒโˆ’1/3 ). Including the factor ๐œŒโˆ’1/3 will insure that
F is ๐‘‚(1) for ๐œŒ โ†’ โˆž, and the factor (1 โˆ’ โˆš๐‘‹0 )1/3 ๐‘‹0โˆ’1/3
is purely for convenience. But for region R3 โˆฉ R4 we must
reexamine the boundary condition in (288), which in terms
of F becomes
โˆ’
โˆ’๐‘ฮฆ๐‘Œ (๐‘‹0 ,๐‘Œ0 )
๐‘›
๐‘
๐‘Œ0
๐‘Š0
) exp [โˆ’
๐œŒ1/3 ๐‘‡12
๐‘Œ0 + ๐‘Š0
2๐‘Œ0 (๐‘Š0 + ๐‘Œ0 )
[โˆš๐‘‹0 + ๐‘‚ (๐œŒโˆ’1 )] F (โˆ’๐œŒ1/3 , ๐‘‡1 ) =
Now,
๐œŒฮฆ๐‘Œ (๐‘‹0 ,๐‘Œ0 )(๐‘Œโˆ’๐‘Œ0 )
(โˆš๐‘‹0 )
F]] โˆ’ ๐œŒF = F๐‘‡ ; ] > 0, ๐‘‡ > 0.
ฮฆโˆ— (๐‘Œ0 )
1
3
+ ๐œŒฮฆ๐‘Œ๐‘Œ๐‘Œ (๐‘‹0 , ๐‘Œ0 ) (๐‘Œ โˆ’ ๐‘Œ0 )
6
1 + โˆš๐‘‹0
1/3
1 โˆ’ โˆš๐‘‹0
)
๐‘‹0
since the factors in (317) correspond to the same sequence of
transformations we made for the analysis of the interior of
R4 , and F will again satisfy the PDE
๐ถ1 (๐œŒ)
1
2
โ‹… exp [ ๐œŒฮฆ๐‘Œ๐‘Œ (๐‘‹0 , ๐‘Œ0 ) (๐‘Œ โˆ’ ๐‘Œ0 )
2
โ‹… exp [โˆ’
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐‘„ (0, 0) ๐œŒโˆ’1/3 (
โ‹…(
๐‘Š0
๐œŒ1/3 ๐‘‡12
2๐‘Œ0 (๐‘Š0 + ๐‘Œ0 )
๐‘Š0 (๐‘Š0 + 2๐‘Œ0 )
we see that the dependence on ๐‘‡1 is exactly the same in the
left- and right-hand sides of (314). Thus we have a relation
between the constants ๐‘„(0, 0) and ๐ถ1 for region R4 , and since
๐‘„(0, 0) โˆผ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 we have derived the expression for ๐ถ1
in (41).
The analysis for region R4 breaks down as ๐‘Œ0 โ†’ โˆš๐‘‹0 โˆ’
๐‘‹0 , as then the expressions in (284), (293), (309), and (314)
all become singular. We thus examine the transitional case
R3 โˆฉ R4 , where ๐‘‹0 + ๐‘Œ0 = โˆš๐‘‹0 + ๐‘‚(๐œŒโˆ’1/3 ). Then we certainly
have ๐‘„(0, 0) โˆผ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 and (241) applies for any R๐‘— . But
now on parabolic scales, where ๐‘›, ๐‘ โ†’ โˆž with ๐‘›2 /๐‘ fixed,
๐‘„(๐‘›, ๐‘) has the expansion in (254). We now define F(], ๐‘‡)
by setting
(316)
(320)
= โˆ’ (1 โˆ’ โˆš๐‘‹0 ) ๐›ฟโˆ— ๐œŒโˆ’1/3
so that the limiting boundary condition from (319) becomes
โˆš๐‘‹0
๐œ•F
+ (๐›ฟโˆ— โˆ’ ๐‘‡1 ) F = 0, ]1 = 0.
๐œ•]1
(321)
Advances in Operations Research
35
Then scaling ๐›ฟโˆ— = ๐‘‹01/6 (1 โˆ’ โˆš๐‘‹0 )1/3 ๐›ฟ1 , in terms of (], ๐‘‡) (321)
becomes
F] (0, ๐‘‡) + (๐›ฟ1 โˆ’ ๐‘‡) F (0, ๐‘‡) = 0, ๐‘‡ > 0.
(322)
A matching condition for F, as ], ๐‘‡ โ†’ 0 with ] = ๐‘‚(โˆš๐‘‡), is
obtained by comparing (317) to (254). From the definitions of
๐›ฟ and ๐›ฟโˆ— we have ๐›ฟ๐œŒโˆ’1/2 = ๐›ฟโˆ— ๐œŒโˆ’1/3 so that ๐›ฟ = ๐›ฟโˆ— ๐œŒ1/6 . Then
also
๐‘๐›ฟ2
= ๐‘‡1 ๐›ฟโˆ—2 ,
๐œŒ
๐‘›๐›ฟ
= ]1 ๐›ฟโˆ— ,
โˆš๐œŒ
(323)
1/3
F (], ๐‘‡)
1/2
1 (1 โˆ’ โˆš๐‘‹0 )
โˆผ
โˆš๐œ‹ ๐‘‹01/4 โˆš๐‘‡1
1 โˆ’ โˆš๐‘‹0 ]21
exp (โˆ’
)
4โˆš๐‘‹0 ๐‘‡1
(324)
]2
1
exp (โˆ’ ) ;
โˆš๐œ‹๐‘‡
4๐‘‡
(325)
], ๐‘‡ ๓ณจ€โ†’ 0 with ] = ๐‘‚ (โˆš๐‘‡) .
๐‘–โˆž
โ‹…โˆซ
โˆ’๐‘–โˆž
1
2๐œ‹๐‘–
โˆž
Ai (] + ๐œƒ) ๐œƒ(๐‘‡โˆ’๐›ฟ1 )
๐‘’
(โˆซ
๐‘’๐›ฟ1 ๐‘ข Ai (๐‘ข) ๐‘‘๐‘ข) ๐‘‘๐œƒ.
Ai2 (๐œƒ)
๐œƒ
(326)
The right-hand side of (326) clearly satisfies (318), since this
PDE is separable and any function of the form ๐‘”(๐œƒ) Ai(] +
๐œƒ)๐‘’๐œƒ๐‘‡ is a solution, for any function ๐‘”(โ‹…) and any complex ๐œƒ.
We can also verify that (322) holds along ] = 0, by using
๓ธ€ 
Ai (๐œƒ) ๐œƒ(๐‘‡โˆ’๐›ฟ1 ) ๐›ฟ1 โˆ’ ๐‘‡ ๐œƒ(๐‘‡โˆ’๐›ฟ1 )
๐‘’
+
๐‘’
Ai (๐œƒ)
[Ai (๐œƒ)]2
=โˆ’
๐œƒ(๐‘‡โˆ’๐›ฟ1 )
๐‘‘ ๐‘’
[
]
๐‘‘๐œƒ Ai (๐œƒ)
0
3/2
โ‹… ๐œƒโˆ’1/4 [1 โˆ’
โˆž
1
๐œ‰2
)]
โˆซ exp [โˆ’โˆš๐œƒ๐œ‰ + ๐‘‚ (
โˆš4๐œ‹ 0
โˆš๐œƒ
3/2
๐œ‰
๐œ‰2
+ ๐‘‚ ( 2 )] ๐‘‘๐œ‰ = ๐‘’โˆ’(2/3)๐œƒ
4๐œƒ
๐œƒ
(327)
(328)
๐›ฟ
1 โˆ’1/4 1
1
+ 1 + ๐‘œ (๐œƒโˆ’1 )] = Ai (๐œƒ) [
[
๐œƒ
โˆš4๐œ‹
โˆš๐œƒ ๐œƒ
โˆš๐œƒ
+
๐›ฟ1
+ ๐‘œ (๐œƒโˆ’1 )] .
๐œƒ
Here we also expanded the integrand for small ๐œ‰, since by
Watsonโ€™s lemma the main contribution comes from the range
๐œ‰ = ๐‘‚(๐œƒโˆ’1/2 ). Using (328) in (326) and noting that
1 ๐‘–โˆž ๐œƒ๐‘‡โˆ’โˆš๐œƒ] ๐‘‘๐œƒ
1
]2
=
exp (โˆ’ ) ,
โˆซ ๐‘’
โˆš๐œƒ โˆš๐œ‹๐‘‡
2๐œ‹๐‘– โˆ’๐‘–โˆž
4๐‘‡
(329)
we obtain, for ], ๐‘‡ โ†’ 0 with ] = ๐‘‚(โˆš๐‘‡),
F (], ๐‘‡) =
Here we also used ๐‘Œ0 + ๐‘Š0 โˆผ 1 โˆ’ โˆš๐‘‹0 in region R3 โˆฉ R4 , so
that ๐‘‡1 โˆผ (1 โˆ’ โˆš๐‘‹0 )1/3 ๐‘‹01/6 ๐‘‡.
The matching condition in (325) may be replaced by the
condition F|๐‘‡=0 = ๐›ฟ(]) and we analyzed such problems in
[20] where it was found that the solution to (318) with (322)
is given by
F (], ๐‘‡) =
๐œƒ
โˆž
2
1 ๐‘–โˆž ๐œƒ๐‘‡โˆ’โˆš๐œƒ] ๐‘‘๐œƒ
1
๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข
=
โˆซ
โˆซ ๐‘’
โˆš2๐œ‹ ]/โˆš2๐‘‡
2๐œ‹๐‘– โˆ’๐‘–โˆž
๐œƒ
and in terms of (], ๐‘‡) this simplifies to
F (], ๐‘‡) โˆผ
โˆž
โˆผ ๐‘’โˆ’(2/3)๐œƒ
โ‹…
are all ๐‘‚(1), while ๐‘โˆ’1/2 = ๐œŒโˆ’1/3 ๐‘‡1โˆ’1/2 and ๐›ฟ๐œŒโˆ’1/2 = ๐›ฟโˆ— ๐œŒโˆ’1/3 ,
so in the matching region, where ๐‘‡1 is small but ๐›ฟโˆ— = ๐‘‚(1),
the Gaussian first term in the braces in (254) dominates the
error function second term, and the matching will imply that
1 โˆ’ โˆš๐‘‹0
)
๐‘‹0
โˆž
๐‘’โˆ’๐œƒ๐›ฟ1 โˆซ ๐‘’๐›ฟ1 ๐‘ข Ai (๐‘ข) ๐‘‘๐‘ข = โˆซ ๐‘’๐›ฟ1 ๐œ‰ Ai (๐œƒ + ๐œ‰) ๐‘‘๐œ‰
โ‹… [1 + ๐›ฟ1 ๐œ‰ + ๐‘‚ (๐œ‰2 )]
2
๐‘›2 ] 1
=
๐‘
๐‘‡1
(
and some integration by parts in (326). To verify the matching
condition in (325) we expand the integrand in (326) for ] โ†’
0, ๐‘‡ โ†’ 0, and ๐œƒ โ†’ โˆž, using (190) to approximate the Airy
โˆš
function. We have Ai(] + ๐œƒ)/Ai(๐œƒ) โˆผ ๐‘’โˆ’] ๐œƒ and
]2
1
exp (โˆ’ )
โˆš๐œ‹๐‘‡
4๐‘‡
โˆž
2
2
๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข + ๐‘œ (1) .
+ โˆš ๐›ฟ1 โˆซ
๐œ‹
]/โˆš2๐‘‡
(330)
The expression in (330) is a two-term asymptotic approximation in this limit, and the leading term verifies the matching
condition in (325). The correction term in (330), which is
proportional to ๐›ฟ1 , will asymptotically match to the term
proportional to the error function in (254), as in the matching
region ๐‘๐›ฟ2 /๐œŒ = ๐‘‡1 ๐›ฟโˆ—2 and ๐‘›๐›ฟ/โˆš๐œŒ = ]1 ๐›ฟโˆ— are ๐‘œ(1), and
๐œ‚0 โˆผ
(1 โˆ’ โˆš๐‘‹0 )
โˆš2๐‘‹01/4
1/2
]1
]
,
โˆผ
โˆš๐‘‡1 โˆš2๐‘‡
1/3
1 โˆ’ โˆš๐‘‹0
2 ๐›ฟ
โˆš
)
= ๐œŒโˆ’1/3 (
๐‘‹0 โˆš๐œŒ
๐‘‹0
(331)
โˆš2๐›ฟ1 .
We proceed to determine ๐ถ1 . Now the approximation in
(209) (with (326)) remains valid on the scale ๐‘› = ๐‘‚(1), since
F(0, ๐‘‡) =ฬธ 0. Thus for ๐‘› = ๐‘‚(1) ๐œ‹(๐‘˜, ๐‘Ÿ) can be approximated
by (317) with F(], ๐‘‡) replaced by F(0, ๐‘‡) and for ๐‘‡ โ†’ โˆž
36
Advances in Operations Research
the expansion of (326) is determined by the pole at ๐œƒ = ๐‘Ÿ0 < 0,
which is a simple pole if ] = 0. Hence,
F (0, ๐‘‡) โˆผ
โˆž
๐‘’๐‘Ÿ0 (๐‘‡โˆ’๐›ฟ1 )
(โˆซ
๐‘’๐›ฟ1 ๐‘ข Ai (๐‘ข) ๐‘‘๐‘ข) ,
Ai๓ธ€  (๐‘Ÿ0 ) ๐‘Ÿ0
(332)
๐‘‡ ๓ณจ€โ†’ โˆž.
For ๐‘› = ๐‘‚(1) and 0 < ๐‘Œ < ๐‘Œ0 , the result in (109) holds,
and this remains finite as ๐‘Œ โ†‘ ๐‘Œ0 even if ๐‘‹0 + ๐‘Œ0 = โˆš๐‘‹0 . In
parameter region R3 โˆฉ R4 we have ๐‘Œ0 + ๐‘Š0 โˆผ 1 โˆ’ โˆš๐‘‹0 and
then as ๐‘Œ โ†‘ ๐‘Œ0 , (109) becomes
๐œŒโˆ’1/6 ๐ถ1 (๐œŒ) (โˆš๐‘‹0 )
๐‘›
1/3
โ‹… ๐‘’๐œŒฮฆ(๐‘‹0 ,๐‘Œ0 ) ๐‘’โˆ’๐‘ฮฆ๐‘Œ (๐‘‹0 ,๐‘Œ0 ) ๐‘’๐œŒ
ฮฆโˆ— (๐‘Œ0 ) ๐‘Ÿ0 ๐‘‡
๐‘’
1
โ‹… exp [ ๐œŒ1/3 ฮฆ๐‘Œ๐‘Œ (๐‘‹0 , ๐‘Œ0 ) ๐‘‡12
2
F (], ๐‘‡) โˆผ
โˆ’ โˆš๐‘‹0 )
๐‘‹0โˆ’7/12 .
๐œŒ1/3 ฮฆโˆ— (๐‘Œ0 )
= โˆ’๐œŒ
๐‘Ÿ0
= โˆ’๐œŒ1/3 ๐‘Ÿ0
(1 โˆ’ โˆš๐‘‹0 )
2/3
๐‘‹01/6
(1 โˆ’ โˆš๐‘‹0 )
๐‘‹01/6
โˆผ โˆ’๐‘Ÿ0 (1 โˆ’ โˆš๐‘‹0 )
โˆ’1/3
log (1 +
โˆ’1/3
๐œŒ ๐›ฟโˆ—
)
1 โˆ’ โˆš๐‘‹0
2
4๐‘‡2
=
1
1
1
Fโˆผ
โˆ’
]
[
โˆš2๐œ‹ 2โˆš๐œƒ๐‘  2โˆš๐œƒ๐‘  + ]
โˆž
๐‘„ (0, 0) ๐œŒโˆ’1/3 ๐‘‹0โˆ’1/3 (โˆซ ๐‘’๐›ฟ1 ๐‘ข Ai (๐‘ข) ๐‘‘๐‘ข)
๐ถ1 (๐œŒ) โˆ’1/6 โˆ’7/12 ๐œŒฮฆ(๐‘‹0 ,๐‘Œ0 )
.
๐œŒ ๐‘‹0 ๐‘’
โˆš2๐œ‹
(] โˆ’ ๐‘‡2 )
]2
] ๐‘‡2
โˆ’
+ .
4๐‘‡2 2
4
(338)
Taking ]/๐‘‡2 > 1 then a standard saddle point estimate leads
to
Thus (333) agrees with (317), with ] = 0 and ๐‘‡ โ†’ โˆž, if
โˆผ
๐œƒ = ๐œƒ๐‘  โ‰ก
(334)
๐‘‹0โˆ’1/6 ๐›ฟโˆ— = โˆ’๐‘Ÿ0 ๐›ฟ1 .
๐‘Ÿ0
๐‘‘
2
2
[๐œƒ๐‘‡ + ๐œƒ3/2 โˆ’ (๐œƒ + ])3/2 ] = ๐‘‡ + โˆš๐œƒ โˆ’ โˆš๐œƒ + ]
๐‘‘๐œƒ
3
3
(337)
=0
and this occurs when
๐‘Œ + ๐‘Š0
log ( 0
)
1 โˆ’ โˆš๐‘‹0
2/3
(336)
Here we can view ๐œƒ as being scaled to be ๐‘‚(]) and ๐‘‡ to be
๐‘‚(โˆš]). The integrand in (336) has a saddle point where
Comparing (333) to (317) with (332), the exponential parts
agree as for region R4 , and we now have
1/3
๐œƒ 1/4 ๐œƒ๐‘‡
1
) ๐‘’
โˆซ (
2๐œ‹๐‘– Br ] + ๐œƒ
2
โ‹… exp { [๐œƒ3/2 โˆ’ (๐œƒ + ])3/2 ]} ๐‘‘๐œƒ.
3
(333)
1
1
1
(1
โˆ’ ฮฆ๐‘Œ๐‘Œ๐‘Œ (๐‘‹0 , ๐‘Œ0 ) ๐‘‡13 ]
๓ธ€ 
โˆš2๐œ‹ Ai (๐‘Ÿ0 )
6
1/3
(๐‘‹, ๐‘Œ) โ†’ (๐‘‹0 , ๐‘Œ0 ) along parabolic scales with (๐‘Œ0 โˆ’๐‘Œ)2 /(๐‘‹0 โˆ’
๐‘‹) (= ๐‘‡12 /]1 ) held fixed and letting ]1 , ๐‘‡1 โ†’ โˆž in (169). We
have already verified that along linear scales, where (๐‘‹, ๐‘Œ) โ†’
(๐‘‹0 , ๐‘Œ0 ) with (๐‘Œ0 โˆ’ ๐‘Œ)/(๐‘‹0 โˆ’ ๐‘‹) (= ๐‘/๐‘›) fixed, the D0 ray
expansion matches directly to (168). The matching of the D0
and (], ๐‘‡) scale expansions will show that there are no โ€œgapsโ€
in the asymptotics, which would require the analysis of yet
other scales.
We first expand F(], ๐‘‡) in (170) for ], ๐‘‡ โ†’ โˆž, and we
note that, along parabolic scales with ] = ๐‘‚(๐‘‡2 ), ]/๐‘‡2 > 1
corresponds to moving from the corner (๐‘‹0 , ๐‘Œ0 ) in region D0 ,
while ]/๐‘‡2 < 1 corresponds to moving into Dโˆ’ . By using
(190) to approximate the integrand in (170) and shifting the
contour to the right, to the range Re(๐œƒ) โ‰ซ 1, we are led to
(335)
But now ๐‘„(0, 0) โˆผ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 โˆผ 1 โˆ’ โˆš๐‘‹0 and thus (335) leads
to the result in (37).
We have now determined the values of ๐‘„(0, 0), ๐ถ0 (๐œŒ),
๐ถ(๐œŒ), and ๐ถ1 (๐œŒ) for all possible regions R๐‘— of parameter
space, thus establishing Propositions 1 and 2. We also have
analyzed all of the relevant scales near the corner point
(๐‘‹0 , ๐‘Œ0 ) of the state space and thus established all parts
of Proposition 15. As a final step we briefly discuss the
asymptotic matching between the ray expansion in D0 and
the expansion on the (], ๐‘‡) scale in (169). We only consider
region R4 and note that this matching will involve letting
โ‹… exp {๐œƒ๐‘  ๐‘‡ +
โ‹… exp (
โˆ’1/2
(
1/4
๐œƒ๐‘ 
)
๐œƒ๐‘  + ]
2 3/2
] โˆ’ ๐‘‡2
3/2
[๐œƒ๐‘  โˆ’ (๐œƒ๐‘  + ]) ]} =
3
2โˆš๐œ‹๐‘‡3/2
(339)
1 3 1
1 ]2
๐‘‡ โˆ’ ]๐‘‡ โˆ’
) ; ], ๐‘‡ ๓ณจ€โ†’ โˆž.
12
2
4๐‘‡
By using (339) in (169) we match the result to the D0 ray
expansion, which is ๐œŒโˆ’1/2 ๐‘„(0, 0)๐พ(๐‘‹, ๐‘Œ)๐‘’๐œŒฮจ(๐‘‹,๐‘Œ) , as (๐‘‹, ๐‘Œ) โ†’
(๐‘‹0 , ๐‘Œ0 ). By separating the exponential factors from the
algebraic ones, the matching will hold if both
๐œŒโˆ’1/2 ๐พ (๐‘‹, ๐‘Œ) โˆผ ๐œŒโˆ’2/3
5/3
โ‹…
๐‘‹0โˆ’1/6
] โˆ’ ๐‘‡2
,
2โˆš๐œ‹ (๐‘Š0 + ๐‘Œ0 ) (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐‘‡3/2
(1 โˆ’ โˆšX0 )
(340)
Advances in Operations Research
๐‘›
๐‘’๐œŒฮจ(๐‘‹,๐‘Œ) โˆผ (โˆš๐‘‹0 ) (
โ‹… exp [โˆ’๐œŒ1/3
โ‹… exp [โˆ’
โˆ’
37
๐‘
๐‘Œ0
)
๐‘Œ0 + ๐‘Š0
Now
๐‘Š0
๐‘‡2 ]
2๐‘Œ0 (๐‘Š0 + ๐‘Œ0 ) 1
๐‘Š0 (๐‘Š0 + 2๐‘Œ0 )
๐‘‡3
2 1
6๐‘Œ02 (๐‘Š0 + ๐‘Œ0 )
๐พ (๐‘‹, ๐‘Œ)
(341)
1
1
+ ๐‘‡3 โˆ’ ]๐‘‡
12
2
1/2
We thus proceed to evaluate ๐พ and ฮจ as (X, ๐‘Œ) โ†’ (๐‘‹0 , ๐‘Œ0 )
along parabolic scales, where (๐‘Œ0 โˆ’ ๐‘Œ)2 /(๐‘‹0 โˆ’ ๐‘‹) is fixed. In
this limit we have ๐ด โ†’ ๐ด min = 1 โˆ’ โˆš๐‘‹0 and ๐ต โ†’ ๐ตmin =
๐‘Š0 /(๐‘Œ0 + ๐‘Š0 ), and it is useful to rewrite (68) as
๐‘‹0
+ ๐ด๐‘’๐œ โˆ’ 1) ,
1โˆ’๐ด
exp [๐œŒ (๐‘‹ โˆ’ ๐‘‹0 ) ฮจ๐‘‹ (๐‘‹0 , ๐‘Œ0 )]
๐œ ๓ณจ€โ†’ 0, ๐ด ๓ณจ€โ†’ 1 โˆ’ โˆš๐‘‹0 .
(344)
1/3
1 (1 โˆ’ โˆš๐‘‹0 )
,
โˆš2๐‘‡ ๐‘‹01/12 โˆš๐‘Œ0 + ๐‘Š0
(345)
where we wrote the result in terms of ๐‘‡ rather than ๐‘‡1 . From
the first expression in (342) we have
๐‘‹0 โˆ’ ๐‘‹ โˆผ ๐œ [2 (๐ด โˆ’ ๐ด min ) + ๐ด min ๐œ]
(346)
Then peeling off the linear part of ฮจ near ๐‘‹ = ๐‘‹0 , ๐‘Œ = ๐‘Œ0 ,
(341) is equivalent to showing that
+ (๐‘Œ0 โˆ’ ๐‘Œ) ฮจ๐‘Œ (๐‘‹0 , ๐‘Œ0 )] โˆผ โˆ’๐œŒ1/3
โ‹… ๐‘‡12 โˆ’
๐‘Š0 (๐‘Š0 + 2๐‘Œ0 )
6๐‘Œ02 (๐‘Š0 + ๐‘Œ0 )
1
[๐‘‹0 โˆ’ ๐‘‹ โˆ’ (1 โˆ’ โˆš๐‘‹0 ) ๐œ2 ]
2๐œ
1/3 ] โˆ’ ๐‘‡2
1
= ๐œŒโˆ’1/3 X01/6 (1 โˆ’ โˆš๐‘‹0 )
.
2
๐‘‡
1 3 1
1]
๐‘‡ โˆ’ ]๐‘‡ โˆ’
.
12
2
4๐‘‡
+ (๐‘Œ0 โˆ’ ๐‘Œ) ฮจ๐‘Œ (๐‘‹0 , ๐‘Œ0 )
2
โˆ’ ๐‘‹0 log (
(347)
๐‘‡13 +
(350)
2
ฮจ (๐‘‹, ๐‘Œ) + (๐‘‹0 โˆ’ ๐‘‹) ฮจ๐‘‹ (๐‘‹0 , ๐‘Œ0 )
1 โˆ’ ๐ด๐‘’๐œ
)
1 โˆ’ ๐ด min
+ (๐‘Œ0 โˆ’ ๐‘Œ) log (
(๐‘Œ โˆ’ ๐‘Œ)
1 ๐‘Š0 + ๐‘Œ0
]
[๐‘‹0 โˆ’ ๐‘‹ โˆ’ (1 โˆ’ โˆš๐‘‹0 ) 0
2
2 ๐‘Œ0 โˆ’ ๐‘Œ
(๐‘Š0 + ๐‘Œ)
1 โˆ’ โˆš๐‘‹0 2
๐‘Š + ๐‘Œ0
1
= ๐œŒโˆ’1/3 0
[]1 โˆ’
๐‘‡]
2 1
2
๐‘‡1
(๐‘Š0 + ๐‘Œ0 )
2
๐‘Š0
2๐‘Œ0 (๐‘Š0 + ๐‘Œ0 )
We can rewrite ฮจ in (66) as
= (๐‘‹0 โˆ’ ๐‘‹) log (
so that
โˆผ
๐‘Œ0
] .
(๐‘Œ0 + ๐‘Š0 )
๐œŒ [ฮจ (๐‘‹, ๐‘Œ) + (๐‘‹0 โˆ’ ๐‘‹) ฮจ๐‘‹ (๐‘‹0 , ๐‘Œ0 )
But from (342) we have ๐‘Œ0 โˆ’ ๐‘Œ = ๐œŒโˆ’1/3 ๐‘‡1 โˆผ (๐‘Š0 + ๐‘Œ0 )๐œ so that
๐ด โˆ’ ๐ด min โˆผ
(349)
๐‘
(343)
Expanding the Jacobian ฮ” in (71) for ๐œ โ†’ 0 and ๐ด โ†’ ๐ด min
leads to
โˆผ๐œŒ
so using (347) and (345) we can easily verify that (340) is
satisfied.
To verify (341) we first note that ฮจ(๐‘‹0 , ๐‘Œ0 ) = 0,
exp [๐œŒ (๐‘Œ โˆ’ ๐‘Œ0 ) ฮจ๐‘Œ (๐‘‹0 , ๐‘Œ0 )] = [
๐ด ๓ณจ€โ†’ 1 โˆ’ โˆš๐‘‹0 .
|ฮ”|
(348)
๐‘Œ0โˆ’1/2 |ฮ”|โˆ’1/2 ๐พ0 (๐ด) ,
(342)
โˆš2๐‘Œ0 (1 โˆ’ โˆš๐‘‹0 ) (๐ด โˆ’ ๐ด min )
๐พ0 (๐ด) โˆผ
,
โˆš๐œ‹ (โˆš๐‘‹0 โˆ’ ๐‘Œ0 โˆ’ ๐‘‹0 ) (๐‘Š0 + ๐‘Œ0 )
1/6
|ฮ”|โˆ’1/2 ๐พ0 (๐ด)
๐‘›
The function ๐พ0 (๐ด) in (275) vanishes in this limit, in view of
the factor (1 โˆ’ ๐ด)2 โˆ’ ๐‘‹0 , and we have
โˆ’1/2
โˆ’1/2
= exp [๐œŒ (๐‘‹0 โˆ’ ๐‘‹) log (1 โˆ’ ๐ด min )] = (โˆš๐‘‹0 ) ,
๐‘Œ0
๐‘Œ0 โˆ’ ๐‘Œ =
(1 โˆ’ ๐‘’โˆ’๐œ ) .
1โˆ’๐ต
ฮ” โˆผ โˆ’2๐œ (๐‘Š0 + ๐‘Œ0 ) ;
(๐‘’โˆ’๐œ โˆ’ ๐ต)
โˆผ ๐‘‹0โˆ’1/4 (๐‘Œ0 + ๐‘Š0 )
1 ]2
].
4๐‘‡
๐‘‹0 โˆ’ ๐‘‹ = (1 โˆ’ ๐‘’โˆ’๐œ ) (
โˆ’1/2
= (๐‘’โˆ’๐œ โˆ’ ๐ด)
1 โˆ’ ๐ต๐‘’๐œ
)
1 โˆ’ ๐ตmin
(351)
1 โˆ’ ๐ด๐‘’๐œ
1 โˆ’ ๐ต๐‘’๐œ
) โˆ’ ๐‘Œ0 log (
)
1โˆ’๐ด
1โˆ’๐ต
+ ๐ด (1 โˆ’ ๐‘’๐œ ) ,
where we have partially expressed the right-hand side of (351)
in terms of ๐‘‹0 โˆ’ ๐‘‹ = ๐œŒโˆ’2/3 ]1 and ๐‘Œ0 โˆ’ ๐‘Œ = ๐œŒโˆ’1/3 ๐‘‡1 . Next we
38
Advances in Operations Research
expand (351) as a triple Taylor series about ๐œ = 0, ๐ด = ๐ด min ,
and ๐ต = ๐ตmin . We have
๐ด (1 โˆ’ ๐‘’๐œ ) โˆ’ ๐‘‹0 log [1 โˆ’
โˆ’ ๐‘Œ0 log [1 โˆ’
+ ๐ด min ๐œ] โˆผ โˆ’
๐ด (๐‘’๐œ โˆ’ 1)
]
1โˆ’๐ด
โˆ’ โˆš๐‘‹0 )
๐ต (๐‘’๐œ โˆ’ 1)
]
1โˆ’๐ต
โ‹…
๐‘Œ๐ต
๐‘‹๐ด
= [ 0 + 0 โˆ’ ๐ด] (๐‘’๐œ โˆ’ 1)
1โˆ’๐ด 1โˆ’๐ต
+[
1 โˆ’ ๐ต๐‘’๐œ
) = (๐‘Œ0 โˆ’ ๐‘Œ) log [1
1 โˆ’ ๐ตmin
= ๐œŒโˆ’1/3 ๐‘‡1 [โˆ’
(355)
From (342) we have
๐‘Œ0
1
2
โˆผโˆ’
(๐ด โˆ’ ๐ด min ) .
2
โˆš๐‘‹0 (๐‘Œ0 + ๐‘Š0 )
(353)
By (347), on the (], ๐‘‡) scale, ๐ด โˆ’ ๐ด min is ๐‘‚(๐œŒ ) so that ๐ต โˆ’
๐ตmin = ๐‘‚(๐œŒโˆ’2/3 ), and thus (352) may be further approximated
by (using (๐‘’๐œ โˆ’ 1)2 = ๐œ2 + ๐œ3 + ๐‘‚(๐œ4 ))
๐‘‹0 ๐ด2min
+
2
2 (1 โˆ’ ๐ด min )
+
+
+
2
๐‘Œ0 ๐ตmin
2
2 (1 โˆ’ ๐ตmin )
+
๐‘‹0 ๐ด3min
(๐‘Œ0 โˆ’ ๐‘Œ) (1 โˆ’ ๐ต) = ๐œŒโˆ’1/3 ๐‘‡1 [1 โˆ’ ๐ตmin + ๐‘‚ (๐œŒโˆ’2/3 )]
= ๐‘Œ0 (1 โˆ’ ๐‘’โˆ’๐œ )
3
3 (1 โˆ’ ๐ด min )
๐‘‹0 ๐ด2min
3
]
๐œ
+
[
3
2
3 (1 โˆ’ ๐ตmin )
2 (1 โˆ’ ๐ด min )
2
2 (1 โˆ’ ๐ตmin )
๐‘‹0 ๐ด2min
3
(1 โˆ’ ๐ด min )
๐‘‹0 ๐ด min
2
]๐œ + [
(354)
(356)
1
= ๐‘Œ0 [๐œ โˆ’ ๐œ2 + ๐‘‚ (๐œ3 )]
2
so we can refine the estimate above (345) to
๐œ = ๐œŒโˆ’1/3
3
๐‘Œ0 ๐ตmin
2
๐‘Œ0 ๐ตmin
+ ๐‘‚ (๐œ3 )] .
2
2 (1 โˆ’ ๐ตmin )
โˆ’1/3
[
๐ต โˆ’ ๐ตmin
๐ต ๐œ
โˆ’ min
1 โˆ’ ๐ตmin 1 โˆ’ ๐ตmin
๐ตmin ๐œ2
โˆ’
But the relation in (216) implies that the coefficient of (๐‘’๐œ โˆ’ 1)
in (352) vanishes and also that
๐ต โˆ’ ๐ตmin
(1 โˆ’ โˆš๐‘‹0 )
1
[ ๐‘‹01/6 (1
2
๐ต โˆ’ ๐ตmin ๐ตmin (๐‘’๐œ โˆ’ 1)
2
โˆ’
+ ๐‘‚ ((๐ต โˆ’ ๐ตmin ) )]
1 โˆ’ ๐ตmin
1 โˆ’ ๐ตmin
โˆ’
+ ๐‘‚ (๐œ4 ) .
1/3
] + ๐‘‡2
,
๐‘‡
(352)
๐‘‹0 ๐ด3
๐‘Œ0 ๐ต3
3
+
] (๐‘’๐œ โˆ’ 1)
3
3
3 (1 โˆ’ ๐ด)
3 (1 โˆ’ ๐ต)
๐‘‹01/6
] โˆ’ ๐‘‡2 (1 โˆ’ โˆš๐‘‹0 )
]
๐‘‡1 ] = โˆ’
+
๐‘‡
๐‘Š0 + ๐‘Œ0
2๐œŒ
1/3
(๐‘Œ0 โˆ’ ๐‘Œ) log (
๐‘‹0 ๐ด2
๐‘Œ0 ๐ต2
2
+[
+
] (๐‘’๐œ โˆ’ 1)
2 (1 โˆ’ ๐ด)2 2 (1 โˆ’ ๐ต)2
๐œŒโˆ’1 ]
๐‘‡12
๐‘‡1
1
+ ๐œŒโˆ’2/3
+ ๐‘‚ (๐œŒโˆ’1 ) . (357)
2
๐‘Š0 + ๐‘Œ0 2
(๐‘Š0 + ๐‘Œ0 )
Adding the expressions in (354) and (355) and using the
estimates in (347), (353), and (357), (351) becomes, when
multiplied by ๐œŒ,
2
2
(1 โˆ’ ๐ด min )
] (๐ด โˆ’ ๐ด min ) ๐œ2
[
โ‹…
with an ๐‘‚(๐œ4 ) error, which is not needed for the matching
verification since exp[๐‘‚(๐œŒ๐œ4 )] = exp[๐‘‚(๐œŒโˆ’1/3 )] โˆผ 1. We also
have
3
๐‘Š3
๐‘Š2 (1 โˆ’ โˆš๐‘‹0 )
(1 โˆ’ โˆš๐‘‹0 )
+ 02 ]
+ 0 +
2
2๐‘Œ0
3๐‘Œ0
3โˆš๐‘‹0
๐‘‡13
2
3
(๐‘Š0 + ๐‘Œ0 )
+ [1 โˆ’ โˆš๐‘‹0 +
1/3
โ‹…
๐‘‹01/6 (1 โˆ’ โˆš๐‘‹0 )
(1 โˆ’ โˆš๐‘‹0 )
โˆš๐‘‹0
]
๐‘‡12 (] โˆ’ ๐‘‡2 )
2
๐‘‡
2 (๐‘Š0 + ๐‘Œ0 )
2
(๐‘‹0 โˆ’ ๐‘‹) log (
โˆ’
๐œ
1 โˆ’ ๐ด๐‘’
) = ๐œŒโˆ’2/3 ]1 log [1
1 โˆ’ ๐ด min
๐ด min ๐œ
๐ด โˆ’ ๐ด min
โˆ’
1 โˆ’ ๐ด min 1 โˆ’ ๐ด min
+ ๐‘‚ (๐œ2 , ๐œ (๐ด โˆ’ ๐ด min ))] โˆผ โˆ’
(1 โˆ’ โˆš๐‘‹0 )
๐‘Š2
+[
+ 0]
2
2๐‘Œ0
โ‹… [๐œŒ1/3
๐œŒโˆ’2/3 ]1
[๐ด โˆ’ ๐ด min
โˆš๐‘‹0
+
๐‘‡12
(๐‘Š0 + ๐‘Œ0 )
2
+
๐‘‡13
]2 ]๐‘‡
]
โˆ’
โˆ’
3
2๐‘‡
2
(๐‘Š0 + ๐‘Œ0 )
๐‘Œ0
๐‘Š0 + ๐‘Œ0
1
๐‘‡1
2
๐‘Œ0
(๐‘Š0 + ๐‘Œ0 ) โˆš๐‘‹0
Advances in Operations Research
2/3
๐‘‹1/3 (1 โˆ’ โˆš๐‘‹0 )
โ‹… 0
4
โ‹… ๐‘‡1 (
โˆ’
(
39
2
๐‘Š (๐‘Š + ๐‘Œ )
]
โˆ’ ๐‘‡) โˆ’ 0 0 2 0
๐‘‡
๐‘ค๐‘Œ0
2
๐‘‡1
)
๐‘Š0 + ๐‘Œ0
๐‘‡13
๐‘Š0 1/3 ๐‘‡12
[๐œŒ
+
].
๐‘Œ0
๐‘Š0 + ๐‘Œ0 2 (๐‘Š0 + ๐‘Œ0 )2
(358)
Comparing (358) to (350) we find, after some simplification,
that they are identical. The comparison is facilitated by
separately comparing terms proportional to ๐œŒ1/3 ๐‘‡12 , ]2 /๐‘‡,
]๐‘‡, and ๐‘‡3 . This verifies the matching between the D0 ray
expansion and that on the (], ๐‘‡) scale. The Airy functions
that arose on the (], ๐‘‡) scale disappear in the limit where
], ๐‘‡ โ†’ โˆž. If we let ], ๐‘‡ โ†’ โˆž with ]/๐‘‡2 < 1, then the
expansion of F(], ๐‘‡) is much different, and now we have
F (], ๐‘‡)
โˆผ
(359)
1
2
1
exp [โˆ’ ]3/2 + ๐‘Ÿ0 (๐‘‡ โˆ’ โˆš])] ,
๓ธ€ 
1/4
3
2โˆš๐œ‹Ai (๐‘Ÿ0 ) ]
as the pole at ๐œƒ = ๐‘Ÿ0 determines the asymptotic behavior.
We can show that then (169) with (359) agrees with the ray
1/3
expansion in Dโˆ’ , that is, ๐ถ1 ๐ฟ(๐‘‹, ๐‘Œ)๐‘’๐œŒฮฆ(๐‘‹,๐‘Œ) ๐‘’๐œŒ ฮฆโˆ— (๐‘ 1 ) , as the
latter is expanded for (๐‘‹, ๐‘Œ) โ†’ (๐‘‹0 , ๐‘Œ0 ), for parameter
region R4 . The case where ]/๐‘‡2 โ‰ˆ 1 will be important in
determining the transition layer expansion that applies where
D0 meets Dโˆ’ , which is along the curve ๐‘Œ = ๐‘Œ๐‘ (๐‘‹). Then
neither (339) nor (359) apply.
5. Asymptotic Expansions
near State Space Boundaries
We discuss the four boundary segments, ๐‘‹ = 0, ๐‘‹ = ๐‘‹0 ,
๐‘Œ = 0, and ๐‘Œ = ๐‘Œ0 , of the state space rectangle, avoiding for
now the corner points. From Figures 3โ€“6 we see that D+ will
border ๐‘‹ = 0 and ๐‘‹ = ๐‘‹0 for parameter regions R2 and
R3 and also border ๐‘Œ = 0 for region R1 . As we previously
discussed the ray expansion in D+ remains valid near ๐‘‹ = ๐‘‹0
but breaks down near ๐‘Œ = 0 (R1 ) and ๐‘‹ = 0 (R2 โˆช R3 ). The
analysis of ๐‘Œ = 0 (corresponding to the scales ๐‘Ÿ = ๐‘‚(1) and
๐‘Ÿ = ๐‘‚(โˆš๐œŒ)) is identical to that of the infinite capacity model,
and we show in [10] how to construct appropriate boundary
layer corrections; this leads to (88)โ€“(95) in Proposition 8. The
analysis near ๐‘‹ = 0 (with 0 < ๐‘Œ < [(๐‘‹0 + ๐‘Œ0 )2 โˆ’ ๐‘‹0 ]/(๐‘‹0 +
๐‘Œ0 )2 ) is also very similar to that in [10], except that if ๐‘‹0 +
๐‘Œ0 < 1 (R2 โˆช R3 ) we must use the values of ๐ถ(๐œŒ) in (32)
and (33). Thus both the D+ ray expansion and the boundary
layer expansion, which applies for ๐‘˜ = ๐‘‚(1), are rescaled by a
constant. We thus obtain (114).
For parameter region(s) R2 โˆช R3 โˆช R4 , Dโˆ’ meets the
line ๐‘‹ = ๐‘‹0 , and there the expansions in (109)โ€“(112) apply.
Their derivation for R2 is identical to that in [10], while
for the other subcases we must simply multiply both the
Dโˆ’ ray expansion and the boundary layer corrections by
the appropriate ๐ถ1 (๐œŒ), from among (35), (36), (37), and (41).
Similarly, the boundary layer correction along ๐‘Œ = 0 is given
by (96), with the appropriate value of ๐ถ1 (๐œŒ). For R2 โˆช R3 this
covers the entire range 0 < ๐‘‹ < ๐‘‹0 , but for R4 only the range
๐‘‹๐ฟ < ๐‘‹ < ๐‘‹0 (with ๐‘‹๐ฟ defined in item (vii) in Proposition 8),
as in the range 0 < ๐‘‹ < ๐‘‹๐ฟ , D0 meets ๐‘Œ = 0.
Here we will only examine where D0 meets the state space
boundaries, and this occurs along ๐‘Œ = ๐‘Œ0 for all regions R๐‘— ,
along ๐‘‹ = 0 with [(๐‘‹0 + ๐‘Œ0 )2 โˆ’ ๐‘‹0 ]/(๐‘‹0 + ๐‘Œ0 )2 < ๐‘Œ < ๐‘Œ0 for
R1 โˆช R2 โˆช R3 , and all 0 < ๐‘Œ < ๐‘Œ0 for R4 , and along ๐‘Œ = 0
with 0 < ๐‘‹ < ๐‘‹๐ฟ for R4 only. We thus proceed to construct
boundary layer corrections to the D0 ray expansion for these
three boundary segments.
5.1. The Boundary Segment ๐‘‹ = 0. We consider the scale ๐‘˜ =
๐‘‚(1) and let
๐œ‹ (๐‘˜, ๐‘Ÿ) = ๐ถ2 (๐œŒ) ๐‘’๐œŒฮจ(0,๐‘Œ) ๐œŒ๐‘˜ ฮ ๐‘˜ (๐‘Œ; ๐œŒ) .
(360)
Then the main balance equation (3), after dividing by
exp[๐œŒฮจ(0, ๐‘Œ)], becomes
[๐œŒ (1 + ๐‘Œ) + ๐‘˜] ฮ ๐‘˜ (๐‘Œ; ๐œŒ) = (๐œŒ๐‘Œ + 1) ฮ ๐‘˜ (๐‘Œ + ๐œŒโˆ’1 ; ๐œŒ)
โ‹… exp {๐œŒ [ฮจ (0, ๐‘Œ + ๐œŒโˆ’1 ) โˆ’ ฮจ (0, ๐‘Œ)]} + ๐œŒ (๐‘˜ + 1)
(361)
โ‹… ฮ ๐‘˜+1 (๐‘Œ; ๐œŒ) + ฮ ๐‘˜โˆ’1 (๐‘Œ; ๐œŒ) .
Taking ฮ ๐‘˜ (๐‘Œ) to be the leading order approximation to
ฮ ๐‘˜ (๐‘Œ; ๐œŒ), dividing (361) by ๐œŒ, and letting ๐œŒ โ†’ โˆž lead to the
limiting equation
[1 + ๐‘Œ โˆ’ ๐‘Œ๐‘’ฮจ๐‘Œ (0,๐‘Œ) ] ฮ ๐‘˜ (๐‘Œ) = (๐‘˜ + 1) ฮ ๐‘˜+1 (๐‘Œ) ,
๐‘˜ โฉพ 1.
(362)
By examining the boundary condition in (6) we conclude that
(362) holds also if ๐‘˜ = 0, and thus
ฮ ๐‘˜ (๐‘Œ) =
๐‘˜
ฮ 0 (๐‘Œ)
[1 + ๐‘Œ โˆ’ ๐‘Œ๐‘’ฮจ๐‘Œ (0,๐‘Œ) ] .
๐‘˜!
(363)
To determine ๐ถ2 (๐œŒ) and ฮ 0 (๐‘Œ) we asymptotically
match (360) to the D0 ray expansion. We thus expand
๐œŒโˆ’1/2 ๐‘„(0, 0)๐พ(๐‘‹, ๐‘Œ)๐‘’๐œŒฮจ(๐‘‹,๐‘Œ) as ๐‘‹ โ†’ 0 and compare the result
to the large ๐‘˜ expansion of (360). By using Stirlingโ€™s formula
we see that the matching is possible if, as ๐‘‹ โ†’ 0,
ฮจ (๐‘‹, ๐‘Œ)
= ฮจ (0, ๐‘Œ) โˆ’ ๐‘‹ log ๐‘‹
(364)
+ ๐‘‹ [1 + log (1 + ๐‘Œ โˆ’ ๐‘Œ๐‘’ฮจ๐‘Œ (0,๐‘Œ) )] + ๐‘œ (๐‘‹) ,
๐ถ (๐œŒ)
๐‘„ (0, 0)
ฮ 0 (๐‘Œ) ,
๐พ (๐‘‹, ๐‘Œ) โˆผ 2
โˆš2๐œ‹๐œŒ๐‘‹
โˆš๐œŒ
๐‘‹ ๓ณจ€โ†’ 0.
(365)
Note that the exponential factor in (360) must be included
for the matching to be possible. Thus we could set ๐ถ2 (๐œŒ) =
๐‘„(0, 0) and then ฮ 0 (๐‘Œ) will be the limit of โˆš2๐œ‹๐‘‹๐พ(๐‘‹, ๐‘Œ) as
๐‘‹ โ†’ 0, which we show below to be finite and nonzero.
40
Advances in Operations Research
From (68) we see that ๐‘‹ = 0 corresponds to ๐ด = ๐‘’โˆ’๐œ
and we set ๐ด 1 (๐‘Œ) = ๐ด(0, ๐‘Œ), where we view ๐ด as a function
of (๐‘‹, ๐‘Œ) via the mapping in (68). Then we also set ๐ต1 (๐‘Œ) =
๐ต(0, ๐‘Œ) and from (68) find that
๐ด 1 โˆ’ ๐ต1 =
๐‘Œ (1 โˆ’ ๐ด 1 )
.
๐‘Œ0 โˆ’ ๐‘Œ
(366)
Using (366) in (67) leads to a quadratic equation for ๐ด 1 (๐‘Œ),
whose solution is given by (118). Also, replacing (๐‘’๐œ , ๐ด, ๐ต)
by (1/๐ด 1 , ๐ด 1 , ๐ต1 ) in (66) leads to the expression in (119) for
ฮจ(0, ๐‘Œ), which is an explicit function of ๐‘Œ. As ๐‘‹ โ†’ 0,
๐‘‹/(๐‘’โˆ’๐œ โˆ’ ๐ด) is finite and from (68) we obtain
๐‘’โˆ’๐œ โˆ’ ๐ด โˆผ
๐ด 1 (1 โˆ’ ๐ด 1 )
๐‘‹, ๐‘‹ ๓ณจ€โ†’ 0.
๐ด 1 (๐ด 1 + ๐‘‹0 โˆ’ 2) + 1
(367)
Evaluating the Jacobian ฮ” in (71) along ๐‘‹ = 0 leads to ฮ” ๐ฟ (๐‘Œ)
in (120). Thus as ๐‘‹ โ†’ 0 we have
(๐‘’โˆ’๐œ โˆ’ ๐ด)
โˆ’1/2
(๐‘’โˆ’๐œ โˆ’ ๐ต)
โˆ’1/2
โˆผ (๐ด 1 โˆ’ ๐ต1 )
โ‹…โˆš
โˆ’1/2
|ฮ”|โˆ’1/2 ๐พ0 (๐ด)
๓ต„จ๓ต„จ ๓ต„จ๓ต„จโˆ’1/2
๐พ0 (๐ด 1 )
๓ต„จ๓ต„จฮ” ๐ฟ ๓ต„จ๓ต„จ
โ‹…โˆš
โ‹…
(369)
๐ด 1 (๐ด 1 + ๐‘‹0 โˆ’ 2) + 1
1 โˆ’ ๐ด1
=1+๐‘Œโˆ’
๐‘Œ๐ด 1
๐ด 1 โˆ’ ๐ต1
(๐‘Œ0 โˆ’ ๐‘Œ)
๐ด .
1 โˆ’ ๐ด1 1
=
(370)
โˆผ log [
๐‘‹0
,
๐‘‹0 + ๐‘Œ0
(375)
ฮจ+,๐‘Œ (0, ๐‘Œ๐‘ˆ) = ฮจ๐‘Œ (0, ๐‘Œ๐‘ˆ)
(๐‘‹ + ๐‘Œ0 ) โˆ’ ๐‘‹0
= โˆ’ log [ 0
].
๐‘Œ0
1 โˆ’ ๐ท0 (๐‘Œ๐‘ˆ)
๐ท0 (๐‘Œ๐‘ˆ)
โ‹…
๐‘‹0
โˆ’ 1 + ๐‘’๐œ )]
1โˆ’๐ด
๐‘‹0 ๐ด 1
+ 1 โˆ’ ๐ด 1] .
1 โˆ’ ๐ด1
๐ด 1 (๐‘Œ๐‘ˆ) (๐ด 1 (๐‘Œ๐‘ˆ) + ๐‘‹0 โˆ’ 2) + 1
1 โˆ’ ๐ด 1 (๐‘Œ๐‘ˆ)
After some calculation we find that
ฮจ๐‘‹ + log ๐‘‹ = โˆ’ log (1 โˆ’ ๐ด๐‘’๐œ )
๐‘‹0
โˆ’ 1) ๐‘’โˆ’๐œ + 1]
1โˆ’๐ด
(374)
2
But from (118) we see that
+ (๐‘‹0 + ๐‘Œ0 โˆ’ 1)๐ด 1 โˆ’ ๐‘Œ = 0 so
that the right-hand sides of (370) and (371) agree.
Using (68) we have, as ๐‘‹ โ†’ 0,
โˆผ log [(
๐‘˜
๐œŒ๐‘˜
๐‘Œ0
) ฮ โˆ— (๐‘ฆโˆ— ) ,
(1 + ๐‘Œ0 โˆ’
๐‘˜!
๐‘‹0 + ๐‘Œ0
= ๐‘Œ0 +
(371)
๐ด21
+ log [(๐‘’โˆ’๐œ โˆ’ ๐ด) (
๐‘ฆโˆ— )
1 + ๐‘Œ๐‘ˆ โˆ’ ๐ท02 (๐‘Œ๐‘ˆ)
and ฮจ has the small ๐‘‹ behavior indicated in (364). Now, ฮจ๐‘Œ =
โˆ’log(1 โˆ’ ๐ต๐‘’๐œ ) so that ฮจ๐‘Œ(0, ๐‘Œ) = โˆ’log(1 โˆ’ ๐ต1 /๐ด 1 ) and using
(366) leads to
1 + ๐‘Œ โˆ’ ๐‘Œ๐‘’ฮจ๐‘Œ (0,๐‘Œ) = 1 + ๐‘Œ โˆ’
(373)
where we note that 1+๐‘Œโˆ’๐‘Œ๐‘’ฮจ๐‘Œ (0,๐‘Œ) = 1+๐‘Œ0 โˆ’๐‘Œ0 /(๐‘‹0 +๐‘Œ0 ) when
๐‘Œ = ๐‘Œ๐‘ˆ, since ๐ด 1 (๐‘Œ๐‘ˆ) = ๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ). To determine ฮ โˆ— (โ‹…)
we first infer its behaviors as ๐‘ฆโˆ— โ†’ ±โˆž by asymptotically
matching (374) to the expansions that apply for ๐‘Œ < ๐‘Œ๐‘ˆ and
๐‘Œ > ๐‘Œ๐‘ˆ.
We expand the result in (114) as ๐‘Œ โ†‘ ๐‘Œ๐‘ˆ. We have
ฬƒ
= ๐‘Œ0 /(๐‘‹0 + ๐‘Œ0 ) so that
๐ท0 (๐‘Œ๐‘ˆ) = ๐ท0 (๐‘Œ(0))
Using (366) and ๐พ0 (โ‹…) in (275) we see that (360) agrees with
(117) as ๐‘‹ โ†’ 0, if
1 + ๐‘Œ โˆ’ ๐‘Œ๐‘’ฮจ๐‘Œ (0,๐‘Œ) =
๐ด21 + (๐‘‹0 โˆ’ 2) ๐ด 1 + 1
) ๐‘‚ (๐‘‹2 )
1 โˆ’ ๐ด1
and this verifies (364). We have thus shown that the
asymptotic matching holds and also determined ฮ 0 (๐‘Œ). This
completes the derivation of (117)โ€“(120).
For region R4 , (117) holds for all 0 < ๐‘Œ < ๐‘Œ0 , and then
the expansion matches to the corner expansions that apply for
๐‘Œ = ๐‘‚(๐œŒโˆ’1 ) (๐‘Ÿ = ๐‘‚(1)) and ๐‘Œ = ๐‘Œ0 โˆ’ ๐‘‚(๐œŒโˆ’1 ) (๐‘ = ๐‘… โˆ’ ๐‘Ÿ =
๐‘‚(1)). But for region R1 โˆช R2 โˆช R3 and ๐‘˜ = ๐‘‚(1), (117) holds
only for ๐‘Œ๐‘ˆ < ๐‘Œ < ๐‘Œ0 , while (114) applies for 0 < ๐‘Œ < ๐‘Œ๐‘ˆ. To
connect these it is necessary to construct another expansion
for ๐‘Œ โˆ’ ๐‘Œ๐‘ˆ = ๐‘‚(๐œŒโˆ’1/2 ). Using the variables ๐‘˜ and ๐‘ฆโˆ— โ‰ก โˆš๐œŒ(๐‘Œ โˆ’
๐‘Œ๐‘ˆ) = ๐‘‚(1) we conclude from (3) and (6) that
(368)
๓ต„จ๓ต„จ ๓ต„จ๓ต„จโˆ’1/2 โˆš
2๐œ‹๐พ0 (๐ด 1 )
๓ต„จ๓ต„จฮ” ๐ฟ ๓ต„จ๓ต„จ
๐ด 1 (๐ด 1 + ๐‘‹0 โˆ’ 2) + 1
.
๐ด 1 (1 โˆ’ ๐ด 1 )
= ๐‘‹ log (
โˆ’1/2
We have thus identified ฮ 0 (๐‘Œ) as
โˆ’1/2
ฮจ (๐‘‹, ๐‘Œ) + ๐‘‹ log ๐‘‹ โˆ’ ๐‘‹
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐ถ3 (๐œŒ) ๐‘’๐œŒฮจ(0,๐‘Œ๐‘ˆ +๐œŒ
๐ด 1 (๐ด 1 + ๐‘‹0 โˆ’ 2) + 1 1
.
โˆš๐‘‹
๐ด 1 (1 โˆ’ ๐ด 1 )
ฮ 0 (๐‘Œ) = (๐ด 1 โˆ’ ๐ต1 )
Integrating the above, noting that ฮจ๐‘‹ +log ๐‘‹ is an analytic
function of ๐‘‹, we conclude that
(372)
โˆ’1/2
๐‘Œ๐‘ˆ
[๐‘Œ๐‘ˆ + 2๐ท02 (๐‘Œ๐‘ˆ) (1 โˆ’ ๐ท0 (๐‘Œ๐‘ˆ))]
โˆš๐‘‹0
=โˆš
(376)
๐‘‹0
๐‘‹0
[1 โˆ’
]
2
๐‘Œ0
(๐‘‹0 + ๐‘Œ0 )
3/2
โ‹…
(๐‘‹0 + ๐‘Œ0 )
โˆš(๐‘‹0 + ๐‘Œ0 )3 + ๐‘‹0 (๐‘Œ0 โˆ’ ๐‘‹0 )
.
Advances in Operations Research
41
1
ฮ โˆ— (๐‘ฆโˆ— ) exp [ ฮจ๐‘Œ๐‘Œ (0, ๐‘Œ๐‘ˆ) ๐‘ฆโˆ—2 ]
2
Furthermore,
ฮจ (0, ๐‘Œ๐‘ˆ) = ฮจ+ (0, ๐‘Œ๐‘ˆ) + 1 โˆ’ ๐‘‹0 โˆ’ ๐‘‹0
+ (๐‘‹0 + ๐‘Œ0 ) log (๐‘‹0 + ๐‘Œ0 )
2
โˆผ
(377)
โˆš(๐‘‹0 + ๐‘Œ0 )3 + ๐‘‹0 (๐‘Œ0 โˆ’ ๐‘‹0 )
โˆš
๐‘‹0
๐‘Œ0
(379)
1
โ‹… exp [ ฮจ+,๐‘Œ๐‘Œ (0, ๐‘Œ๐‘ˆ) ๐‘ฆโˆ—2 ] .
2
and we note that, in view of Propositions 1 and 2,
๐ถ (๐œŒ) โˆผ โˆš2๐œ‹โˆš๐‘‹0 + ๐‘Œ0 ๐‘„ (0, 0) ๐‘’๐œŒ[ฮจ(0,๐‘Œ๐‘ˆ )โˆ’ฮจ+ (0,๐‘Œ๐‘ˆ )]
(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0
Next we expand (117) as ๐‘Œ โ†“ ๐‘Œ๐‘ˆ. Since (๐‘‹0 + ๐‘Œ0 )๐ด 1 (๐‘Œ๐‘ˆ) =
๐‘Œ0 , (117) is singular in this limit, and we use
(378)
which holds in regions R1 โˆช R2 โˆช R3 . Using (375)โ€“(378)
to infer the behavior of (114) as ๐‘Œ โ†‘ ๐‘Œ๐‘ˆ and comparing the
result to (374) we can take ๐ถ3 (๐œŒ) = โˆš2๐œ‹๐œŒ๐‘„(0, 0) and then, as
๐‘ฆโˆ— โ†’ โˆ’โˆž,
๐‘Œ0 โˆ’ ๐ด 1 (๐‘Œ) (๐‘‹0 + ๐‘Œ0 )
โˆผ โˆ’๐ด๓ธ€ 1 (๐‘Œ๐‘ˆ) (๐‘‹0 + ๐‘Œ0 ) (๐‘Œ โˆ’ ๐‘Œ๐‘ˆ)
(380)
= โˆ’๐ด๓ธ€ 1 (๐‘Œ๐‘ˆ) (๐‘‹0 + ๐‘Œ0 ) ๐‘ฆโˆ— ๐œŒโˆ’1/2
to obtain
2
โˆš๐ด 1 (๐ด 1 + ๐‘‹0 โˆ’ 2) + 1 [(1 โˆ’ ๐ด 1 ) โˆ’ ๐‘‹0 ] โˆš๐ด 1
๐‘Œ0
โˆš
๓ต„จ1/2
๓ต„จ๓ต„จ
๐‘Œ (๐‘Œ0 โˆ’ ๐‘Œ)
๓ต„จ๓ต„จฮ” ๐ฟ (๐‘Œ)๓ต„จ๓ต„จ๓ต„จ [๐‘Œ0 โˆ’ ๐ด 1 (๐‘‹0 + ๐‘Œ0 )]
2
โˆผ
โˆš๐œŒ โˆš๐ด 1 (๐‘Œ๐‘ˆ) (๐ด 1 (๐‘Œ๐‘ˆ) + ๐‘‹0 โˆ’ 2) + 1 [(1 โˆ’ ๐ด 1 (๐‘Œ๐‘ˆ)) โˆ’ ๐‘‹0 ] โˆš๐ด 1 (๐‘Œ๐‘ˆ)
๓ต„จ1/2
๓ต„จ๓ต„จ
๐‘ฆโˆ—
๓ต„จ๓ต„จฮ” ๐ฟ (๐‘Œ๐‘ˆ)๓ต„จ๓ต„จ๓ต„จ [โˆ’ (๐‘‹0 + ๐‘Œ0 )] ๐ด๓ธ€ 1 (๐‘Œ๐‘ˆ)
(381)
๐‘‹0
โˆš๐œŒ
โˆš(๐‘‹0 + ๐‘Œ0 )2 โˆ’ ๐‘‹0 โˆš(๐‘‹0 + ๐‘Œ0 )2 + ๐‘Œ0 โˆ’ ๐‘‹0
=
๐‘ฆโˆ— (๐‘‹ + ๐‘Œ )5/2
0
0
=
โˆ’1/2 1
โˆš๐œŒ ๐‘‹0
2
3
โˆš
[(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0 ] [(๐‘‹0 + ๐‘Œ0 ) + ๐‘‹0 (๐‘Œ0 โˆ’ ๐‘‹0 )]
,
๐‘ฆโˆ— ๐‘Œ0
๐‘Ž๐‘
where ๐‘Ž๐‘ was defined in (125). To obtain (381) we also used
๐ด๓ธ€ 1 (๐‘Œ๐‘ˆ) =
๐‘‹0 + ๐‘Œ0
2
(๐‘‹0 + ๐‘Œ0 ) + ๐‘Œ0 โˆ’ ๐‘‹0
ฮจ+,๐‘Œ๐‘Œ (0, ๐‘Œ๐‘ˆ) โˆ’ ๐‘Ž๐‘2 = ฮจ๐‘Œ๐‘Œ (0, ๐‘Œ๐‘ˆ)
,
(382)
2
=
(๐‘‹0 + ๐‘Œ0 )
2
[(๐‘‹0 + ๐‘Œ0 ) ๐‘Œ0 + ๐‘‹0 ] ,
which follow from (118) and (120). Denoting the ratio of the
left- and right-hand sides of (379) by ๐‘“(๐‘ฆโˆ— ), the matching
conditions as ๐‘ฆโˆ— โ†’ ±โˆž may be written as
๐‘“ (๐‘ฆโˆ— ) ๓ณจ€โ†’ 1,
(384)
so that the error function
๓ต„จ๓ต„จ
๓ต„จ
๓ต„จ๓ต„จฮ” ๐ฟ (๐‘Œ๐‘ˆ)๓ต„จ๓ต„จ๓ต„จ
(๐‘‹0 + ๐‘Œ0 ) + ๐‘Œ0 โˆ’ ๐‘‹0
After some calculation we can show that
๐‘“ (๐‘ฆโˆ— ) =
โˆž
2
1
โˆซ ๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข
โˆš2๐œ‹ ๐‘Ž๐‘ ๐‘ฆโˆ—
satisfies the conditions in (383). To determine ๐‘“(๐‘ฆโˆ— ) completely we need to match (374), with ๐ถ3 = โˆš2๐œ‹๐œŒ๐‘„(0, 0), to
the expansion in the transition layer where D+ and D0 meet,
which is given by (176). This matching has ๐‘‹ โ†’ 0 in (176)
and ๐‘˜ โ†’ โˆž in (374), with ๐œ‚โˆ— fixed. Noting that as ๐‘‹ โ†’ 0
ฬƒ (๐‘‹)] = โˆš๐œŒ [๐‘Œ โˆ’ ๐‘Œ๐‘ˆ + ๐‘‚ (๐‘‹)]
๐œ‚โˆ— = โˆš๐œŒ [๐‘Œ โˆ’ ๐‘Œ
๐‘ฆโˆ— ๓ณจ€โ†’ โˆ’โˆž
1
๐‘“ (๐‘ฆโˆ— ) โˆผ
โˆš2๐œ‹๐‘Ž๐‘ ๐‘ฆโˆ—
= ๐‘ฆโˆ— + ๐‘‚ (๐œŒโˆ’1/2 )
๐‘ฆ2
โ‹… exp { โˆ— [ฮจ+,๐‘Œ๐‘Œ (0, ๐‘Œ๐‘ˆ) โˆ’ ฮจ๐‘Œ๐‘Œ (0, ๐‘Œ๐‘ˆ)]} ,
2
๐‘ฆโˆ— ๓ณจ€โ†’ โˆž.
(383)
(385)
(386)
we can show, using (178) and (184)โ€“(187), that ๐‘(๐‘กโˆ— ) โ†’ ๐‘Ž๐‘โˆ’2 as
๐‘‹ โ†’ 0 and thus (385) determines ๐‘“(๐‘ฆโˆ— ) for all ๐‘ฆโˆ— = ๐‘‚(1).
5.2. The Boundary Segment ๐‘Œ = 0. We consider ๐‘Ÿ = ๐‘‚(1), in
ranges where D0 meets the ๐‘ฅ-axis, which can occur only for
42
Advances in Operations Research
R4 . The analysis for where D+ (region R1 ) or Dโˆ’ (regions
R2 and R3 ) meet the ๐‘ฅ-axis is very similar to that in [10] so
we omit it. By examining (3), noting that this equation holds
even if ๐‘Ÿ = 0, on the scale ๐‘Ÿ = ๐‘‚(1) with ๐‘˜ = ๐œŒ๐‘‹, ๐‘‹ > 0, we
find that
ฬƒ ๐‘Ÿ (๐‘‹) ๐‘’๐œŒฮจ(๐‘‹,0) ,
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐ถ4 (๐œŒ) ๐œŒ๐‘Ÿ ฮ 
(387)
ฬƒ ๐‘Ÿ (๐‘‹) will satisfy
where ฮ 
ฬƒ ๐‘Ÿ (๐‘‹)
[1 + ๐‘‹ โˆ’ ๐‘’โˆ’ฮจ๐‘‹ (๐‘‹,0) โˆ’ ๐‘‹๐‘’ฮจ๐‘‹ (๐‘‹,0) ] ฮ 
ฬƒ ๐‘Ÿ+1 (๐‘‹) .
= (๐‘Ÿ + 1) ฮ 
(388)
Noting that ฮจ๐‘‹ (๐‘‹, 0) = โˆ’log(1 โˆ’ ๐ด๐‘’๐œ ), we define ๐ด 0 (โ‹…) by
๐ด 0 (๐‘‹) = ๐ด(๐‘‹, 0). A ray in D0 reaches the ๐‘ฅ-axis when ๐‘’โˆ’๐œ =
๐ต so we also let ๐ต0 (๐‘‹) = ๐ต(๐‘‹, 0). Then evaluating (197) along
๐‘Œ = 0 leads to
1 + ๐‘‹ โˆ’ ๐‘‹๐‘’ฮจ๐‘‹ (๐‘‹,0) โˆ’ ๐‘’โˆ’ฮจ๐‘‹ (๐‘‹,0) = lim [๐‘Œ๐‘’ฮจ๐‘Œ ]
๐‘Œโ†’0
๐ต โˆ’ ๐‘’โˆ’๐œ
= โˆ’๐œ
lim {๐‘Œ0
exp [โˆ’ log (1 โˆ’ ๐ต๐‘’๐œ )]}
๐‘’ โ†’๐ต
๐ตโˆ’1
=
we simply replace ๐ด by ๐ด 0 (๐‘‹) in the factors that are not
singular and use
โˆ’1/2
(๐‘’โˆ’๐œ โˆ’ ๐ต)
(395)
๐‘” (๐‘‹)
๐‘Š + ๐‘Œ0 โˆš1 โˆ’ โˆš๐‘‹0 ๐‘‹0 โˆ’ (1 โˆ’ ๐ด 0 )
โˆผโˆš 0
,
2๐‘Š0 + ๐‘Œ0 โˆš๐‘‹0 (โˆš๐‘‹ โˆ’ ๐‘‹ โˆ’ ๐‘Œ )3/2
2
0
0
(396)
0
๐‘‹ ๓ณจ€โ†’ ๐‘‹๐ฟ .
(389)
๐‘Œ0 ๐ต0
1 โˆ’ ๐ต0
By implicit differentiation of (100) we find that
๐ด๓ธ€ 0 (๐‘‹๐ฟ ) = โˆ’
๐‘Ÿ
ฬƒ ๐‘Ÿ (๐‘‹) = ฮ 
ฬƒ 0 (๐‘‹) 1 [ ๐‘Œ0 ๐ต0 (๐‘Œ) ] .
ฮ 
๐‘Ÿ! 1 โˆ’ ๐ต0 (๐‘Œ)
(390)
We proceed to determine the constant ๐ถ4 (๐œŒ) and function
ฬƒ 0 (โ‹…) by asymptotically matching (387) to the D0 ray expanฮ 
sion.
First we note that setting ๐‘’โˆ’๐œ = ๐ต0 in (66) and replacing
(๐ด, ๐ต) by (๐ด 0 , ๐ต0 ) lead to the expression in (99) for ฮจ(๐‘‹, 0).
As ๐‘Œ โ†’ 0 we also have, in view of (389),
ฮจ๐‘Œ (๐‘‹, ๐‘Œ) = โˆ’ log ๐‘Œ + log (
๐‘Œ0 ๐ต0
) + ๐‘œ (1) .
1 โˆ’ ๐ต0
(391)
By integrating (391) we see that the D0 ray expansion behaves
for ๐‘Œ โ†’ 0 as
๐‘Œ๐ต
๐‘„ (0, 0)
๐พ (๐‘‹, ๐‘Œ) ๐‘’โˆ’๐œŒ๐‘Œlog๐‘Œ ๐‘’๐œŒ๐‘Œ exp [๐œŒ๐‘Œ log ( 0 0 )]
๐œŒ
1
โˆ’ ๐ต0
โˆš
๐‘Ÿ
๐‘Ÿ
(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
๐œŒ ๐‘Ÿ ๐‘Œ0 ๐ต0
๐‘’ (
)
๐พ (๐‘‹, ๐‘Œ) .
๐‘Ÿ
๐‘Ÿ
1 โˆ’ ๐ต0
โˆš๐œŒ
(392)
Here we used ๐‘„(0, 0) โˆผ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 (in R4 ) and ๐œŒ๐‘Œ =
๐‘Ÿ. Expanding ๐‘Ÿ! in (390) by Stirlingโ€™s formula we see the
matching is possible if ๐ถ4 = 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 and
๐พ (๐‘‹, ๐‘Œ) โˆผ
1 ฬƒ
ฮ  (๐‘‹) , ๐‘Œ ๓ณจ€โ†’ 0.
โˆš2๐œ‹๐‘Œ 0
(393)
We denote by ๐‘”(๐‘‹) the limit of [โˆš2๐œ‹๐‘Œ๐พ(๐‘‹, ๐‘Œ)] as ๐‘Œ โ†’ 0.
Writing
๐พ (๐‘‹, ๐‘Œ)
= (๐‘’โˆ’๐œ โˆ’ ๐ต)
โˆ’1/2
๐‘Œ
๐‘Œ
1
โˆš 0 .
โˆผ
(1 โˆ’ ๐ต)]
โˆš๐‘Œ 1 โˆ’ ๐ต0
๐‘Œ0
Then ๐‘”(๐‘‹) becomes precisely the expression in (102). We have
ฬƒ 0 (๐‘‹) as ๐‘”(๐‘‹) and thus derived (98)โ€“(102).
thus determined ฮ 
The approximation in (387) applies only for 0 < ๐‘‹ < ๐‘‹๐ฟ ,
and (96) applies for ๐‘‹๐ฟ < ๐‘‹ < ๐‘‹0 . But for ๐‘‹ โ‰ˆ ๐‘‹๐ฟ a new
approximation is needed, as ๐‘”(๐‘‹) vanishes as ๐‘‹ โ†‘ ๐‘‹๐ฟ , due
to the factor (1 โˆ’ ๐ด 0 )2 โˆ’ ๐‘‹0 , since 1 โˆ’ ๐ด 0 (๐‘‹๐ฟ ) = โˆš๐‘‹0 . Since
๐ต0 (๐‘‹๐ฟ ) = ๐‘Š0 /(๐‘Š0 + ๐‘Œ0 ) we find from (102) that
so that the solution to (388) is
=
=[
โˆ’1/2
(๐‘’โˆ’๐œ โˆ’ ๐ด)
โˆ’1/2
|ฮ”|โˆ’1/2 ๐พ0 (๐ด)
(394)
๐‘Š0 (๐‘Š0 + ๐‘Œ0 )
.
๐‘Œ0 (2๐‘Š0 + ๐‘Œ0 )
(397)
Using
2
๐‘‹0 โˆ’ (1 โˆ’ ๐ด 0 ) โˆผ 2 (1 โˆ’ ๐ด 0 ) ๐ด๓ธ€ 0 (๐‘‹๐ฟ ) (๐‘‹ โˆ’ ๐‘‹๐ฟ )
= 2โˆš๐‘‹0 ๐ด๓ธ€ 0 (๐‘‹๐ฟ ) (๐‘‹ โˆ’ ๐‘‹๐ฟ )
(398)
and (397) we obtain from (396) the expression in (104), which
will be used for asymptotic matching verifications.
We consider the scale ๐‘‹ โˆ’ ๐‘‹๐ฟ = ๐œŒโˆ’1/3 ฮ› = ๐‘‚(๐œŒโˆ’1/3 ),
retaining ๐‘Ÿ = ๐‘‚(1). From the balance equations we can
conclude that the expansion has the form
๐ถ5 (๐œŒ) ๐‘’๐œŒฮจ(๐‘‹,0) [
โ‹… ๐‘’๐œŒฮจ(๐‘‹๐ฟ ,0)
๐‘Ÿ
๐‘Œ0 ๐ต0 (๐‘‹๐ฟ )
๐œŒ๐‘Ÿ
]
๐‘” (๐‘‹๐ฟ ) โˆผ ๐ถ5 (๐œŒ)
1 โˆ’ ๐ต0 (๐‘‹๐ฟ ) ๐‘Ÿ!
๐œŒ๐‘Ÿ ๐‘Š0๐‘Ÿ
๐‘Ÿ!
(399)
1
โ‹… exp [๐œŒ2/3 ฮจ๐‘‹ (๐‘‹๐ฟ , 0) ฮ› + ๐œŒ1/3 ฮจ๐‘‹๐‘‹ (๐‘‹๐ฟ , 0) ฮ›2 ]
2
ฬ‚ (ฮ›) ,
โ‹…ฮ 
where the last exponential factor follows from expanding
ฮจ(๐‘‹, 0) about ๐‘‹ = ๐‘‹๐ฟ , and these are necessary to have
a chance of matching to the expansion for ๐‘‹ < ๐‘‹๐ฟ . By
comparing (399) to the behavior of (98) as ๐‘‹ โ†‘ ๐‘‹๐ฟ we
immediately conclude that ๐ถ5 (๐œŒ) = ๐‘‚(๐œŒโˆ’1/3 ) so we set
๐ถ5 (๐œŒ) = ๐œŒโˆ’1/3 (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ), and then
ฬ‚ (ฮ›) โˆผ exp [ 1 ฮจ๐‘‹๐‘‹๐‘‹ (๐‘‹๐ฟ , 0) ฮ›3 ]
ฮ 
6
Advances in Operations Research
3/2
โ‹…
2 (๐‘Š0 + ๐‘Œ0 )
3/2
๐‘Œ0 (2๐‘Š0 + ๐‘Œ0 )
43
๐‘Š05/4
ฬ‚
We next derive a matching condition for ฮ (ฮ›)
as ฮ› โ†’ โˆž.
0
We first note from (97) that if we write ๐‘ 1 + ๐‘Š0 = โˆš๐‘Š0 ๐‘“(๐‘‹)
then
(โˆ’ฮ›) ,
3/2
(โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
ฮ› ๓ณจ€โ†’ โˆ’โˆž.
(400)
๐‘“ (๐‘‹)
=
From (101) we find that
๐‘Œ0
๐ต๓ธ€ 
2 0
(1 โˆ’ ๐ต0 )
(๐‘‹) = [1 โˆ’
๐‘“ (๐‘‹๐ฟ ) =
๐‘‹0
] ๐ด๓ธ€ 0
2
(๐‘‹)
(1 โˆ’ ๐ด 0 )
(401)
๐‘Š0 + ๐‘Œ0
๐‘Š + ๐‘Œ0
= 0
๓ณจโ‡’ ๐‘ 10 (๐‘‹๐ฟ ) = ๐‘Œ0 .
โˆš๐‘Š0
1 โˆ’ โˆš๐‘‹0
๐ด๓ธ€ 0
1
1
โˆ’
) ๐ต0๓ธ€  +
๐ต0 ๐ต0 โˆ’ ๐ด 0
๐ต0 โˆ’ ๐ด 0
๐‘“๓ธ€  (๐‘‹๐ฟ ) = โˆ’
(402)
and thus ฮจ๐‘‹๐‘‹ (๐‘‹๐ฟ , 0) = ๐ด๓ธ€ 0 (๐‘‹๐ฟ )/[๐ต0 (๐‘‹๐ฟ ) โˆ’ 1 + โˆš๐‘‹0 ] is as in
(107). From (402) we also conclude that
(408)
3
๓ธ€ ๓ธ€ 
๐‘“ (๐‘‹๐ฟ ) = โˆ’
2๐‘Š05/2 (๐‘Œ0 + ๐‘Š0 )
3
๐‘Œ03 (๐‘Œ0 + 2๐‘Š0 )
.
From (80) with ๐‘Œ = 0 we have ฮฆ๐‘‹ (๐‘‹, 0) = โˆ’log[1 โˆ’ ๐‘“(๐‘‹)]
from which we can show that
๐ด๓ธ€ ๓ธ€ 0 (๐‘‹๐ฟ )
๐ต0 (๐‘‹๐ฟ ) โˆ’ ๐ด 0 (๐‘‹๐ฟ )
ฮฆ๐‘‹๐‘‹๐‘‹ (๐‘‹๐ฟ , 0)
(403)
2
๐ด๓ธ€ 0 (๐‘‹๐ฟ )
+[
] .
๐ต0 (๐‘‹๐ฟ ) โˆ’ ๐ด 0 (๐‘‹๐ฟ )
๐ด๓ธ€ ๓ธ€ 0 (๐‘‹๐ฟ ) = โˆ’
=
3
๐‘Š0 (๐‘Š0 + ๐‘Œ0 ) [๐‘Œ03 + 3๐‘Š0 ๐‘Œ02 + 4๐‘Š02 ๐‘Œ0 โˆ’ 2โˆš๐‘‹0 ๐‘Š05/2 ] (410)
.
2
3
๐‘Œ03 (2๐‘Š0 + ๐‘Œ0 ) (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
By using the expression for ๐ถ1 in (41) we have
ฮฆ (๐‘‹๐ฟ , 0) โˆ’ ฮฆ (๐‘‹0 , ๐‘Œ0 ) = ฮจ (๐‘‹๐ฟ , 0) ,
By further differentiation of (100) and (401) we find that
๐ต0๓ธ€ ๓ธ€  (๐‘‹๐ฟ ) = โˆ’
๐œŒ1/3 [ฮฆโˆ— (๐‘ 10 ) โˆ’ ฮฆโˆ— (๐‘Œ0 )] = โˆ’๐œŒ1/3 ๐‘Ÿ0
๐‘Š02
2
,
๐‘Œ0 โˆš๐‘‹0 (2๐‘Š0 + ๐‘Œ0 )2
2๐‘Š03/2 (๐‘Œ0 + ๐‘Š0 )
๐‘Œ0 โˆš๐‘‹0 (2๐‘Š0 + ๐‘Œ0 )
2๐‘Š03 (๐‘Š0 + ๐‘Œ0 )
(1 โˆ’ โˆš๐‘‹0 )
๐‘ 10 + ๐‘Š0
) = โˆ’๐œŒ1/3 ๐‘Ÿ0
๐‘Œ0 + ๐‘Š0
๐‘‹01/6
โ‹… log (
(1 โˆ’ โˆš๐‘‹0 )
๐‘“ (๐‘‹)
) โˆผ โˆ’๐‘Ÿ0 ฮ›
๐‘“ (๐‘‹๐ฟ )
๐‘‹01/6
(404)
3
๐‘‹01/6
2/3
2
โˆš๐‘‹0 ๐‘Œ02 (2๐‘Š0 + ๐‘Œ0 )
2/3
(1 โˆ’ โˆš๐‘‹0 )
โ‹… log (
2/3
2
โˆ’
(409)
ฮฆ๐‘‹๐‘‹ (๐‘‹๐ฟ , 0) = ฮจ๐‘‹๐‘‹ (๐‘‹๐ฟ , 0) ,
1
1
โˆ’
] ๐ต๓ธ€ ๓ธ€  (๐‘‹๐ฟ )
๐ต0 (๐‘‹๐ฟ ) ๐ต0 (๐‘‹๐ฟ ) โˆ’ ๐ด 0 (๐‘‹๐ฟ ) 0
+
2
(๐‘Œ0 + ๐‘Š0 )
,
๐‘Œ0 (๐‘Œ0 + 2๐‘Š0 )
ฮฆ๐‘‹ (๐‘‹๐ฟ , 0) = ฮจ๐‘‹ (๐‘‹๐ฟ , 0) ,
ฮจ๐‘‹๐‘‹๐‘‹ (๐‘‹๐ฟ , 0)
=[
,
๐‘Œ0 + ๐‘Š0 (1 โˆ’ โˆš๐‘‹0 )
= ๐‘Ÿ0 ฮ›
๐‘Œ0 (๐‘Œ0 + 2๐‘Š0 )
๐‘‹01/6
and thus
๐‘“๓ธ€  (๐‘‹๐ฟ )
๐‘“ (๐‘‹๐ฟ )
5/3
,
1/6
โˆš๐œŒ๐ถ1
ฮจ๐‘‹๐‘‹๐‘‹ (๐‘‹๐ฟ , 0)
3
=โˆ’
5/2
2 ๐‘Š0 (๐‘Š0 + ๐‘Œ0 )
1
3
2
โˆš๐‘‹0 ๐‘Œ0 (2๐‘Š0 + ๐‘Œ0 ) โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0
4
+
๐‘Š0 (๐‘Š0 + ๐‘Œ0 )
๐‘Œ02
2
(407)
From (406) we then obtain
so that ๐ต0๓ธ€  (๐‘‹๐ฟ ) = 0. Then from (99) we find that
ฮจ๐‘‹๐‘‹ (๐‘‹, 0) = (
(406)
1
2
[๐‘Š0 + 1 โˆ’ ๐‘‹ + โˆš(๐‘Š0 + 1 โˆ’ ๐‘‹) โˆ’ 4๐‘Š0 ] ,
2
1
2
(2๐‘Š0 + ๐‘Œ0 ) (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
.
(1 โˆ’ โˆš๐‘‹0 )
๐‘‹01/6 [Ai๓ธ€  (๐‘Ÿ0 )]
2
1/2โˆš๐‘‹0
๐‘Š0 + ๐‘ 10
(405)
โˆš๐‘Š
( 0 0 )
โ‹…
๐‘ 
0
0
โˆš๐‘  (๐‘  + 2๐‘Š ) 1 + ๐‘Š0
1
1
0
โ‹… โˆš โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘ 10 โˆผ ๐œŒโˆ’1/3
(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
Ai๓ธ€  (๐‘Ÿ0 )
44
Advances in Operations Research
โ‹… โˆš2๐œ‹โˆš
5/6
1/6
๐‘Š0 + ๐‘Œ0 (1 โˆ’ โˆš๐‘‹0 ) ๐‘‹0
๐‘Œ0 + 2๐‘Š0 (โˆš๐‘‹ โˆ’ ๐‘‹ โˆ’ ๐‘Œ )3/2
0
0
โ‹…โˆš
0
โ‹… exp [โˆ’๐œŒฮฆ (๐‘‹0 , ๐‘Œ0 ) โˆ’ ๐œŒ1/3 ฮฆโˆ— (๐‘Œ0 )] .
1
1 ๐‘–โˆž ๐‘’โ‹†๐œƒ
๐‘‘๐œƒ,
โ‹… exp [ ฮ›3 ฮฆ๐‘‹๐‘‹๐‘‹ (๐‘‹๐ฟ , 0)]
โˆซ
6
2๐œ‹๐‘– โˆ’๐‘–โˆž Ai (๐œƒ)
(411)
With (409)โ€“(411) we have obtained the behavior of (96) as
๐‘‹ โ†“ ๐‘‹๐ฟ and thus derived the matching condition
5/3
๐‘Œ0 + ๐‘Š0 (1 โˆ’ โˆš๐‘‹0 )
๐‘Œ0 (๐‘Œ0 + 2๐‘Š0 )
๐‘‹01/6
]
]
1
Ai๓ธ€  (๐‘Ÿ0 )
(412)
5/6
0
๐œ‚โˆ—โˆ— = ๐œŒ1/3 [๐‘Œ โˆ’ ๐‘Œ๐‘ (๐‘‹)]
๐‘Ÿ
โˆ’ ๐‘Œ๐‘๓ธ€  (๐‘‹๐ฟ ) (๐‘‹ โˆ’ ๐‘‹๐ฟ )] โˆผ โˆ’๐‘Œ๐‘๓ธ€  (๐‘‹๐ฟ ) ฮ›
๐œŒ
(413)
๐‘Š3/2 (๐‘Œ0 + ๐‘Š0 )
๐‘Œ๐‘๓ธ€  (๐‘‹๐ฟ ) = 0
.
๐‘Œ0 (๐‘Œ0 + 2๐‘Š0 )
(414)
We can expand ๐œŒ[ฮฆ(๐‘‹, ๐‘Œ๐‘ + ๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— ) โˆ’ ฮฆ(๐‘‹0 , ๐‘Œ0 )] in (191)
as ๐‘‹ โ†’ ๐‘‹๐ฟ which is equivalent to expanding ๐œŒ[ฮฆ(๐‘‹, ๐‘Œ) โˆ’
ฮฆ(๐‘‹0 , ๐‘Œ0 )] for (๐‘‹, ๐‘Œ) โ†’ (๐‘‹๐ฟ , 0) and show that the exponential factors in (191) agree with those in (399), after ๐‘Ÿ! is
approximated by Stirlingโ€™s formula, so that
๐œŒ๐‘Ÿ ๐‘Š0๐‘Ÿ
โˆผ (2๐œ‹)โˆ’1/2 ๐‘Ÿโˆ’1/2
๐‘Ÿ!
๐‘Œ0 + ๐‘Š0 (1 โˆ’ โˆš๐‘‹0 )
๐‘Œ0 (๐‘Œ0 + 2๐‘Š0 )
๐‘‹01/6
.
(415)
โ‹… exp {โˆ’๐œŒ๐‘Œ log ๐‘Œ + ๐œŒ๐‘Œ [1 + log (๐‘Š0 )]} .
Then using ๐ถ5 = ๐œŒโˆ’1/3 (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) we compare algebraic
factors in (399) and (191), which yields
In this limit ๐‘Œ โˆผ ๐‘Œ๐‘๓ธ€  (๐‘‹๐ฟ )(๐‘‹ โˆ’ ๐‘‹๐ฟ ) and ฮ› is fixed, so that (416)
ฬ‚ as
determines ฮ (โ‹…)
5/6
(1 โˆ’ โˆš๐‘‹0 )
๐‘‹01/6
3/2
(โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
๐‘Š0 + ๐‘Œ0
1
1
exp [ ฮ›3 ฮฆ๐‘‹๐‘‹๐‘‹ (๐‘‹๐ฟ , 0)]
2๐‘Š0 + ๐‘Œ0
6
2๐œ‹๐‘–
๐‘–โˆž
โ‹…โˆซ
โˆ’๐‘–โˆž
(418)
๐‘’โ‹†๐œƒ
๐‘‘๐œƒ.
Ai (๐œƒ)
We have thus derived the result in (105). By using the
asymptotic results in (192) and (193) (with โ‹† replaced by โˆ’โ‹†)
we see immediately that (412) holds. The matching condition
in (400) will also hold since
1 โ‹† 3 1
1
ฮฆ๐‘‹๐‘‹๐‘‹ (๐‘‹๐ฟ , 0) + ( ) = ฮจ๐‘‹๐‘‹๐‘‹ (๐‘‹๐ฟ , 0) ,
6
3 ฮ›
6
(419)
5.3. The Boundary Segment ๐‘Œ = ๐‘Œ0 . We consider the scale
๐‘ = ๐œŒ(๐‘Œ0 โˆ’ ๐‘Œ) = ๐‘‚(1) and 0 < ๐‘‹ < ๐‘‹0 . Now the
analysis will be the same for any region R๐‘— , and the expansion
we construct will hold everywhere except near the corner
points (๐‘‹, ๐‘Œ) = (0, ๐‘Œ0 ) and (๐‘‹0 , ๐‘Œ0 ). By expanding (3) and
the boundary condition in (5) along ๐‘Ÿ = ๐‘…, we find that an
asymptotic solution in this range is given by
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐ถ6 (๐œŒ)
๐œŒ๐‘
๐‘
[๐‘Œ (๐‘’๐œ๐‘ˆ โˆ’ 1)] ๐‘’๐œŒฮจ(๐‘‹,๐‘Œ0 ) ๐‘” (๐‘‹) , (420)
๐‘! 0
where ๐œ๐‘ˆ = ๐œ๐‘ˆ(๐‘‹) is given in (128). Again, (420) must
contain the factor exp[๐œŒฮจ(๐‘‹, ๐‘Œ0 )] in order to have a chance of
matching to the D0 ray expansion, and this factor determines
the geometric factor in ๐‘. We must only determine ๐ถ6 (๐œŒ) and
๐‘”(๐‘‹) by asymptotic matching.
As ๐‘Œ โ†’ ๐‘Œ0 we have ๐ด โ†’ ๐ด max and ๐ต โ†’ โˆ’โˆž in (68).
Also,
ฮจ๐‘Œ = โˆ’ log (โˆ’๐ต) โˆ’ ๐œ + ๐‘œ (1) , ๐‘Œ ๓ณจ€โ†’ ๐‘Œ0
1
โˆ’1/2 ฬ‚
ฮ  (ฮ›)
(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐œŒโˆ’1/3 (๐œŒ๐‘Œ)
โˆš2๐œ‹
(417)
by (417), (405), and (410). This completes our analysis of the
scale ๐‘Ÿ = ๐‘‚(1).
remains also ๐‘‚(1). From (86) we have
โˆผ (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐œŒโˆ’5/6
5/3
โ‹…โˆš
0
ฬ‚
Thus (400) and (412) yield the behavior of ฮ (ฮ›)
as
ฮ› โ†’ ±โˆž, but to determine this function for all ฮ› we must
use a third matching condition, to the transition layer in
Proposition 18, which applies for ๐‘Œ โˆ’ ๐‘Œ๐‘ (๐‘‹) = ๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— =
๐‘‚(๐œŒโˆ’1/3 ). Thus we let ๐‘‹ โ†’ ๐‘‹๐ฟ in (191) and let ๐‘Ÿ โ†’ โˆž in
(399), in such a way that ฮ› is fixed. Since ฮ› = ๐œŒ1/3 (๐‘‹ โˆ’ ๐‘‹๐ฟ )
this means that
โˆผ ๐œŒ1/3 [
where
ฬ‚ (ฮ›) =
ฮ 
1/6
๐‘Š + ๐‘Œ0 (1 โˆ’ โˆš๐‘‹0 ) ๐‘‹0
, ฮ› ๓ณจ€โ†’ +โˆž.
โ‹…โˆš 0
๐‘Œ0 + 2๐‘Š0 (โˆš๐‘‹ โˆ’ ๐‘‹ โˆ’ ๐‘Œ )3/2
0
(416)
โ‹†=ฮ›
ฬ‚ (ฮ›) โˆผ exp [ 1 ฮฆ๐‘‹๐‘‹๐‘‹ (X๐ฟ , 0) ฮ›3
ฮ 
6
[
+ ๐‘Ÿ0 ฮ›
๐‘Š0 + ๐‘Œ0
1
2๐‘Š0 + ๐‘Œ0 โˆš๐‘Œ๓ธ€  (๐‘‹ ) (๐‘‹ โˆ’ ๐‘‹ )
๐ฟ
๐ฟ
๐ถ
(421)
and from (68) we obtain
5/6
1 (1 โˆ’ โˆš๐‘‹0 )
โˆš2๐œ‹ (โˆš๐‘‹ โˆ’ ๐‘‹ โˆ’
0
0
๐‘‹01/6
3/2
๐‘Œ0 )
โˆ’๐ต โˆผ
๐‘Œ0 (1 โˆ’ ๐‘’โˆ’๐œ๐‘ˆ )
,
๐‘Œ0 โˆ’ ๐‘Œ
(422)
Advances in Operations Research
45
where ๐œ๐‘ˆ = ๐œ๐‘ˆ(๐‘‹) is obtained by solving the first equation
in (68) with ๐ด replaced by ๐ด max . Using (421) and (422) we
conclude that
ฮจ (๐‘‹, ๐‘Œ) = ฮจ (๐‘‹, ๐‘Œ0 ) + (๐‘Œ โˆ’ ๐‘Œ0 ) log (๐‘Œ0 โˆ’ ๐‘Œ) + ๐‘Œ0
โˆ’ ๐‘Œ + (๐‘Œ0 โˆ’ ๐‘Œ) log [๐‘Œ0 (๐‘’๐œ๐‘ˆ โˆ’ 1)]
(423)
+ ๐‘œ (๐‘Œ0 โˆ’ ๐‘Œ) , ๐‘Œ ๓ณจ€โ†’ ๐‘Œ0 .
๐‘„ (0, 0) ๐œŒโˆ’1/2 ๐พ (๐‘‹, ๐‘Œ) ๐‘’๐œŒฮจ(๐‘‹,๐‘Œ)
(424)
as ๐‘Œ โ†’ ๐‘Œ๐‘ˆ we see that we can take ๐ถ6 = ๐‘„(0, 0) โˆผ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0
and the matching will hold if
1
1
๐‘” (๐‘‹) = ๐œŒโˆ’1/2
๐‘” (๐‘‹)
โˆš2๐œ‹๐‘
โˆš2๐œ‹ (๐‘Œ0 โˆ’ ๐‘Œ)
โˆผ๐œŒ
(425)
๐พ (๐‘‹, ๐‘Œ) , ๐‘Œ ๓ณจ€โ†’ ๐‘Œ0 .
To expand (70) as ๐‘Œ โ†’ ๐‘Œ0 we note that in this limit (๐‘’โˆ’๐œ โˆ’
๐ด)โˆ’1/2 and |ฮ”|โˆ’1/2 are finite, while (๐‘’โˆ’๐œ โˆ’ ๐ต)โˆ’1/2 โˆผ (โˆ’๐ต)โˆ’1/2
vanishes and ๐พ0 (๐ด) is singular, due to the factor ๐‘Œ0 + (1 โˆ’
๐‘‹0 โˆ’ ๐‘Œ0 )๐ด โˆ’ ๐ด2 in the denominator. We thus have
1
โˆ’1/2 ๓ต„จ
๓ต„จ๓ต„จฮ” ๐‘ˆ (๐‘‹)๓ต„จ๓ต„จ๓ต„จโˆ’1/2
(๐‘’โˆ’๐œ๐‘ˆ โˆ’ ๐ด max )
๐พ (๐‘‹, ๐‘Œ) โˆผ
๓ต„จ
๓ต„จ
โˆšโˆ’๐ต
โ‹…โˆš
2
๐‘Œ0 (1 โˆ’ ๐ด max ) โˆ’ ๐‘‹0
โˆ’1
,
2๐œ‹ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 โˆ’ 2๐ด max ๐ด โˆ’ ๐ด max
(426)
๐‘Œ ๓ณจ€โ†’ ๐‘Œ0 .
Here ฮ” ๐‘ˆ(๐‘‹) is the Jacobian in (71) evaluated along ๐‘Œ = ๐‘Œ0 ,
and we also used the identity ๐ด max (๐ด max โˆ’1) = ๐‘Œ0 โˆ’๐ด max (๐‘‹0 +
๐‘Œ0 ). From (67) we see that
๐ตโˆผ
๐ด max (1 โˆ’ ๐ด max โˆ’ ๐‘‹0 )
1
1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 โˆ’ 2๐ด max ๐ด โˆ’ ๐ด max
1
1
1 โˆ’ ๐‘’โˆ’๐œ๐‘ˆ
โˆš โˆ’๐œ
โˆš2๐œ‹ โˆš๐‘Œ0 โˆ’ ๐‘Œ ๐‘’ ๐‘ˆ โˆ’ ๐ด max
2
๐‘›
= โˆ’ ๐‘Œ0 ๐œ๐‘ˆ๓ธ€  (๐‘‹0 )
๐œŒ
๐‘›
๐œŒโˆš
(429)
๐‘Œ0
2
(1 + ๐‘‹0 + ๐‘Œ0 ) โˆ’ 4๐‘‹0
and thus, for ๐‘‹ โ†’ ๐‘‹0 , (127) reduces to (247). This completes
the analysis of the scale ๐‘ = ๐‘… โˆ’ ๐‘Ÿ = ๐‘‚(1).
6. Approximations near State Space Corners
We consider the four state space corners. The upper right
corner (๐‘‹, ๐‘Œ) = (๐‘‹0 , ๐‘Œ0 ) was analyzed already in Section 4,
since this was necessary to completely determine the ray
expansion in D0 . The analysis of the lower right corner
(๐‘‹, ๐‘Œ) = (๐‘‹0 , 0) is essentially the same as that for the infinite
capacity model in [10]. For regions R1 and R2 the leading
terms for ๐œ‹(๐‘˜, ๐‘Ÿ) near this corner are the same as for the
infinite capacity model, while for regions R3 and R4 the
analysis differs only through the multiplicative constant ๐ถ1 .
Thus we omit the analysis of these two corners, focusing on
the lower and upper left corners, (0, 0) and (0, ๐‘Œ0 ).
6.1. The Corner (๐‘‹, ๐‘Œ) = (0, 0). For regions R1 โˆชR2 โˆชR3 the
analysis is very similar to that in [10], leading to (132)โ€“(136)
in Proposition 13. For region R4 we set
๐œ‹ (๐‘˜, ๐‘Ÿ) = ๐ถ7 (๐œŒ) ๐‘’๐œŒฮจ(0,0) ๐œŒ๐‘˜+๐‘Ÿ ๐‘„โˆ— (๐‘˜, ๐‘Ÿ; ๐œŒ) ,
(427)
๐‘„โˆ— (๐‘˜, ๐‘Ÿ) = (๐‘Ÿ + 1) ๐‘„โˆ— (๐‘˜, ๐‘Ÿ + 1)
๐‘‹ โˆ’ (1 โˆ’ ๐ด max ) ๓ต„จ๓ต„จ ๓ต„จ๓ต„จโˆ’1/2
โ‹… 0
.
๓ต„จ๓ต„จฮ” ๐‘ˆ๓ต„จ๓ต„จ
1 โˆ’ ๐ด max
Using (428) in (425) we can identify ๐‘”(๐‘‹) and then (420)
becomes the same as (127).
Finally we note that as ๐‘‹ โ†‘ ๐‘‹0 , (127) will asymptotically
match to (168), the approximation valid for ๐‘›, ๐‘ = ๐‘‚(1). For
๐‘› โ†’ โˆž with ๐‘ = ๐‘‚(1), (168) can be approximated by (247).
(431)
Note that (6) implies that (431) holds along ๐‘˜ = 0, ๐‘Ÿ โฉพ 0.
Equation (431) has many different solutions, and anything of
the form ๐›ผ0๐‘˜ ๐›ฝ0๐‘Ÿ /(๐‘˜!๐‘Ÿ!) will be a solution provided that ๐›ผ0 +๐›ฝ0 =
1. Let us write
๐‘„โˆ— (๐‘˜, ๐‘Ÿ) =
(428)
(430)
recalling that ฮจ(0, 0) = โˆ’๐‘‹0 โˆ’ ๐‘Œ0 + (๐‘‹0 + ๐‘Œ0 )log(๐‘‹0 + ๐‘Œ0 ).
Dividing the main balance equation in (3) by ๐œŒ, using (430),
and letting ๐‘„โˆ— (๐‘˜, ๐‘Ÿ) denote the leading term approximation
for ๐‘„โˆ— (๐‘˜, ๐‘Ÿ; ๐œŒ), we obtain in the limit ๐œŒ โ†’ โˆž
+ (๐‘˜ + 1) ๐‘„โˆ— (๐‘˜ + 1, ๐‘Ÿ) ; ๐‘˜ โฉพ 1, ๐‘Ÿ โฉพ 0.
so that with (422) we have, as ๐‘Œ โ†‘ ๐‘Œ0 ,
๐พ (๐‘‹, ๐‘Œ) โˆผ
๐‘Œ0 (๐‘’๐œ๐‘ˆ (๐‘‹) โˆ’ 1) โˆผ ๐‘Œ0 ๐œ๐‘ˆ๓ธ€  (๐‘‹0 ) (๐‘‹ โˆ’ ๐‘‹0 )
=
Expanding ๐‘! by Stirlingโ€™s formula and comparing the result
to
โˆ’1/2
As ๐‘‹ โ†’ ๐‘‹0 we have ๐œ๐‘ˆ(๐‘‹) โ†’ 0, ฮจ(๐‘‹0 , ๐‘Œ0 ) = 0, ฮจ๐‘‹ (๐‘‹0 , ๐‘Œ0 ) =
โˆ’log(1 โˆ’ ๐ด max ), and ๐‘ง+ (0)(1 โˆ’ ๐ด max ) = 1. Then
1 ๐‘˜
๐‘Ÿ
๐›ผ (1 โˆ’ ๐›ผ0 )
๐‘˜!๐‘Ÿ! 0
(432)
and we will show by asymptotic matching that only one value
of ๐›ผ0 is needed, and the matching will also determine the
appropriate value. For regions R1 โˆช R2 โˆช R3 the same
argument was used in [10] to determine ๐›ผ0 as 1โˆ’๐‘Š0 = 2โˆš๐‘‹0 โˆ’
๐‘‹0 , leading to (136). For region R4 we can asymptotically
match (430) to (117) (then ๐‘Ÿ โ†’ โˆž with ๐‘˜ = ๐‘‚(1)), to (98)
(then ๐‘˜ โ†’ โˆž with ๐‘Ÿ = ๐‘‚(1)), or to the D0 ray expansion
(then ๐‘˜, ๐‘Ÿ โ†’ โˆž with ๐‘˜/๐‘Ÿ fixed). We discuss only the first two
matchings, as the third will lead to the same conclusion.
46
Advances in Operations Research
For fixed ๐‘˜ and ๐‘Ÿ โ†’ โˆž, (430) and (432) become
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐ถ7 (๐œŒ)
โ‹…
that ๐ด 1 (0) = 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 . Then comparing the geometric
factors in ๐‘˜, in (117) and (433), we must have
๐ถ (๐œŒ)
๐œŒ๐‘˜+๐‘Ÿ ๐œŒฮจ(0,0) ๐‘˜
๐‘Ÿ
๐›ผ0 (1 โˆ’ ๐›ผ0 ) โˆผ 7
๐‘’
๐‘˜!๐‘Ÿ!
โˆš2๐œ‹๐œŒ๐‘Œ
๐œŒ๐‘˜ ๐‘˜
๐›ผ exp {๐œŒ [ฮจ (0, 0) โˆ’ ๐‘Œ log ๐‘Œ + ๐‘Œ
๐‘˜! 0
๐›ผ0 =
(433)
๐ด 1 (0) (๐ด 1 (0) + ๐‘‹0 โˆ’ 2) + 1
๐‘‹0
= ๐‘Œ0 +
. (434)
1 โˆ’ ๐ด 1 (0)
๐‘‹0 + ๐‘Œ0
From (119) we find that as ๐‘Œ โ†’ 0
ฮจ (0, ๐‘Œ) = ฮจ (0, 0) + ๐‘Œ โˆ’ ๐‘Œ log ๐‘Œ
+ ๐‘Œ log (1 โˆ’ ๐›ผ0 )]} ,
+ ๐‘Œ log [
where the last formula holds in the matching region where
๐‘Ÿ โ†’ โˆž but ๐‘Œ = ๐‘Ÿ/๐œŒ โ†’ 0, and we wrote the expression in
terms of ๐‘Œ. To expand (117) as ๐‘Œ โ†’ 0, we observe from (118)
๐ถ7 (๐œŒ)
โˆš2๐œ‹๐œŒ๐‘Œ
๐‘Œ0 (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
] + ๐‘œ (๐‘Œ)
๐‘‹0 + ๐‘Œ0
which implies that 1โˆ’๐›ผ0 = ๐‘Œ0 (1โˆ’๐‘‹0 โˆ’๐‘Œ0 )/(๐‘‹0 +๐‘Œ0 ), consistent
with (434). The matching also implies that
2
โˆผ ๐‘„ (0, 0)
โˆš๐ด 1 (0)โˆš๐ด 1 (0) (๐ด 1 (0) + ๐‘‹0 โˆ’ 2) + 1 {[1 โˆ’ ๐ด 1 (0)] โˆ’ ๐‘‹0 }
โˆš๐‘Œโˆš๓ต„จ๓ต„จ๓ต„จ๓ต„จฮ” ๐ฟ (0)๓ต„จ๓ต„จ๓ต„จ๓ต„จ [๐‘Œ0 โˆ’ ๐ด 1 (0) (๐‘‹0 + ๐‘Œ0 )]
After some calculation we find from (120) that
๐‘‹ + ๐‘Œ0 (๐‘‹0 + ๐‘Œ0 )
โˆ’ฮ” ๐ฟ (0) = (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) 0
๐‘‹0 + ๐‘Œ0
(437)
๐ถ7 (๐œŒ) โˆผ โˆš๐œŒโˆš2๐œ‹ (๐‘‹0 + ๐‘Œ0 )๐‘„ (0, 0) .
(438)
We have thus derived (137), since ๐‘„(0, 0) โˆผ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 for
region R4 .
The same conclusions follow by matching to (98), as then,
for fixed ๐‘Ÿ and ๐‘˜ โ†’ โˆž, (430) with (432) becomes
๐ถ7 (๐œŒ) ๐œŒ๐‘Ÿ
๐‘Ÿ
(1 โˆ’ ๐›ผ0 )
โˆš2๐œ‹๐œŒ๐‘‹ ๐‘Ÿ!
(439)
โ‹… exp {๐œŒ [ฮจ (0, 0) โˆ’ ๐‘‹ log ๐‘‹ + ๐‘‹ + ๐‘‹ log (๐›ผ0 )]} .
We expand (98) as ๐‘‹ โ†’ 0. We have ๐ด 0 (0) = 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 and
from (100) find that
๐‘Œ0
.
๐ด๓ธ€ 0 (0) = โˆ’
(440)
๐‘‹0 + ๐‘Œ0 (๐‘‹0 + ๐‘Œ0 )
(441)
We have, as ๐‘‹ โ†’ 0,
โˆผ๐‘‹
โˆ’1/2
[๐ต0๓ธ€ 
โˆ’1/2
(0) โˆ’
๐ด๓ธ€ 0
(0)]
โˆ’1/2
(443)
.
Then after some calculation, using (440) and (441) we find
that ๐‘”(๐‘‹) has the expansion in (103) as ๐‘‹ โ†’ 0. Expanding
(98) as ๐‘‹ โ†’ 0 and comparing the result to (439), noting that
๐‘Œ0 ๐ต0 (0)/[1 โˆ’ ๐ต0 (0)] = 1 โˆ’ ๐›ผ0 , regain the expression in (438)
for ๐ถ7 (๐œŒ). We can also easily verify that (137) matches to the
D0 ray expansion, by expanding the latter for ๐‘‹, ๐‘Œ โ†’ 0 along
lines of constant slope ๐‘Œ/๐‘‹.
6.2. The Corner (๐‘‹, ๐‘Œ) = (0, ๐‘Œ0 ). Now we use the variables ๐‘˜
and ๐‘ = ๐‘… โˆ’ ๐‘Ÿ, with
(444)
๐ต0 (๐‘‹) โˆ’ ๐ด 0 (๐‘‹)
] ๓ณจ€โ†’
๐‘‹
log [๐ต0 (0)] โˆ’ log [๐ต0๓ธ€  (0) โˆ’ ๐ด๓ธ€ 0 (0)]
๐‘‹0
].
๐‘‹0 + ๐‘Œ0
Near this corner only the balance equations in (3), (5), (6),
and (7) apply. Using (444) in (3) we obtain
ฬ‚ (๐‘˜, ๐‘; ๐œŒ)
(๐œŒ + ๐œŒ๐‘Œ0 + ๐‘˜ โˆ’ ๐‘) ๐‘„
๐ด (๐‘‹)
ฮจ๐‘‹ (๐‘‹, 0) + log ๐‘‹ = log ๐‘‹ โˆ’ log [1 โˆ’ 0
]
๐ต0 (๐‘‹)
= log [๐‘Œ0 +
[๐ต0 (๐‘‹) โˆ’ ๐ด 0 (๐‘‹)]
2
(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0
.
๐‘‹0 + ๐‘Œ0 (๐‘‹0 + ๐‘Œ0 )
= log [๐ต0 (๐‘‹)] โˆ’ log [
(436)
ฬ‚ (๐‘˜, ๐‘; ๐œŒ) .
๐œ‹ (๐‘˜, ๐‘Ÿ) = ๐ถ8 (๐œŒ) ๐‘’๐œŒฮจ(0,๐‘Œ0 ) ๐œŒ๐‘˜+๐‘ ๐‘„
Then also ๐ต0 (0) = 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 and, using (101),
๐ต0๓ธ€  (0) = โˆ’
.
By using (442) to infer the small ๐‘‹ behavior of ฮจ(๐‘‹, 0) and
comparing the result to the exponential part of (439), we
again conclude that ๐›ผ0 is as in (434). To expand ๐‘”(๐‘‹) in (102)
as ๐‘‹ โ†’ 0 we note that it is singular due to the factor
and thus
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ
(435)
ฬ‚ (๐‘˜, ๐‘ โˆ’ 1; ๐œŒ)
= [๐‘Œ0 + (1 โˆ’ ๐‘) ๐œŒโˆ’1 ] ๐‘„
(442)
(445)
ฬ‚ (๐‘˜ + 1, ๐‘; ๐œŒ) + ๐‘„
ฬ‚ (๐‘˜ โˆ’ 1, ๐‘; ๐œŒ) .
+ ๐œŒ (๐‘˜ + 1) ๐‘„
ฬ‚ ๐‘) be the limiting form of ๐‘„(๐‘˜,
ฬ‚ ๐‘; ๐œŒ) as ๐œŒ โ†’ โˆž,
Letting ๐‘„(๐‘˜,
(445) leads to
ฬ‚ (๐‘˜ + 1, ๐‘)
ฬ‚ (๐‘˜, ๐‘) = (๐‘˜ + 1) ๐‘„
(1 + ๐‘Œ0 ) ๐‘„
(446)
Advances in Operations Research
47
whose most general solution is
ฬ‚ (๐‘˜, ๐‘) =
๐‘„
Thus,
๐‘˜
(1 + ๐‘Œ0 )
๐‘„ (๐‘) .
๐‘˜!
(447)
Equations (5)โ€“(7) provide, in the limit ๐œŒ โ†’ โˆž, no additional
information. To determine ๐‘„(๐‘) in (447) we use asymptotic
matching to the boundary layer expansion in (127), which
applies for ๐‘ = ๐‘‚(1) and 0 < ๐‘‹ < ๐‘‹0 .
As ๐‘‹ โ†’ 0 we have ๐œ๐‘ˆ(๐‘‹) โ†’ ๐œ๐‘ˆ(0) = โˆ’log(๐ด max ),
and then ฮจ(0, ๐‘Œ0 ) is as in (131). Also, from (68) with (๐ด, ๐œ)
replaced by (๐ด max , ๐œ๐‘ˆ) we find that
๐œ๐‘ˆ (๐‘‹)
1 โˆ’ ๐ด max ๐‘’
๐‘‹
โˆผ
, ๐‘‹ ๓ณจ€โ†’ 0
1 + ๐‘Œ0
๐‘’๐œŒฮจ(0,๐‘Œ) โˆผ ๐‘’๐œŒฮจ(0,๐‘Œ0 ) [
After some calculation we find from (120) that
โˆ’ฮ” ๐ฟ (๐‘Œ0 ) = (1 + ๐‘Œ0 ) [
โ‹…โˆš
(449)
2
โˆš๐ด max (๐ด max + ๐‘‹0 โˆ’ 2) + 1
โˆš๐ด max (1 โˆ’ ๐ด max )
2
[(1 โˆ’ ๐ด max ) โˆ’ ๐‘‹0 ]
(456)
1 โˆ’ ๐ด max โˆš
2
(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) + 4๐‘Œ0 .
๐ด max
With (454)โ€“(456) the expansion of (117) agrees precisely with
the large ๐‘ behavior of (444), with (447), (450), and (451).
This completes the matching verification.
(450)
7. Approximations near Transition Layers
1 โˆ’ ๐ด max
1
)
(๐‘Œ
๐‘! 0 ๐ด max
(451)
We have thus established the result in (130).
We conclude by showing that (130), for ๐‘ โ†’ โˆž and fixed
๐‘˜, matches asymptotically to (117), for ๐‘Œ โ†‘ ๐‘Œ0 and fixed ๐‘˜.
In this limit, (117) is singular due to the factor 1/โˆš๐‘Œ0 โˆ’ ๐‘Œ =
โˆš๐œŒ/๐‘. First we note from (118) that ๐ด 1 (๐‘Œ0 ) = ๐ด max and from
(119) we get
(๐‘Œ0 โˆ’ ๐‘Œ) ๐ด 1 (๐‘Œ)
]
๐‘Œ (1 โˆ’ ๐ด 1 (๐‘Œ))
1/2
โˆš๐ด max โˆš๐ด max (๐ด max + ๐‘‹0 โˆ’ 2) + 1 [(1 โˆ’ ๐ด max ) โˆ’ ๐‘‹0 ]
= โˆš1 + ๐‘Œ0 โˆš
๐‘
ฮจ๐‘Œ (0, ๐‘Œ) = log [
(455)
2
=
and then ๐‘„(โ‹…) is determined as
1/4
1 โˆ’ ๐ด max
2
โ‹…โˆš
[(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) + 4๐‘Œ0 ] .
๐ด max
โˆ’ 1] (1 โˆ’ ๐ด max )
๐‘Œ0 โˆ’ (๐‘‹0 + ๐‘Œ0 ) ๐ด max
By comparing (449) to the large ๐‘˜ expansion of (444), with
(447), we can take
๐‘„ (๐‘) =
2
(1 โˆ’ ๐ด max )
and also
1/4
1 โˆ’ ๐ด max
2
[(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) + 4๐‘Œ0 ] .
๐ด max
๐ถ8 (๐œŒ) = โˆš2๐œ‹๐œŒ๐‘„ (0, 0)
๐‘‹0
= (1 + ๐‘Œ0 ) [(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) + 4๐‘Œ0 ]
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐‘„ (0, 0) ๐‘’๐œŒฮจ(0,๐‘Œ0 ) ๐‘’๐œŒ[๐‘‹log๐‘‹โˆ’๐‘‹] ๐‘’๐œŒ๐‘‹log(1+๐‘Œ0 )
๐‘
1
1
โˆ’ 1)]
[๐‘Œ0 (
๐‘!
๐ด max
(454)
๐‘Œ ๓ณจ€โ†’ ๐‘Œ0 .
(448)
and then ฮจ๐‘‹ (๐‘‹, ๐‘Œ0 ) + log๐‘‹ โ†’ log(1 + ๐‘Œ0 ) as ๐‘‹ โ†’ 0. Using
the above in (127) we find that for ๐‘‹ โ†’ 0 we have
โ‹…
๐‘
๐œŒ ๐‘
1 โˆ’ ๐ด max
๐‘Œ0 ] ( ) ๐‘’๐‘ ,
๐ด max
๐‘
(452)
We analyze the vicinities of the curves where the regions D0 ,
D+ , and Dโˆ’ meet. From Figures 3โ€“6 we see that, for R1 , D0
ฬƒ
meets D+ along the curve ๐‘Œ = ๐‘Œ(๐‘‹).
For regions R2 โˆชR3 , D0
also meets D+ , while D+ and Dโˆ’ meet along ๐‘Œ = ๐‘Œโˆ— (๐‘‹). For
region R4 , D0 and Dโˆ’ meet along ๐‘Œ = ๐‘Œ๐‘ (๐‘‹). The analysis for
๐‘Œ = ๐‘Œโˆ— (๐‘‹), with the scaling ๐‘Œ โˆ’ ๐‘Œโˆ— (๐‘‹) = ๐‘‚(๐œŒโˆ’1/3 ), is carried
out in [10] and we omit it here. For R2 the analysis is exactly
as in [10], while for R2 โˆฉ R3 and R3 the D+ and Dโˆ’ ray
expansions must be multiplied by the appropriate constants
๐ถ and ๐ถ1 , but the analysis is otherwise unchanged. We thus
obtain the result in (188).
7.1. Transition Layer near ๐‘Œ = ๐‘Œ๐‘ (๐‘‹), Region R4 . This layer
arises only for parameter region R4 . We set ๐œŒ1/3 [๐‘Œโˆ’๐‘Œ๐‘ (๐‘‹)] =
๐œ‚โˆ—โˆ— = ๐‘‚(1) and use (๐‘‹, ๐œ‚โˆ—โˆ— ) as the variables. Let us write
๐ฟ(๐‘‹, ๐‘Œ) in the ray expansion in (79) as
2
and thus
๐ฟ (๐‘‹, ๐‘Œ) =
ฮจ (0, ๐‘Œ) โˆ’ ฮจ (0, ๐‘Œ0 )
= (๐‘Œ โˆ’ ๐‘Œ0 ) log (๐‘Œ0 โˆ’ ๐‘Œ) + ๐‘Œ0 โˆ’ ๐‘Œ
+ (๐‘Œ โˆ’ ๐‘Œ0 ) log [
๐ด max 1
] + ๐‘œ (๐‘Œ โˆ’ ๐‘Œ0 ) .
1 โˆ’ ๐ด max ๐‘Œ0
(453)
(๐‘Š0 + ๐‘ 1 )
1
โˆš๐‘Œโˆš๐‘Š0 + ๐‘Œ โˆš๐‘ 1 โˆ’ ๐‘Œ
โˆš๐‘Š0 (๐‘Š0 + ๐‘ 1 )
1
โ‹…
[1 โˆ’
]
๐‘Š0 + ๐‘Œ
โˆš2๐‘Š0 + ๐‘ 1 + ๐‘Œ
โ‹… ๐ฟ 0 (๐‘ 1 ) โ‰ก ๐ฟ 1 (๐‘‹, ๐‘Œ) ๐ฟ 0 (๐‘ 1 ) ,
โˆ’1/2
(457)
48
Advances in Operations Research
where we used ๐ฟ(๐‘‹, ๐‘Œ) โˆผ ๐ฟ(๐‘‹, ๐‘Œ๐‘ (๐‘‹)). If (465) is to
asymptotically match to the Dโˆ’ ray expansion we must have
where
โˆ’2
1
[Ai๓ธ€  (๐‘Ÿ0 )] ๐‘‹0โˆ’1/6 (1 โˆ’ โˆš๐‘‹0 )
2๐œ‹
๐ฟ 0 (๐‘ 1 ) =
โ‹…
โˆ’5/6
(๐‘ 1 + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘ 1
L0 (โˆ’โˆž) = 1.
(458)
โˆš๐‘Š0 + ๐‘ 1
2/3
= ๐œŒ1/3 ๐‘Ÿ0 (1 โˆ’ โˆš๐‘‹)
The scaling ๐‘Œ โˆ’ ๐‘Œ๐‘ (๐‘‹) = ๐‘‚(๐œŒโˆ’1/3 ) corresponds to rays that
have ๐‘ 1 โ‰ˆ ๐‘Œ0 and more precisely ๐‘ 1 โˆ’ ๐‘Œ0 = ๐‘‚(๐œŒโˆ’1/3 ). We thus
set
(459)
In view of (75) and (86) we have
๐‘Œ๐‘ (๐‘‹) + ๐‘Š0 ๐‘Œโˆ— (๐‘‹) + ๐‘Š0
=
๐‘Œ0 + ๐‘Š0
โˆš๐‘Š0
(460)
which relates the two curves ๐‘Œ๐‘ and ๐‘Œโˆ— . From the definition
of ๐‘ 1 in (81) we then have
๐‘ 1 + ๐‘Š0 = ๐‘Œ0 + ๐‘Š0 + ๐œŒโˆ’1/3ฬƒ๐‘ 1 =
โˆš๐‘Š0 (๐‘Œ + ๐‘Š0 )
๐‘Œโˆ— (๐‘‹) + ๐‘Š0
(461)
= ๐œŒโˆ’1/3
=
๐‘Œ + ๐‘Š0
๐‘Œ (๐‘‹) + ๐‘Š0
โˆ’ ๐‘
]
๐‘Œโˆ— (๐‘‹) + ๐‘Š0 ๐‘Œโˆ— (๐‘‹) + ๐‘Š0
โˆš๐‘Š0
[๐‘Œ โˆ’ ๐‘Œ๐‘ (๐‘‹)]
๐‘Œโˆ— (๐‘‹) + ๐‘Š0
ฮฆ1 (๐‘‹,๐‘Œ)
๐ฟ (๐‘‹, ๐‘Œ) L (๐‘‹, ๐œ‚โˆ—โˆ— ) ,
(463)
where we can replace ๐‘Œ by ๐‘Œ๐‘ (๐‘‹) + ๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— , so the expansion
is in terms of ๐‘‹ and ๐œ‚โˆ—โˆ— . We can also view L as being a
function of the ray variables ๐‘ก and ฬƒ๐‘ 1 . But then the product
๐ฟL will satisfy the transport equation in (198). Since ๐ฟ is a
particular solution, L must be constant along a ray and thus
a function of ฬƒ๐‘ 1 but not ๐‘ก, so in view of (462) we write
L (๐‘‹, ๐œ‚โˆ—โˆ— ) = L0 (
๐‘Œ0 + ๐‘Š0
๐œ‚ ).
๐‘Œ๐‘ (๐‘‹) + ๐‘Š0 โˆ—โˆ—
โ‹… exp [๐œŒฮฆ (๐‘‹, ๐‘Œ๐‘ (๐‘‹) + ๐œŒ
+๐œŒ
1/3
ฮฆ (๐‘‹, ๐‘Œ๐‘ (๐‘‹) + ๐œŒ
โˆ’1/3
(464)
โˆ’1/3
๐œ‚โˆ—โˆ— )] ,
๐‘‹01/6 [๐‘Š0 + ๐‘Œ๐‘ (๐‘‹)]
.
ฮจ (๐‘‹, ๐‘Œ๐‘ (๐‘‹)) = ฮฆโˆ— (๐‘‹, ๐‘Œ๐‘ (๐‘‹)) โˆ’ ฮฆ (๐‘‹0 , ๐‘Œ0 ) ,
ฮจ๐‘Œ (๐‘‹, ๐‘Œ๐‘ (๐‘‹)) = ฮฆ๐‘Œ (๐‘‹, ๐‘Œ๐‘ (๐‘‹)) ,
(468)
ฮจ๐‘Œ๐‘Œ (๐‘‹, ๐‘Œ๐‘ (๐‘‹)) = ฮฆ๐‘Œ๐‘Œ (๐‘‹, ๐‘Œ๐‘ (๐‘‹)) ,
๐‘Œ
]
๐‘Œ0
๐‘Œ
โˆ’ log [(1 โˆ’ ๐ต) ] ,
๐‘Œ0
(469)
where we expressed ๐œ in terms of ๐ต and ๐‘Œ using (68). Along
๐‘Œ = ๐‘Œ๐‘ we have ๐œ•๐ต/๐œ•๐‘Œ = 0 so that from (469) we obtain
ฮจ๐‘Œ๐‘Œ =
๐‘Œ0
1
๐œ•๐ต
1โˆ’๐ต
+
1 โˆ’ ๐ต ๐‘Œ0 ๐ต + (1 โˆ’ ๐ต) ๐‘Œ ๐œ•๐‘Œ ๐‘Œ0 ๐ต + (1 โˆ’ ๐ต) ๐‘Œ
1
โˆ’
๐‘Œ
(470)
and hence
ฮจ๐‘Œ๐‘Œ (๐‘‹, ๐‘Œ๐‘ (๐‘‹)) = โˆ’
๐‘Š0
.
๐‘Œ๐‘ (๐‘Œ๐‘ + ๐‘Š0 )
(471)
From the relation between ๐ต and ๐ด in (67) we have
๐‘‹0
๐‘Œ0 ๐œ•๐ต
๐œ•๐ด
]
= [1 โˆ’
2 ๐œ•๐‘Œ
2 ๐œ•๐‘Œ
(1 โˆ’ ๐ต)
(1 โˆ’ ๐ด)
๐‘Œ0 + ๐‘Š0
๐œ‚ )
๐‘Œ๐‘ (๐‘‹) + ๐‘Š0 โˆ—โˆ—
๐œ‚โˆ—โˆ— )
๐‘Ÿ0 ๐œ‚โˆ—โˆ— (1 โˆ’ โˆš๐‘‹0 )
Next we examine the ray expansion in D0 near the curve
๐‘Œ = ๐‘Œ๐‘ (๐‘‹). This will yield a matching condition for L0 (โ‹…) as
๐œ‚โˆ—โˆ— โ†’ +โˆž. We can easily establish the following continuity
conditions between ฮจ(๐‘‹, ๐‘Œ) and ฮฆ(๐‘‹, ๐‘Œ) across ๐‘Œ = ๐‘Œ๐‘ (๐‘‹)
We thus write the expansion in the transition layer as
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐ถ1 ๐ฟ (๐‘‹, ๐‘Œ๐‘ (๐‘‹)) L0 (
(467)
2/3
โˆผโˆ’
(462)
Consider the balance equation (17) on the scale ๐œ‚โˆ—โˆ— =
๐‘‚(1), with 0 < ๐‘‹ < ๐‘‹0 . An asymptotic solution is given by
๐ถ1 ๐‘’๐œŒฮฆ(๐‘‹,๐‘Œ) ๐‘’๐œŒ
๐‘Š0 + ๐‘Œ0
)
๐‘Š0 + ๐‘ 1
ฮจ๐‘Œ (๐‘‹, ๐‘Œ) = log [๐ต + (1 โˆ’ ๐ต)
๐‘Œ0 + ๐‘Š0
๐œ‚ .
๐‘Œ๐‘ (๐‘‹) + ๐‘Š0 โˆ—โˆ—
1/3
๐‘‹0โˆ’1/6 log (
where we recall that ๐‘Œ = ๐‘Œ๐‘ (๐‘‹) corresponds to the D0 ray
with ๐ด = 1 โˆ’ โˆš๐‘‹0 , ๐ต = ๐‘Š0 /(๐‘Š0 + ๐‘Œ0 ). To this end we note
that
so that
ฬƒ๐‘ 1 = ๐œŒโˆ’1/3 โˆš๐‘Š0 [
Using the fact that ฮฆ1 (๐‘‹, ๐‘Œ) = ฮฆโˆ— (๐‘ 1 ) we have
๐œŒ1/3 [ฮฆโˆ— (๐‘ 1 ) โˆ’ ฮฆ (๐‘Œ0 )]
๐‘Š +๐‘ 
1
1
โ‹… exp [โˆ’ ( +
) log ( 0 1 )] .
2 2โˆš๐‘‹0
1 โˆ’ โˆš๐‘‹0
๐‘ 1 = ๐‘Œ1 + ๐œŒโˆ’1/3ฬƒ๐‘ 1 .
(466)
(472)
and thus
(465)
2๐‘Œ0
๐œ•2 ๐ต
๐œ•๐ด 2
=โˆ’
( ) ,
2
2
๐œ•๐‘Œ
โˆš๐‘‹0 (๐‘Œ0 + ๐‘Š0 ) ๐œ•๐‘Œ
(473)
at ๐‘Œ = ๐‘Œ๐‘ (๐‘‹) .
Advances in Operations Research
49
The function ๐พ0 (๐ด) vanishes as ๐ด โ†’ 1 โˆ’ โˆš๐‘‹0 , in view of the
factor [(1 โˆ’ ๐ด)2 โˆ’ ๐‘‹0 ], and we have
It also follows from (470) that
ฮจ๐‘Œ๐‘Œ๐‘Œ (๐‘‹, ๐‘Œ๐‘ (๐‘‹))
=
๐พ0 (๐ด)
1
1
โˆ’
๐‘Œ๐‘2 (๐‘Š0 + ๐‘Œ๐‘ )2
(474)
2
(๐‘Œ0 + ๐‘Š0 ) ๐œ•2 ๐ต
+
(๐‘‹, ๐‘Œ๐‘ (๐‘‹)) .
๐‘Œ0 (๐‘Œ๐‘ + ๐‘Š0 ) ๐œ•๐‘Œ2
โˆผ
2โˆš๐‘Œ0 (1 โˆ’ โˆš๐‘‹0 )
โˆš2๐œ‹ (๐‘Œ0 + ๐‘Š0 ) (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) (๐‘Š0 + ๐‘Œ๐‘ )
Combining (479) and (480) leads to, for ๐‘Œ โ†’ ๐‘Œ๐‘ (๐‘ ),
(๐‘‹ + ๐‘Œ โˆ’ 1) [๐ต + (1 โˆ’ ๐ต)
๐ถ0 ๐พ (๐‘‹, ๐‘Œ) โˆผ 2 (1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐œŒโˆ’5/6 ๐œ‚โˆ—โˆ—
๐‘Œ
]+๐ด
๐‘Œ0
= (๐ด + ๐‘‹0 + ๐‘Œ0 โˆ’ 1) [๐ต + (1 โˆ’ ๐ต)
2
(475)
2
๐‘Œ
] .
๐‘Œ0
By implicit differentiation of (475) we obtain
โˆš๐‘Š0
๐œ•๐ด
(๐‘‹, ๐‘Œ๐‘ (๐‘‹)) =
๐œ•๐‘Œ
๐‘Š0 + ๐‘Œ๐‘ (๐‘‹)
(477)
= ฮฆ๐‘Œ๐‘Œ๐‘Œ (๐‘‹, ๐‘Œ๐‘ (๐‘‹))
2๐‘Š0
1
.
โˆš๐‘‹0 (๐‘Š0 + ๐‘Œ๐‘ )3
โˆš๐‘‹0
(
1
3
(478)
3
๐œ‚โˆ—โˆ—
) .
๐‘Š0 + ๐‘Œ๐‘ (๐‘‹)
2
(๐‘Œ0 + ๐‘Š0 )
โˆ’ฮ”โˆผ
[๐‘Œ๐‘ + โˆš๐‘‹0 ๐‘Š0 โˆ’ โˆš๐‘Š0 ๐‘Œ0 ] ,
๐‘Œ0 โˆ’ ๐‘Œ๐‘
(๐‘Œ + ๐‘Œ๐‘ + 2๐‘Š0 ) .
๐‘Š0 + ๐‘Œ0 0
โ‹… exp [๐‘Ÿ0
[
2/3
(1 โˆ’ โˆš๐‘‹0 )
๐‘‹01/6
2/3
๐‘‹0โˆ’1/6
.
โ‹†
๐‘Œ0 + ๐‘Š0
โ‹†
๐‘Œ0 + ๐‘Š0
(482)
Thus (466) and (482) give the behaviors of L0 (โ‹†) as โ‹† โ†’
±โˆž. But to determine L0 (โ‹…) completely we must use asymptotic matching to the corner approximation in (169), which
applies on the (], ๐‘‡) scale. We thus expand (465) for ๐‘‹ โ†’ ๐‘‹0
and asymptotically match this to (169), expanding the latter
for ] โ†’ โˆž, ๐‘‡ โ†’ โˆž but with ๐‘‡ โˆ’ โˆš] = ๐‘‚(1). In this limit we
have
3/2
1 ๐‘–โˆž ๐‘’(๐‘‡โˆ’โˆš])๐œƒ
๐‘’โˆ’(2/3)]
[
โˆผ
๐‘‘๐œƒ] .
โˆซ
2โˆš๐œ‹]1/4 2๐œ‹๐‘– โˆ’๐‘–โˆž Ai (๐œƒ)
(๐‘’โˆ’๐œ โˆ’ ๐ด) (๐‘’โˆ’๐œ โˆ’ ๐ต)
๐‘Œ๐‘
โˆš๐‘Œ๐‘ + ๐‘Š0 โˆ’ โˆš๐‘Š0 (๐‘Š0 + ๐‘Œ0 )
1 ๐‘–โˆž Ai (] + ๐œƒ) ๐œƒ๐‘‡
๐‘’ ๐‘‘๐œƒ
โˆซ
2๐œ‹๐‘– โˆ’๐‘–โˆž Ai (๐œƒ)
As ๐‘Œ โ†’ ๐‘Œ๐‘ (๐‘‹), ๐‘’โˆ’๐œ โ†’ (๐‘Š0 + ๐‘Œ๐‘ )/(๐‘Š0 + ๐‘Œ0 ),
โˆผ
1
(481)
2
๐œŒ {ฮจ (๐‘‹, ๐‘Œ๐‘ + ๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— )
(1 โˆ’ โˆš๐‘‹)
1
1
๐‘Š0 + ๐‘Œ๐‘ โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0
3
1 (1 โˆ’ โˆš๐‘‹0 )
โ‹†
โˆ’
(
) ] , โ‹† ๓ณจ€โ†’ +โˆž.
3
๐‘Œ0 + ๐‘Š0
โˆš๐‘‹0
]
Combining (468) with (477) we have
โ‹…
โ‹…
L0 (โ‹†) โˆผ 2Ai๓ธ€  (๐‘Ÿ0 ) (1 โˆ’ โˆš๐‘‹0 )
2๐‘Š0
1
โˆ’
โˆš๐‘‹0 (๐‘Š0 + ๐‘Œ๐‘ )3
2
(1 โˆ’ โˆš๐‘‹0 ) โˆš๐‘Œ0 โˆš๐‘Š0 + ๐‘Œ0 1
โˆš๐‘Œ0 โˆ’ ๐‘Œ๐‘ โˆš๐‘Œ๐‘ + ๐‘Œ0 + 2๐‘Š0 โˆš2๐œ‹
Using the expression in (41) for ๐ถ1 and the continuity
conditions in (468) and (477), we compare (465) to the D0
ray expansion as ๐‘Œ โ†’ ๐‘Œ๐‘ (๐‘‹) to conclude that
1
1
โˆ’
๐‘Œ๐‘2 (๐‘Š0 + ๐‘Œ๐‘ )2
โˆ’ [ฮฆ (๐‘‹, ๐‘Œ๐‘ + ๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— ) โˆ’ ฮฆ (๐‘‹0 , ๐‘Œ0 )]} โˆผ โˆ’
โ‹…
โ‹…
(476)
and then using (473) in (474) leads to
โˆ’
(480)
โ‹… ๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— , ๐‘Œ ๓ณจ€โ†’ ๐‘Œ๐‘ .
Eliminating ๐œ in (68) leads to
ฮจ๐‘Œ๐‘Œ๐‘Œ (๐‘‹, ๐‘Œ๐‘ (๐‘‹)) =
2
(479)
(483)
Recalling that ๐‘‹0 โˆ’ ๐‘‹ = ๐œŒโˆ’2/3 ]1 we have
๐‘Œ0 โˆ’ ๐‘Œ๐‘ (๐‘‹) โˆผ
๐‘Œ0 + ๐‘Š0
๐‘Š01/4
๐œŒโˆ’1/3 โˆš]1
(484)
50
Advances in Operations Research
U โ†’ +โˆž a standard saddle point calculation shows that
(490) is asymptotic to
and then
๐œ‚โˆ—โˆ— = ๐œŒ1/3 [๐‘Œ โˆ’ ๐‘Œ๐‘ (๐‘‹)] = โˆ’๐‘‡1 + ๐œŒ1/3 [๐‘Œ0 โˆ’ ๐‘Œ๐‘ (๐‘‹)]
โˆผ
(๐‘Œ0 + ๐‘Š0 ) ๐‘‹01/6
2/3
(1 โˆ’ โˆš๐‘‹0 )
(โˆš] โˆ’ ๐‘‡) ,
3
Ai๓ธ€  (๐‘Ÿ0 ) ๐‘’๐‘Ÿ0 U (2U) ๐‘’โˆ’U /3 ,
(485)
(๐‘‹, ๐‘Œ) ๓ณจ€โ†’ (๐‘‹0 , ๐‘Œ0 ) .
Apart from the exponential factor
exp {๐œŒ [ฮฆ (๐‘‹, ๐‘Œ๐‘ (๐‘‹) + ๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— ) โˆ’ ฮฆ (๐‘‹0 , ๐‘Œ0 )]} ,
(486)
as ๐‘Œ โ†’ ๐‘Œ๐‘ the expression in (465) becomes
(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 ) ๐œŒโˆ’5/6
4/3
โ‹…
๐‘‹0โˆ’1/12
โˆš2 (๐‘Š0 + ๐‘Œ0 ) (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
[
๐‘Œ0 + ๐‘Š0
โ‹… L0 (
2/3
๐‘Š01/4
(487)
2/3
(1 โˆ’ โˆš๐‘‹0 )
โ‹…
(โˆš] โˆ’ ๐‘‡)) .
Here we note that ๐ฟ 1 (๐‘‹, ๐‘Œ๐‘ (๐‘‹)) is singular as ๐‘‹ โ†’ ๐‘‹0 , in
view of the factor (๐‘ 1 โˆ’ ๐‘Œ๐‘ )โˆ’1/2 , and in this limit
๐‘ 1 โˆ’ ๐‘Œ๐‘ = ๐‘ 1 โˆ’ ๐‘Œ๐‘ + ๐‘Œ0 โˆ’ ๐‘Œ๐‘ (๐‘‹)
โˆผ
๐‘Œ0 + ๐‘Š0
๐‘Š01/4
โˆš๐‘‹0 โˆ’ ๐‘‹.
(1 โˆ’ โˆš๐‘‹0 )
5/3
(488)
]โˆ’1/4 1 ๐‘–โˆž ๐‘’(๐‘‡โˆ’โˆš])๐œƒ
๐‘‘๐œƒ] .
โ‹…
[
โˆซ
2โˆš๐œ‹ 2๐œ‹๐‘– โˆ’๐‘–โˆž Ai (๐œƒ)
(489)
=
(๐‘Œ0 + ๐‘Š0 ) ๐‘‹01/6
2/3
(1 โˆ’ โˆš๐‘‹0 )
(๐‘‹)
1
โˆš๐‘Œ๐‘0 (๐‘‹) + (1 โˆ’ โˆš๐‘‹0 ) (2 โˆ’ โˆš๐‘‹0 )
5/3
๐‘‹01/12
(1
โˆ’2
1
[Ai๓ธ€  (๐‘Ÿ0 )]
โˆš2๐œ‹
โˆž
๐‘Ÿ0
The factors in (492) that precede L1 come from ๐‘’๐œŒฮฆ(๐‘‹,๐‘Œ) , ๐ถ1
1/3
(now given by (37)), ๐‘’๐œŒ ฮฆ1 (๐‘‹,๐‘Œ) , ๐ฟ 1 (๐‘‹, ๐‘Œ), and ๐ฟ 0 (๐‘ 1 ), except
we exclude from ๐ฟ 0 (โ‹…) the factor (๐‘ 1 + ๐‘Š0 )โˆš๐‘‹0 โˆ’ ๐‘ 1 , which
vanishes if ๐‘ 1 โ†’ ๐‘Œ0 and ๐‘Œ0 โ†’ โˆš๐‘‹0 โˆ’ ๐‘‹0 . Instead we include
an extra factor of ๐œŒโˆ’1/3 , and then ๐œŒโˆ’1/2 = ๐œŒโˆ’1/3 ๐œŒโˆ’1/6 , where
๐œŒโˆ’1/6 comes from ๐ถ1 in (37). Also, in (492)
๓ต„จ
๐‘Œ๐‘0 (๐‘‹) โ‰ก ๐‘Œ๐‘ (๐‘‹)๓ต„จ๓ต„จ๓ต„จ๐‘Œ0 =โˆš๐‘‹0 โˆ’๐‘‹0 .
(493)
In region R3 โˆฉ R4 we have ๐‘Š0 + ๐‘Œ0 โˆ’ โˆš๐‘Š0 (๐‘Š0 + ๐‘Œ0 ) โˆผ ๐‘Œ๐‘
and ๐‘Œ0 + 2๐‘Š0 โˆผ 2 + ๐‘‹0 โˆ’ 3โˆš๐‘‹0 , and also
Comparing (487) with (489) determines L0 (โ‹…) as
L0 (
โˆšโˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’
(492)
๐‘Œ๐‘0
โ‹… (โˆซ ๐‘’๐›ฟ1 ๐‘ข Ai (๐‘ข) ๐‘‘๐‘ข) .
(1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
(๐‘Œ0 + ๐‘Š0 ) (โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 )
โ‹…
๐‘Œ0 + ๐‘Š0
1
๐œ‚โˆ—โˆ— ) 0
๐‘Œ๐‘ + ๐‘Š0
๐‘Œ๐‘ (๐‘‹)
1
โˆ’ โˆš๐‘‹0 )
The limit of (169) as ๐‘‡, ] โ†’ โˆž, using (483), apart from some
exponential factors, which will automatically match those
from (486), is given by
๐œŒโˆ’2/3
(1 โˆ’ โˆš๐‘‹0 )
๐œ‚โˆ—โˆ— ]
โ‹… exp [โˆ’๐‘Ÿ0 1/6
๐‘‹0 (๐‘Š0 + ๐‘Œ๐‘ )
[
]
โ‹… ๐œŒโˆ’1/2 L1 (
exp [โˆ’๐‘Ÿ0 (โˆš] โˆ’ ๐‘‡)]
(๐‘Œ0 + ๐‘Š0 ) ๐‘‹01/6
7.2. Transition Layer near ๐‘Œ = ๐‘Œ๐‘ (๐‘‹), Region R3 โˆฉ R4 . We
ฬƒ
take ๐‘‹0 + ๐‘Œ0 = โˆš๐‘‹0 + ๐œŒโˆ’1/3 ๐›ฟโˆ— . Now the curves ๐‘Œ(๐‘‹),
๐‘Œโˆ— (๐‘‹),
and ๐‘Œ๐‘ (๐‘‹) are all close to each other, coinciding if ๐›ฟโˆ— = 0.
Most of the analysis closely parallels that in R4 , so we include
here fewer of the details. We again use the variables ๐‘‹ and ๐œ‚โˆ—โˆ—
to find that in the transition layer
โˆผ exp {๐œŒ [ฮฆ (๐‘‹, ๐‘Œ๐‘ + ๐œŒโˆ’1/3 ๐œ‚โˆ—โˆ— ) โˆ’ ฮฆ (๐‘‹0 , ๐‘Œ0 )]}
โˆ’1/2
โ‹… ๐œŒโˆ’1/3 โˆš]1 ]
which is consistent with (482).
๐œ‹ (๐‘˜, ๐‘Ÿ)
โˆ’1
1
[Ai๓ธ€  (๐‘Ÿ0 )]
โˆš2๐œ‹
(1 โˆ’ โˆš๐‘‹0 )
(491)
U)
๐ฟ 0 (๐‘ 1 )
(490)
Ai๓ธ€  (๐‘Ÿ0 ) ๐‘’๐‘Ÿ0 U ๐‘–โˆž ๐‘’โˆ’๐œƒU
๐‘‘๐œƒ.
โˆซ
2๐œ‹๐‘–
โˆ’๐‘–โˆž Ai (๐œƒ)
With (490), (465) becomes the same as (191), so we have
established Proposition 8. Note also that (490) is consistent
with (466), since for U โ†’ โˆ’โˆž the asymptotics of the contour
integral are determined by the pole at ๐œƒ = ๐‘Ÿ0 < 0. For
(๐‘ 1 + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘ 1
๓ณจ€โ†’
โˆ’4/3
โˆ’2
1
,
[Ai๓ธ€  (๐‘Ÿ0 )] ๐‘‹0โˆ’1/6 (1 โˆ’ โˆš๐‘‹0 )
2๐œ‹
(494)
๐‘ 1 ๓ณจ€โ†’ ๐‘Œ0 .
Thus apart from the factors ๐œŒโˆ’1/3 L1 (โ‹…), (492) is just the Dโˆ’
ray expansion expanded near ๐‘Œ โ†’ ๐‘Œ๐‘ (๐‘‹) (or ๐‘ 1 โ†’ ๐‘Œ0 ),
Advances in Operations Research
51
divided by (๐‘ 1 + ๐‘Š0 )โˆš๐‘‹0 โˆ’ ๐‘ 1 . Thus (492) matches to the Dโˆ’
ray expansion if
๓ต„จ๓ต„จ
๐‘Œ + ๐‘Š0
๓ต„จ
๐œ‚โˆ—โˆ— )๓ต„จ๓ต„จ๓ต„จ
๐œŒโˆ’1/3 L1 ( 0
๓ต„จ๓ต„จ๐œ‚ โ†’โˆ’โˆž
๐‘Œ๐‘ + ๐‘Š0
โˆ—โˆ—
(495)
๓ต„จ๓ต„จ
๓ต„จ
โˆผ [(๐‘ 1 + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘ 1 ]๓ต„จ๓ต„จ๓ต„จ
.
๓ต„จ๐‘ 1 โ†’๐‘Œ0
But the left side of (495), in view of (461) and (462), becomes
(๐‘ 1 + ๐‘Š0 ) โˆš๐‘‹0 โˆ’ ๐‘ 1
2
โˆผ (1 โˆ’ โˆš๐‘‹0 ) ๐œŒโˆ’1/3 (
โˆ’๐œ‚โˆ—โˆ—
).
๐‘Œ๐‘ + ๐‘Š0
(497)
Next we match (492) to the D0 ray expansion and thus
infer the behavior of L1 (๐‘ˆ) as ๐‘ˆ โ†’ +โˆž. Now ๐ถ0 โˆผ (1 โˆ’
๐‘‹0 โˆ’ ๐‘Œ0 )๐œŒโˆ’1/2 โˆผ (1 โˆ’ โˆš๐‘‹0 )๐œŒโˆ’1/2 . First evaluating ๐พ(๐‘‹, ๐‘Œ) at
๐‘Œ0 = โˆš๐‘‹0 โˆ’ ๐‘‹0 and then letting ๐‘Œ โ†’ ๐‘Œ๐‘0 we get
2
๓ต„จ
[ ๐พ (๐‘‹, ๐‘Œ)|๐‘Œ0 =โˆš๐‘‹0 โˆ’๐‘‹0 ]๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐‘Œโ†’๐‘Œ0 โˆผ โˆš
๐‘
๐œ‹
โ‹…
2
(1 โˆ’ โˆš๐‘‹0 )
๐‘Œ๐‘0 (๐‘‹)
1
1
โˆšโˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ๐‘0 (๐‘‹) โˆš๐‘Š0 + โˆš๐‘Š0 + ๐‘Œ๐‘0 (๐‘‹)
(498)
.
โˆ’2
[Ai๓ธ€  (๐‘Ÿ0 )] (โˆซ ๐‘’๐›ฟ1 ๐‘ข Ai (๐‘ข) ๐‘‘๐‘ข) (1 โˆ’ โˆš๐‘‹0 )
5/3
2/3
2
โˆž
๐›ฟ1 ๐‘ข
โ‹… (โˆซ ๐‘’
๐‘Ÿ0
=
2
1[
๐‘‹ โˆ’ ๐‘‹0 + โˆš๐‘‹0 โˆ’ ๐‘‹โˆš (2 โˆ’ โˆš๐‘‹0 ) โˆ’ ๐‘‹]
2
]
[
โˆผ (1 โˆ’ โˆš๐‘‹0 )
1/2
(503)
๐œŒโˆ’1/3 โˆš]1 .
๐œ‚โˆ—โˆ— โˆผ ๐‘‹01/6 (1 โˆ’ โˆš๐‘‹0 )
1/3
(โˆš] โˆ’ ๐‘‡) .
(504)
With (503) and (504), the algebraic part of (492) becomes
โˆ’2
1 โˆ’1/6 โˆ’1/4 โˆ’1/4
๐œŒ ] ๐‘‹0 [Ai๓ธ€  (๐‘Ÿ0 )]
2โˆš๐œ‹
(505)
1/3
โ‹… L1 (๐‘‹01/6 (1 โˆ’ โˆš๐‘‹0 )
(โˆš] โˆ’ ๐‘‡)) .
Comparing (502) to (505) determines L1 (โ‹…) as
3
๐œ‚
1 (1 โˆ’ โˆš๐‘‹0 )
( โˆ—โˆ— ) ] .
3
๐‘Š0 + ๐‘Œ๐‘
โˆš๐‘‹0
]
We thus have the matching condition
4/3
โˆš๐‘‹0 โˆ’ ๐‘‹0 โˆ’ ๐‘Œโˆ— (๐‘‹)
๐‘Ÿ0
L1 (๐‘ˆ) = ๐‘‹01/6 (1 โˆ’ โˆš๐‘‹0 )
โˆ’
L1 (๐‘ˆ) โˆผ 2๐‘‹1/6 (1 โˆ’ โˆš๐‘‹0 )
(502)
Now we evaluate the algebraic part of (492), for ๐‘‹ โ†’ ๐‘‹0 .
From (460), since ๐‘Œ0 + ๐‘Š0 โ†’ 1 โˆ’ โˆš๐‘‹0 = โˆš๐‘Š0 , we see that
๐‘Œ๐‘0 (๐‘‹) is the same as ๐‘Œโˆ— (๐‘‹), which is independent of ๐‘Œ0 . We
also have ๐‘Œโˆ— (๐‘‹0 ) = โˆš๐‘‹0 โˆ’ ๐‘‹0 so that (498) becomes singular
as ๐‘‹ โ†’ ๐‘‹0 . We have
โ‹… (โˆซ ๐‘’๐›ฟ1 ๐‘ข Ai (๐‘ข) ๐‘‘๐‘ข)
(499)
๐œ‚โˆ—โˆ—
โ‹… exp [๐‘Ÿ0 1/6
๐‘‹0 (๐‘Š0 + ๐‘Œ0 )
[
1 1
2โˆš๐œ‹ 2๐œ‹๐‘–
โˆž
3
๐‘Œ0 + ๐‘Š0
๐œ‚โˆ—โˆ— ) โˆผ 2๐‘‹01/4 (1 โˆ’ โˆš๐‘‹0 )
๐‘Œ๐‘ + ๐‘Š0
(1 โˆ’ โˆš๐‘‹0 )
๐‘‹0โˆ’1/3 ]โˆ’1/4
โˆž
๐‘’๐œƒ(๐‘‡โˆ’โˆš]โˆ’๐›ฟ1 )
(โˆซ
๐‘’๐›ฟ1 ๐‘ข Ai (๐‘ข) ๐‘‘๐‘ข) ๐‘‘๐œƒ.
2
๐œƒ
[Ai (๐œƒ)]
๐œŒโˆ’1/2 ๐‘’โˆ’๐‘Ÿ0 (๐‘‡โˆ’โˆš])
๐‘Ÿ0
โ‹… ๐‘‹01/12 L1 (
โ‹…โˆซ
๐‘–โˆž
4/3
The result in (485) still applies, now simplifying to
The estimate in (478) still holds so if ๐ถ0 ๐พ(๐‘‹, ๐‘Œ)๐‘’๐œŒฮจ(๐‘‹,๐‘Œ) is to
agree, for ๐‘Œ โ†’ ๐‘Œ๐‘ , with the large ๐œ‚โˆ—โˆ— asymptotics of (492), we
must have
โˆž
๐œŒโˆ’1/3 (1 โˆ’ โˆš๐‘‹0 )
โˆ’๐‘–โˆž
๐‘ˆ ๓ณจ€โ†’ โˆ’โˆž.
๐‘‹01/4
2
(501)
Ai (] + ๐œƒ) โˆผ 2โˆ’1 ๐œ‹โˆ’1/2 ]โˆ’1/4 exp (โˆ’ ]3/2 โˆ’ โˆš]๐œƒ)
3
in the integral we expand (173) for ], ๐‘‡ โ†’ โˆž with ๐‘‡ โˆ’ โˆš] =
๐‘‚(1). The result contains some exponential factors and some
algebraic ones, with the latter being
(496)
Now ๐‘Œ0 + ๐‘Š0 โˆผ 1 โˆ’ โˆš๐‘‹0 so that (495) and (496) lead to
L1 (๐‘ˆ) โˆผ (1 โˆ’ โˆš๐‘‹0 ) (โˆ’๐‘ˆ) ,
To determine L1 (โ‹…) completely we need to match (492) to the
corner layer expansion in (173). Using
โˆž
โ‹… [โˆซ ๐‘’๐›ฟ1 ๐‘ข Ai (๐‘ข) ๐‘‘๐‘ข]
๐‘Ÿ0
[Ai๓ธ€  (๐‘Ÿ0 )]
2
โ‹…โˆซ
๐‘–โˆž
โˆ’๐‘–โˆž
โˆ’1
Ai (๐‘ข) ๐‘‘๐‘ข)
(500)
๐‘Ÿ0 ๐‘ˆ
๐‘ˆ3
],
โ‹… exp [
โˆ’
1/3
1/6
โˆš๐‘‹
3โˆš๐‘‹
(1
โˆ’
)
0
0
[ ๐‘‹0 (1 โˆ’ โˆš๐‘‹0 )
]
๐‘ˆ ๓ณจ€โ†’ +โˆž.
โˆ’1
4/3
[Ai๓ธ€  (๐‘Ÿ0 )]
2
1
2๐œ‹๐‘–
โˆž
๐‘’โˆ’๐œƒ๐›ฟ1
๐‘’๐›ฟ1 ๐‘ข Ai (๐‘ข) ๐‘‘๐‘ข)
(โˆซ
Ai2 (๐œƒ) ๐œƒ
๐‘ˆ๐œƒ
] ๐‘‘๐œƒ
โ‹… exp [โˆ’
1/3
1/6
โˆš๐‘‹
๐‘‹
(1
โˆ’
)
0
[ 0
]
๐‘ˆ
].
โ‹… exp [๐‘Ÿ0
1/3
1/6
[ ๐‘‹0 (1 โˆ’ โˆš๐‘‹0 ) ]
(506)
52
Advances in Operations Research
We have thus established the result in (194). By asymptotically
expanding the contour integral in (506) in the limits ๐‘ˆ โ†’
±โˆž we can easily verify that (497) and (500) are satisfied.
Changing variables from (๐‘‹, ๐œ‚โˆ— ) to (๐‘กโˆ— , ๐œ‚โˆ— ) the PDE in (510)
becomes
ฬƒ
7.3. Transition Layer near ๐‘Œ = ๐‘Œ(๐‘‹),
Region R1 โˆช R2 โˆช R3 .
We consider the curve that separates D0 from D+ . We use the
scaling
(515)
ฬƒ (๐‘‹) + ๐œŒโˆ’1/2 ๐œ‚โˆ— ,
๐‘Œ=๐‘Œ
๐œ‚โˆ— = ๐‘‚ (1)
(507)
and expand the joint distribution as
ฬƒ exp [๐œŒฮจ+ (๐‘‹, ๐‘Œ)
ฬƒ
๐œ‹ (๐‘˜, ๐‘Ÿ) โˆผ ๐ถ (๐œŒ) ๐น (๐‘‹, ๐œ‚โˆ— ) ๐พ+ (๐‘‹, ๐‘Œ)
(508)
ฬƒ ๐œ‚โˆ— + 1 ฮจ+,๐‘Œ๐‘Œ (๐‘‹, ๐‘Œ)
ฬƒ ๐œ‚2 ] .
+ โˆš๐œŒฮจ+,๐‘Œ (๐‘‹, ๐‘Œ)
โˆ—
2
The exponential factor in (508) corresponds to the expansions
ฬƒ
If (508) as ๐œ‚โˆ— โ†’ โˆ’โˆž is to match
of ฮจ+ (๐‘‹, ๐‘Œ) about ๐‘Œ = ๐‘Œ(๐‘‹).
to the D+ ray expansion we must have
๐น (๐‘‹, โˆ’โˆž) = 1,
โˆ€0 < ๐‘‹ < ๐‘‹0 .
1 ฬƒ๓ธ€  2
ฬƒ ฮจ+,๐‘Œ ] ๐น๐œ‚ ๐œ‚
[(๐‘Œ ) (๐‘‹๐‘’ฮจ+,๐‘‹ + ๐‘’โˆ’ฮจ+,๐‘‹ ) + ๐‘Œ๐‘’
โˆ— โˆ—
2
+ ๐œ‚โˆ— ๐‘’
ฮจ+,๐‘‹
๐น๐œ‚โˆ— + (๐‘‹๐‘’
โˆ’ฮจ+,๐‘‹
โˆ’๐‘’
for ๐‘‹ โˆˆ (0, ๐‘‹0 ) and ๐œ‚โˆ— โˆˆ (โˆ’โˆž, โˆž). In (510), ฮจ+ is understood
ฬƒ
to be evaluated at (๐‘‹, ๐‘Œ) = (๐‘‹, ๐‘Œ(๐‘‹)).
We can write the curve
ฬƒ
๐‘Œ(๐‘‹)
in parametric form, as
๐‘Œ0
๐‘‹ = (1 โˆ’
๐‘’๐‘กโˆ— ) [1 + (๐‘‹0 + ๐‘Œ0 โˆ’ 1) ๐‘’โˆ’๐‘กโˆ— ] ,
๐‘‹0 + ๐‘Œ0
ฬƒ (๐‘‹) = ๐‘Œ0 [๐‘‹0 + ๐‘Œ0 โˆ’ 1 + ๐‘’โˆ’๐‘กโˆ— ] ,
๐‘Œ
๐‘‹0 + ๐‘Œ0
(511)
ฬƒ
๐‘‘๐‘‹
๐‘‘๐‘กโˆ—
(512)
and define ๐‘€โˆ— from
๓ธ€ 
2
ฬƒ
ฬƒ
ฬƒ (๐‘‹)] [๐‘‹๐‘’ฮจ+,๐‘‹ (๐‘‹,๐‘Œ(๐‘‹)) + ๐‘’โˆ’ฮจ+,๐‘‹ (๐‘‹,๐‘Œ(๐‘‹)) ]
๐‘€โˆ— = [๐‘Œ
ฬƒ
ฬƒ (๐‘‹) ๐‘’ฮจ+,๐‘Œ (๐‘‹,๐‘Œ(๐‘‹))
+๐‘Œ
.
(513)
We can view ๐‘€โˆ— as being a function of either ๐‘‹ or ๐‘กโˆ— . In
terms of ๐‘กโˆ— we have
๐‘Œ ๐‘’โˆ’๐‘กโˆ—
๐‘€โˆ— (๐‘กโˆ— ) = 0
๐‘‹0 + ๐‘Œ0
+ [2 + (๐‘‹0 + ๐‘Œ0 โˆ’ 1) ๐‘’โˆ’๐‘กโˆ—
๐‘Ž๓ธ€  (๐‘กโˆ— )
1
] โ‹† ๐น0๓ธ€  (โ‹†)
๐‘€โˆ— ๐‘Ž2 (๐‘กโˆ— ) ๐น0๓ธ€ ๓ธ€  (โ‹†) + [๐ต (๐‘กโˆ— ) โˆ’
2
๐‘Ž (๐‘กโˆ— )
(516)
= 0,
where
๐น0 (๐œ‚โˆ— ๐‘Ž (๐‘กโˆ— )) = ๐น (๐‘กโˆ— , ๐œ‚โˆ— ) ,
โˆ’1
๐ต (๐‘กโˆ— ) = [1 + (๐‘‹0 + ๐‘Œ0 โˆ’ 1) ๐‘’๐‘กโˆ— ] .
(517)
Such a similarity solution is possible if ๐‘Ž(๐‘กโˆ— ) satisfies the
nonlinear ODE
๐ต (๐‘กโˆ— ) โˆ’
๐‘Ž๓ธ€  (๐‘กโˆ— ) 1
= ๐‘€โˆ— (๐‘กโˆ— ) ๐‘Ž2 (๐‘กโˆ— ) .
2
๐‘Ž (๐‘กโˆ— )
(518)
Setting ๐‘Ž(๐‘กโˆ— ) = [๐‘(๐‘กโˆ— )]โˆ’1/2 , the Bernoulli equation in (518)
becomes the linear equation
๐‘๓ธ€  (๐‘กโˆ— ) + 2๐ต (๐‘กโˆ— ) ๐‘ (๐‘กโˆ— ) = ๐‘€โˆ— (๐‘กโˆ— ) .
(519)
Solving (519) subject to ๐‘(0) = 0 leads to the expression in
(184). With (518), (516) becomes
๐น0๓ธ€ ๓ธ€  (โ‹†) + โ‹†๐น0๓ธ€  (โ‹†) = 0
with the latter equation corresponding to (178). Since ๐‘กโˆ— =
๐‘กโˆ— (๐‘‹) we note that
ฬƒ
ฬƒ 0 ) = ๐‘Œ0 .
and note that ๐‘กโˆ— = 0 corresponds to ๐‘‹ = ๐‘‹0 , as ๐‘Œ(๐‘‹
Next we assume that ๐น(๐‘กโˆ— , ๐œ‚โˆ— ) will be a function of a single
โ€œsimilarityโ€ variable, which we call โ‹† = ๐œ‚โˆ— ๐‘Ž(๐‘กโˆ— ) and with
which (515) becomes the ordinary differential equation
(510)
) ๐น๐‘‹ = 0,
๐‘‹๐‘’ฮจ+,๐‘‹ (๐‘‹,๐‘Œ(๐‘‹)) โˆ’ ๐‘’โˆ’ฮจ+,๐‘‹ (๐‘‹,๐‘Œ(๐‘‹)) = โˆ’
๐‘กโˆ— > 0
(509)
We use (508) in the main balance equation (3) and after
a lengthy calculation we find that ๐น(๐‘‹, ๐œ‚โˆ— ) satisfies the
parabolic PDE
ฮจ+,๐‘Œ
๐œ‚โˆ—
1
๐น = ๐น๐‘กโˆ— ,
๐‘€โˆ— ๐น๐œ‚โˆ— ๐œ‚โˆ— +
2
1 + (๐‘‹0 + ๐‘Œ0 โˆ’ 1) ๐‘’๐‘กโˆ— ๐œ‚โˆ—
(520)
and (509) implies that ๐น(โˆ’โˆž) = 1, and thus
๐น0 (
๐œ‚โˆ—
โˆš๐‘ (๐‘กโˆ— )
)=
โˆž
2
1
๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข.
โˆซ
โˆš2๐œ‹ ๐œ‚โˆ— /โˆš๐‘(๐‘กโˆ— )
(521)
We have thus derived (176).
With (521) substituted for ๐น(๐‘‹, ๐œ‚โˆ— ) in (508), we can show
that as ๐œ‚โˆ— โ†’ +โˆž, (508) asymptotically matches to the D0 ray
expansion. As ๐œ‚โˆ— โ†’ โˆž from (521) we have
๐น0 (
๐œ‚โˆ—
โˆš๐‘ (๐‘กโˆ— )
)โˆผ
โˆš๐‘ (๐‘กโˆ— ) 1
๐œ‚2
exp [โˆ’ โˆ— ] ,
โˆš2๐œ‹ ๐œ‚โˆ—
2๐‘ (๐‘กโˆ— )
(522)
๐œ‚โˆ— ๓ณจ€โ†’ โˆž.
๐‘Œ0
โˆ’
๐‘’๐‘กโˆ— ]
๐‘‹0 + ๐‘Œ0
(514)
2
๐‘Œ0 ๐‘’โˆ’๐‘กโˆ—
โ‹…[ ๐‘ก
] .
๐‘Œ0 ๐‘’ โˆ— + (๐‘‹0 + ๐‘Œ0 ) (๐‘‹0 + ๐‘Œ0 โˆ’ 1) ๐‘’โˆ’๐‘กโˆ—
We can easily establish the continuity conditions
ฬƒ (๐‘‹)) = ฮจ+ (๐‘‹, ๐‘Œ
ฬƒ (๐‘‹)) โˆ’ ฮจ+ (๐‘‹0 , ๐‘Œ0 ) ,
ฮจ (๐‘‹, ๐‘Œ
ฬƒ (๐‘‹)) = ฮจ+,๐‘Œ (๐‘‹, ๐‘Œ
ฬƒ (๐‘‹))
ฮจ๐‘Œ (๐‘‹, ๐‘Œ
(523)
Advances in Operations Research
53
and, after a lengthy calculation, show that
ฬƒ (๐‘‹)) =
ฮจ+,๐‘Œ๐‘Œ (๐‘‹, ๐‘Œ
1
ฬƒ (๐‘‹)) .
+ ฮจ๐‘Œ๐‘Œ (๐‘‹, ๐‘Œ
๐‘ (๐‘กโˆ— )
But
(524)
Thus expanding the D0 ray expansion, ๐ถ0 ๐พ(๐‘‹, ๐‘Œ)๐‘’๐œŒฮจ(๐‘‹,๐‘Œ) , as
ฬƒ
๐‘Œ โ†“ ๐‘Œ(๐‘‹)
and comparing this to the large ๐œ‚โˆ— expansion of
(508), using (523) and (524), lead to
๐พ+ (๐‘‹0 , ๐‘Œ0 )
2
=โˆ’
โˆš๐‘ (๐‘กโˆ— )
๐‘’๐œŒฮจ+ (๐‘‹0 ,๐‘Œ0 )
,
ฬƒ (๐‘‹)]
โˆš2๐œ‹ โˆš๐œŒ [๐‘Œ โˆ’ ๐‘Œ
(525)
ฬƒ (๐‘‹) .
๐‘Œ ๓ณจ€โ†’ ๐‘Œ
3
โˆผ
(526)
ฮจ+ (๐‘‹0 , ๐‘Œ0 ) = โˆ’1 + ๐‘‹0 + ๐‘Œ0 โˆ’ (๐‘‹0 + ๐‘Œ0 ) log (๐‘‹0
+ ๐‘Œ0 ) .
ฬƒ
The curve ๐‘Œ = ๐‘Œ(๐‘‹)
corresponds to the ray ๐ด = ๐‘Œ0 /(๐‘‹0 +๐‘Œ0 ),
and then ๐ต = 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 . From (70) we see that ๐พ becomes
ฬƒ
singular as ๐‘Œ โ†’ ๐‘Œ(๐‘‹),
due to the factor [๐‘Œ0 โˆ’ ๐ด(๐‘‹0 + ๐‘Œ0 )]โˆ’1 .
This singularity precisely matches that in the right-hand side
of (525), and yet another lengthy calculation shows that
ฬƒ (๐‘‹)] ๐พ (๐‘‹, ๐‘Œ)}
lim {[๐‘Œ โˆ’ ๐‘Œ
(527)
ฬƒ (๐‘‹)) ,
= โˆš๐‘‹0 + ๐‘Œ0 โˆš๐‘ (๐‘กโˆ— )๐พ+ (๐‘‹, ๐‘Œ
which establishes the matching.
We note that the PDE (515) contains many solutions other
than the similarity solution. An initial condition as ๐‘กโˆ— โ†’
0 can be obtained by asymptotically matching (508) to the
corner layer valid on the (๐‘›, ๐‘) scale. This will determine the
solution to (515) uniquely, but the matching will again lead
to the conclusion that ๐น is given by (521). Below we only
briefly verify that the matching holds. Near the corner the
ฬƒ
curve ๐‘Œ = ๐‘Œ(๐‘‹)
can be approximated by the straight line
๓ธ€ 
ฬƒ
๐‘Œ โˆ’ ๐‘Œ0 = ๐‘Œ (๐‘‹0 )(๐‘‹ โˆ’ ๐‘‹0 ), which corresponds to
๐‘
๐‘Œ0 โˆ’ ๐‘Œ
๐‘Œ0
1
= ,
= =
๐‘‹0 โˆ’ ๐‘‹ ๐‘› (๐‘‹0 + ๐‘Œ0 )2 โˆ’ ๐‘‹0 ๐œƒ1
(528)
where ๐œƒ1 was defined in Proposition 20. Thus we must show
that (508) for ๐‘‹ โ†’ ๐‘‹0 is the same as (251). The exponential
parts agree automatically and ๐ถ(๐œŒ) โˆผ ๐œŒโˆ’1/2 ๐‘„(0, 0), so we must
only show that, for ๐‘‹ โ†’ ๐‘‹0 ,
โˆž
ฬƒ โˆš๐‘‹0 + ๐‘Œ0 โˆซ
๐พ+ (๐‘‹, ๐‘Œ)
๐œ‚โˆ— /โˆš๐‘(๐‘กโˆ— )
2
2
๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข
๐œ‚
2
(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0 1
โˆผ
โˆซ ๐‘’โˆ’๐‘ข /2 ๐‘‘๐‘ข.
2
โˆš
2๐œ‹ โˆ’โˆž
(๐‘‹0 + ๐‘Œ0 )
๐‘Œ0
1
๐‘›] .
[โˆ’๐‘ +
2
โˆš๐œŒ
(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0
๐‘ (๐‘กโˆ— )
๐ถ
โˆผ โˆš2๐œ‹๐œŒโˆš๐‘‹0 + ๐‘Œ0 exp {๐œŒ [1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0
๐ถ0
ฬƒ
๐‘Œโ†’๐‘Œ(๐‘‹)
โˆผ
(530)
๐‘
ฬƒ (๐‘‹)]
+ โˆš๐œŒ [๐‘Œ0 โˆ’ ๐‘Œ
โˆš๐œŒ
From (184)โ€“(187) we obtain, as ๐‘‹ โ†’ ๐‘‹0 or ๐‘กโˆ— โ†’ 0,
But from Proposition 2 we see that, for R1 โˆช R2 โˆช R3 ,
+ (๐‘‹0 + ๐‘Œ0 ) log (๐‘‹0 + ๐‘Œ0 )]} ,
,
ฬƒ (๐‘‹)] = โˆš๐œŒ [๐‘Œ โˆ’ ๐‘Œ0 + ๐‘Œ0 โˆ’ ๐‘Œ
ฬƒ (๐‘‹)]
๐œ‚โˆ— = โˆš๐œŒ [๐‘Œ โˆ’ ๐‘Œ
๐ถ0 ๐พ (๐‘‹, ๐‘Œ)
ฬƒ (๐‘‹))
โˆผ ๐ถ๐พ+ (๐‘‹, ๐‘Œ
โˆ’5/2
= (2๐œ‹)โˆ’1/2 [(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0 ] (๐‘‹0 + ๐‘Œ0 )
(529)
๐‘Œ0 (๐‘‹0 + ๐‘Œ0 ) [(๐‘‹0 + ๐‘Œ0 ) + (๐‘‹0 + ๐‘Œ0 ) (๐‘Œ0 โˆ’ 2๐‘‹0 ) + ๐‘‹0 ] ๐‘› (531)
2
[(๐‘‹0 + ๐‘Œ0 ) โˆ’ ๐‘‹0 ]
3
๐œŒ
since ๐‘›/๐‘ โˆผ ๐œƒ1 , as ๐‘กโˆ— โ†’ 0 ๐œ‚โˆ— /โˆš๐‘(๐‘กโˆ— ) approaches โˆ’๐œ‚ in
(252), which verifies (529). This completes the analysis of the
transition from D+ to D0 .
8. Numerical Studies and Discussion
Next we show that our asymptotic results can also be used to
accurately estimate the probabilities ๐œ‹(๐‘˜, ๐‘Ÿ) in ranges where
there is little mass. We will consider ๐œ‹(0, ๐‘…) which is the (very
unlikely) situation where no primary spaces are occupied but
all of the secondary spaces are full. To estimate ๐œ‹(0, ๐‘…) we
must use the expansion that is valid for ๐‘˜ = ๐‘‚(1) and ๐‘ = ๐‘… โˆ’
๐‘Ÿ = ๐‘‚(1), and this corresponds to (130). Thus we set ๐‘˜ = ๐‘ = 0
in (130) and note that ๐‘„(0, 0) has the different expansions
in Proposition 1, according to regions in parameter space. In
Table 1 we take ๐‘‹0 = 2, ๐‘Œ0 = 1 and use the expression for
๐‘„(0, 0) that holds in parameter region R1 . We see that the
exact and asymptotic results agree to three decimal places
even if ๐œŒ is as small as 2. In Table 2 we have ๐‘‹0 = 0.8 and
๐‘Œ0 = 0.4, and ๐‘„(0, 0) is again computed from (30). Now the
agreement is not quite as good as in Table 1, and we typically
have errors of about 10%. This is probably due to the fact that
numerically ๐‘‹0 + ๐‘Œ0 = 1.2, which exceeds one only slightly,
so it may be preferable to use (29) to approximate ๐‘„(0, 0). In
Tables 3 and 4 we take, respectively, ๐‘‹0 = 0.4, ๐‘Œ0 = 0.4 and
๐‘‹0 = 0.4, ๐‘Œ0 = 0.2. Table 3 corresponds to region R3 and
Table 4 to region R4 . The agreement is certainly better for
region R4 , as again the sum ๐‘‹0 + ๐‘Œ0 is further away from the
critical value of one. Here we used ๐‘„(0, 0) โˆผ 1 โˆ’ ๐‘‹0 โˆ’ ๐‘Œ0 for
region(s) R3 โˆช R4 .
Tables 1โ€“4 show that the very small values of ๐œ‹(0, ๐‘…) are
well predicted by the asymptotic formula(s).
To summarize, we have done a rather thorough asymptotic analysis for this storage allocation model. We have
shown that as long as ๐‘‹0 + ๐‘Œ0 > 1 (๐‘š + ๐‘… > ๐œŒ) the effects
of the finiteness of the secondary storage capacity occur only
for (๐‘‹, ๐‘Œ) โˆˆ D0 and for those state space regions that border
D0 . However, for ๐‘‹0 + ๐‘Œ0 < 1 (๐‘š + ๐‘… < ๐œŒ) the entire state
54
Advances in Operations Research
Table 1: ๐œ‹(0, ๐‘…) for region R1 , ๐‘‹0 = 2, ๐‘Œ0 = 1.
๐œŒ
2
4
6
8
10
Exact
5.41 (10โˆ’4 )
2.54 (10โˆ’7 )
1.19 (10โˆ’10 )
5.58 (10โˆ’14 )
2.62 (10โˆ’17 )
Asymptotic
5.41 (10โˆ’4 )
2.54 (10โˆ’7 )
1.19 (10โˆ’10 )
5.58 (10โˆ’14 )
2.62 (10โˆ’17 )
Table 2: ๐œ‹(0, ๐‘…) for region R2 , ๐‘‹0 = 0.8, ๐‘Œ0 = 0.4.
๐œŒ
5
10
15
20
25
30
35
Exact
1.47 (10โˆ’3 )
1.70 (10โˆ’6 )
1.96 (10โˆ’9 )
2.27 (10โˆ’12 )
2.65 (10โˆ’15 )
3.09 (10โˆ’18 )
3.63 (10โˆ’21 )
Asymptotic
1.13 (10โˆ’3 )
1.35 (10โˆ’6 )
1.61 (10โˆ’9 )
1.92 (10โˆ’12 )
2.29 (10โˆ’15 )
2.73 (10โˆ’18 )
3.25 (10โˆ’21 )
Table 3: ๐œ‹(0, ๐‘…) for region R3 , ๐‘‹0 = 0.4, ๐‘Œ0 = 0.4.
๐œŒ
10
20
30
40
50
60
70
Exact
1.86 (10โˆ’4 )
2.29 (10โˆ’8 )
2.64 (10โˆ’12 )
2.96 (10โˆ’16 )
3.25 (10โˆ’20 )
3.53 (10โˆ’24 )
3.81 (10โˆ’28 )
Asymptotic
1.08 (10โˆ’4 )
1.56 (10โˆ’8 )
1.94 (10โˆ’12 )
2.28 (10โˆ’16 )
2.59 (10โˆ’20 )
2.89 (10โˆ’24 )
3.18 (10โˆ’28 )
Table 4: ๐œ‹(0, ๐‘…) for region R4 , ๐‘‹0 = 0.4, ๐‘Œ0 = 0.2.
๐œŒ
10
20
30
40
50
60
70
Exact
5.13 (10โˆ’4 )
1.33 (10โˆ’7 )
3.12 (10โˆ’11 )
6.99 (10โˆ’15 )
1.53 (10โˆ’18 )
3.29 (10โˆ’22 )
6.98 (10โˆ’26 )
Asymptotic
4.17 (10โˆ’4 )
1.17 (10โˆ’7 )
2.83 (10โˆ’11 )
6.48 (10โˆ’15 )
1.43 (10โˆ’18 )
3.11 (10โˆ’22 )
6.66 (10โˆ’26 )
space is affected by the finite capacity, as then there are not
enough storage spaces to satisfy the demand for them. For
๐‘‹0 + ๐‘Œ0 < 1 it proves useful to consider the numbers, ๐‘š โˆ’ ๐‘1
and ๐‘… โˆ’ ๐‘2 , of empty primary and secondary spaces, and
then the steady state distribution ๐œ‹(๐‘˜, ๐‘Ÿ) = ๐œ‹(๐‘š โˆ’ ๐‘›, ๐‘… โˆ’ ๐‘)
has for ๐œŒ โ†’ โˆž the limiting form in (50). Even though
the marginal distributions of ๐‘1 and the sum ๐‘1 + ๐‘2 are
particularly simple, the joint distribution of (๐‘1 , ๐‘2 ) is quite
complicated, as the analysis involves many different ranges
of the parameter space (cf. Figure 2) and the state space (cf.
Figures 3โ€“6). In some ranges special functions such as Airy
and parabolic cylinder functions play a key role.
Competing Interests
The authors declare that they have no competing interests.
Acknowledgments
This work is partially supported by a Faculty Development
Grant from Columbia College Chicago.
References
[1] D. E. Knuth, Fundamental Algorithms, vol. 1, Addison-Wesley,
Reading, Mass, USA, 3rd edition, 1997.
[2] S. Xie and C. Knessl, โ€œOn the transient behavior of the Erlang
loss model: heavy usage asymptotics,โ€ SIAM Journal on Applied
Mathematics, vol. 53, no. 2, pp. 555โ€“599, 1993.
[3] L. Kosten, โ€œUber sperrungswahrscheinlichkeiten bei staffelschltungen,โ€ ElectraNachr.-Tech, vol. 14, pp. 5โ€“12, 1937.
[4] D. Aldous, โ€œSome interesting processes arising as heavy traffic
limits in an ๐‘€/๐‘€/โˆž storage process,โ€ Stochastic Processes and
Their Applications, vol. 22, pp. 291โ€“313, 1986.
[5] E. G. Coffman Jr., T. T. Kadota, and L. A. Shepp, โ€œA stochastic
model of fragmentation in dynamic storage allocation,โ€ SIAM
Journal on Computing, vol. 14, no. 2, pp. 416โ€“425, 1985.
[6] G. F. Newell, The M/M/โˆž Service System with Ranked Servers
in Heavy Traffic, Springer, New York, NY, USA, 1984.
[7] J. Preater, โ€œA perpetuity and the ๐‘€/๐‘€/โˆž ranked server
system,โ€ Journal of Applied Probability, vol. 34, no. 2, pp. 508โ€“
513, 1997.
[8] E. Sohn and C. Knessl, โ€œA simple direct solution to a storage
allocation model,โ€ Applied Mathematics Letters, vol. 21, no. 2,
pp. 172โ€“175, 2008.
[9] C. Knessl, โ€œAsymptotic expansions for a stochastic model of
queue storage,โ€ The Annals of Applied Probability, vol. 10, no. 2,
pp. 592โ€“615, 2000.
[10] C. Knessl, โ€œGeometrical optics and models of computer memory fragmentation,โ€ Studies in Applied Mathematics, vol. 111, no.
2, pp. 185โ€“238, 2003.
[11] C. Knessl, โ€œSome asymptotic results for the ๐‘€/๐‘€/โˆž queue
with ranked servers,โ€ Queueing Systems, vol. 47, no. 3, pp. 201โ€“
250, 2004.
[12] E. Sohn and C. Knessl, โ€œThe distribution of wasted spaces in
the ๐‘€/๐‘€/โˆž queue with ranked servers,โ€ Advances in Applied
Probability, vol. 40, pp. 835โ€“855, 2008.
[13] E. Sohn and C. Knessl, โ€œOn a storage allocationmodel with finite
capacity,โ€ European Journal of Applied Mathematics, 2016.
[14] R. Courant and D. Hilbert, Methods of Mathematical Physics,
Partial Differential Equations, vol. 2, Wiley-Interscience, New
York, NY, USA, 1989.
[15] N. Bleistein and R. A. Handelsman, Asymptotic Expansions of
Integrals, Dover, New York, NY, USA, 2nd edition, 1986.
[16] C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers, McGraw-Hill, New York,
NY, USA, 1978.
[17] R. Wong, Asymptotic Approximation of Integrals, SIAM,
Philadelphia, Pa, USA, 2001.
[18] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, UK, 2009.
[19] W. Szpankowski, Average Case Analysis of Algorithms on
Sequences, Wiley-Interscience, New York, NY, USA, 2001.
Advances in Operations Research
[20] C. Knessl and Y. Yang, โ€œAnalysis of a Brownian particle moving
in a time-dependent drift field,โ€ Asymptotic Analysis, vol. 27, no.
3-4, pp. 281โ€“319, 2001.
[21] C. Knessl, โ€œOn two-dimensional convection-diffusion past a
circle,โ€ SIAM Journal on Applied Mathematics, vol. 62, no. 1, pp.
310โ€“335, 2001.
55
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014